Section — I

1.(b) We have,
$$f = \frac{1}{2\pi\sqrt{LC}}$$

 $LC = \frac{1}{4\pi^2 f^2} = [T^2]$

2.(a) Unit vector
$$(\hat{\mathbf{n}}) = \frac{\vec{\mathbf{A}} \times \vec{\mathbf{B}}}{|\vec{\mathbf{A}} \times \vec{\mathbf{B}}|}$$
$$= \frac{8\hat{\mathbf{i}} - 8\hat{\mathbf{j}} - 8\hat{\mathbf{k}}}{8\sqrt{3}}$$
$$= \frac{1}{\sqrt{3}} (\hat{\mathbf{i}} - \hat{\mathbf{j}} - \hat{\mathbf{k}})$$

- 3.(b) When ice melts level of waster is same. But due to decrease in temp. to 4°C, volume decreases because density is maximum at 4°C.
- 4.(b) $m = V\rho$ during winter density is more so mass increases.

As $\theta \downarrow$, m↑

- 5.(a) Vessel being filled with water behaves as closed organ pipe. As more and more water is filled, l decreases and frequency increases $\left(f = \frac{V}{4l}\right)$
- 6.(d) Use right hand palm rule.
- 7.(d) In equpotential surface, $\Delta V = 0$ $W = q\Delta V = 0$ and varies with potential
- 8.(c) $R = \frac{me^4}{8\epsilon_0^2 h^3 c}$

As 'm' is reduced to half, R also become half.

9.(a)
$$P = \rho g h$$
or, $h \propto g^{-1}$
or, $\frac{\Delta h}{h} = -\frac{\Delta g}{g} = -(2)\% = +2\%$

10.(a)
$$\frac{\text{KE}_{\text{r}}}{\text{KE}_{\text{T}}} = \frac{\frac{1}{2} \text{mk}^2 \times \frac{\text{v}^2}{\text{r}^2}}{\frac{1}{2} \text{mv}^2 \left(\frac{\text{k}^2}{\text{r}^2} + 1\right)} = \frac{\text{k}^2}{\text{k}^2 + \text{r}^2} = \frac{\frac{2}{5}}{\frac{2}{5} + 1} = \frac{7}{7}$$

- 11.(d) Sound is mechanical wave and needs material medium to propagate.
- 12.(d) Electric field strength is zero inside a hollow sphere.

13.(d)
$$\delta = 180^{\circ} - 2i$$

= $180^{\circ} - 2 \times 30^{\circ} = 120^{\circ}$

- 14.(b) In TV wave frequency is modulated.
- 15.(a) R − C ≡ N has tendency to donate as well as accept lone pair electrons. AlCl₃ has a vacant porbital so it can accept a pair of electrons.ROH and R₂NH are nucleophiles because of having lone pair electrons.

- 16.(a) sp hybridized carbon is acidic in nature due to having 50% s- character.
- 17.(c) Na₂SO₄ is salt of strong acid (i.e.H₂SO₄) & strong base (i.e.NaOH) when a neutral salt & a base is mixed to make a solution then solution become basic i.e.pH > 7

18.(a)

- 19.(a) For n=1, l=0 which is inconsistent in option (a)
- 20.(a) Weight of nitrogen = $0.2 \times 14 = 2.8g$ Weight of carbon = $12 \times 3 \times 10^{23} / 6 \times 10^{23} = 6 g$ Weight of Sulphur = $1 \times 32 = 32 g$

 \therefore Weight of silver = 7 g

- 21.(d) Size of anion > size of cation& size of cation or anion ↑s down the group
- 22.(d) Generally, for a compound acidity ↑s as its central ion's oxidation state increases

Here, oxidation no of nitrogen increases as follows:

$$NH_3 < N_2H_4 < N_2H_2 < N_3H$$

So, property of compound vary from basic (NH_3) to acidic (N_3H)

- 23.(c) Mohr's salt is double salt
- 24.(d) Pt., Rh is used as catalyst in Ostwald's process
- 25.(a)
- 26.(c)
- 27.(d)
- 28.(c)
- 29.(d) $p \Rightarrow q$ is equivalent to $\sim q \Rightarrow \sim p$.

30.(b)

31.(b)
$$4\sin^{-1}x + \cos^{-1}x = \pi$$

or, $3\sin^{-1}x + \sin^{-1}x + \cos^{-1}x = \pi$
or, $3\sin^{-1}x + \frac{\pi}{2} = \pi$

or,
$$\sin^{-1}x = \frac{\pi}{6}$$

$$\therefore x = \sin \frac{\pi}{6} = \frac{1}{2}$$

32.(a) From sine law,
$$\frac{a}{\sin A} = \frac{b}{\sin B}$$

$$\frac{6\sqrt{2}}{\sin 30^{\circ}} = \frac{b}{\sin 45^{\circ}} \quad \therefore \quad b = 12$$

- 33.(b) Total no. of ways = ${}^{5}c_{1} + {}^{5}c_{2} + {}^{5}c_{3} = 25$
- 34.(b) $\log_{e}(1-2x)$ is valid if $-1 \le 2x < 1$

$$\Rightarrow -\frac{1}{2} \le x < \frac{1}{2}$$

35.(c)
$$1 + 2 + ... + n = 55 \Rightarrow \frac{n(n+1)}{2} = 55$$

 $1^3 + 2^3 + ... + n^3 = \left(\frac{n(n+1)}{2}\right)^2 = 55^2 = 3025$

36.(a)
$$A^{2} = I$$

$$\begin{bmatrix} x & 1 \\ 1 & 0 \end{bmatrix} \begin{bmatrix} x & 1 \\ 1 & 0 \end{bmatrix} = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$$
or,
$$\begin{bmatrix} x^{2} + 1 & x \\ x & 1 \end{bmatrix} = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$$

$$\Rightarrow x^{2} + 1 = 1 \Rightarrow x = 0$$

37.(c)
$$\lim_{x \to 1} 2x = 2$$
, $\lim_{x \to 1} x^3 + 1 = 1 + 1 = 2$
By squeeze theorem, $\lim_{x \to 1} f(x) = 2$

38.(c) By continuity,
$$f(0) = \lim_{x \to 0} \frac{2x - \sin^{-1}x}{2x + \tan^{-1}x}$$
$$= \lim_{x \to 0} \frac{2 - \frac{\sin^{-1}x}{x}}{2 + \frac{\tan^{-1}x}{2}} = \frac{2 - 1}{2 + 1} = \frac{1}{3}$$

39.(d)
$$f'(x) = e^x g'(x) + g(x) e^x [Product rule]$$

 $\therefore f'(0) = g'(0) + g(0) = 1 + 2 = 3$

40.(d)
$$\int \frac{dx}{1 - \cos x} = \int \frac{dx}{2\sin^2 \frac{x}{2}} = \frac{1}{2} \int \csc^2 \frac{x}{2} dx$$

$$=\frac{1}{2}\left(-\frac{\cot\frac{x}{2}}{\frac{1}{2}}\right)+c=-\cot\frac{x}{2}+c$$

41.(d) Solving
$$\frac{x^2}{2} + \frac{y^2}{2} = c$$

 $x^2 + y^2 = 2c$ (Family of concentric circ

$$x^{2} + y^{2} = 2c \text{ (Family of concentric circles)}$$

$$42.(a) \begin{vmatrix} 1 & 1 & 0 \\ 1 & 0 & 1 \\ -1 & 0 & -1 \end{vmatrix} = - \begin{vmatrix} 1 & 1 & 0 \\ 1 & 0 & 1 \\ 1 & 0 & 1 \end{vmatrix}$$

$$= 0 \text{ (i. } \mathbf{P}_{0} = \mathbf{P}_{0} \mathbf{1}$$

43.(c)
$$(\vec{a} \times \vec{b})^2 = (|\vec{a}| |\vec{b}| \sin \theta)^2$$

= $(4.2 \sin 30^\circ)^2 = \left(8.\frac{1}{2}\right)^2 = 16$

44.(c) For horizontal line, slope = 0
i.e.
$$-\frac{(2-k)}{-3+k} = 0$$

45.(b) For circle, coeff. of
$$x^2 = \text{coeff. of } y^2$$

i.e. $\frac{k}{3} = \frac{1}{4}$
 $\therefore k = \frac{3}{4}$

46.(d)
47.(c) We have,
$$l^2 + m^2 + n^2 = 1$$

$$\therefore \frac{1}{c^2} + \frac{1}{c^2} + \frac{1}{c^2} = 1$$

$$c^2 = 3 \Rightarrow c = \pm \sqrt{3}$$

48.(d) Arithmetic mean =
$$\frac{1+2+3+...n}{n}$$

= $\frac{1}{n} \frac{n(n+1)}{n} - \frac{n+1}{n}$

Section – II

61.(d)
$$V = nV_e = 2V_e$$
 \therefore $n = 2$
Velocity in free space $(V) = \sqrt{n^2 - 1} V_e$
 $= \sqrt{2^2 - 1} V_e$
 $= \sqrt{3} V_e$

62.(a)
$$\frac{x}{L} = \frac{\mu}{\mu + 1} \times 100\%$$
$$= \frac{0.25}{0.25 + 1} \times 100\% = 20\%$$

63.(d)
$$u\cos\theta = \frac{u}{2} \Rightarrow \theta = 60^{\circ}$$

$$R = \frac{u^2 \sin 2 \times 60^{\circ}}{g} = \frac{\sqrt{3}}{2} \frac{u^2}{g}$$

64.(c)
$$Q = ms\Delta\theta = \rho Vs\Delta\theta$$

= $\rho \cdot \left(\frac{4}{3}\pi r^3\right) s\Delta\theta$

$$=21-h$$

Where h = actual height of water filled in beaker.

$$\mu = \frac{RD}{AD} = \frac{h}{21 - h}$$

$$\frac{4}{3} = \frac{h}{21 - h}$$

66.(d)
$$\frac{1}{f} = \frac{1}{D} - \frac{1}{d} = \frac{1}{25} - \frac{1}{30} = \frac{1}{150}$$

 $f = 150 \text{ cm}$
 $P = \frac{100}{f} = \frac{100}{150} = +\frac{2}{3}D$

67.(b)
$$L = 10 \log_{10} \left(\frac{I}{I_0} \right)$$
$$100 = 10 \log_{10} \left(\frac{I}{10^{-12}} \right)$$
$$I = 10^{-2}$$
$$P = IA = 10^{-2} \times 0.5 \times 2 = 10^{-2} \text{ W}$$

68.(c) Length of diagonal of cube = $\sqrt{3}b$ distance of each charge from the centre = $\frac{d}{2} = \frac{\sqrt{3}}{2}b$

:. Total potential at centre

$$(V) = 8. \frac{q}{4\pi\epsilon_0 \cdot \frac{\sqrt{3}}{2}b} = \frac{4q}{\sqrt{3}\pi\epsilon_0 b}$$

69.(d)
$$F = qE = q \cdot \frac{V}{l} = e \frac{V}{l}$$

$$V = \frac{Fl}{e} = \frac{4.8 \times 10^{-19} \times 5}{1.6 \times 10^{-19}} = 15 \text{ volt}$$

70.(a)
$$\varepsilon = \left| L \frac{dI}{dt} \right| = \frac{40 \times 10^{-3} (11 - 1)}{4 \times 10^{-3}} = 100 \text{ V}$$

71.(b)
$$I = I_0 e^{-\mu x}$$

$$\frac{I_0}{2} = I_0 e^{-\mu x}$$

$$e^{\mu x} = 2$$

$$\mu x = 0.693$$

$$\mu = \frac{0.693}{x} = \frac{0.693}{2.303 \text{ mm}} = 0.3$$

72.(b) No. of half lives (n) =
$$\frac{t}{T_{1/2}} = \frac{6400}{800} = 8$$

Fraction that have been decayed = $1 - \frac{N}{N_0}$

$$=1-\frac{1}{256}=\frac{255}{256}$$

- 73.(a) Some ejected photoelectrons don't have K.E. so minimum K.E. is 0 eV.
- 74.(b) In the organic species having unipositive charge, 1, 2, 3, 4, and 5 carbons represent 1, 1, 2, 4 and 8 isomers respectively.
- 75.(a) It is also known as (4+2) cycloaddition reaction.

76.(c)
$$Al^{3+}+3e \rightarrow Al$$
, $E_{Al}=At.Wt/3$
 $Cu^{2+}+2e \rightarrow Cu$, $E_{cu}=At.Wt/2$
 $Na^{+}+e^{-}\rightarrow Na$; $E_{Na}=At.Wt/1$
When 3 "Faraday is passed;
Mole atom of Al deposited = 1
Mole atom of Na deposited = $1 \times 3/2 = 1.5$
Mole atom of Na deposited = $1 \times 3 = 3$

77.(c) The balanced equation is

$$IO_3^- + 5I^- + 6H^+ \rightarrow 3I_2 + 3H_2O$$

78.(d)

79.(d) A + 2B
$$\rightarrow$$
 AB₂
1 mole 2 mole 1 mole
2 mole 4 mole

So, B is limiting reactant thus 1 mole

80.(b) pH = 5 & diluted to 100 times then new concⁿ is 10^{-5} N So, 10^{-7} N H⁺ ion is also consider from H₂O Thus final concⁿ is 2×10^{-7} N Hence pH = 6.7

81.(d)

82.(b) Here,
$$f(x) = \frac{1}{\sqrt{|x| - x}}$$

$$f(x) \text{ is defined when } |x| - x > 0$$
i.e. $|x| > x$
It is possible if $x < 0$

83.(c)
$$\frac{1}{ab} + \frac{1}{bc} + \frac{1}{ca}$$
$$= \frac{c+a+b}{abc}$$

$$= \frac{2s}{4R\Delta}$$

$$= \frac{1}{2R \cdot \frac{\Delta}{s}}$$

$$= \frac{1}{2Rr} \left[\because r = \frac{\Delta}{s} \right]$$

84.(a)
$$\vec{a} + \vec{b} + \vec{c} = 0$$

Squaring,

$$|\vec{a}|^2 + |\vec{b}|^2 + |\vec{c}|^2 - 2(\vec{a}.\vec{b} + \vec{b}.\vec{c} + \vec{c}.\vec{a}) = 0$$

or, $2(\vec{a}.\vec{b} + \vec{b}.\vec{c} + \vec{c}.\vec{a}) = -(9 + 16 + 25)$

$$\therefore \quad \vec{a}.\vec{b} + \vec{b}.\vec{c} + \vec{c}.\vec{a} = -25$$

85.(d)
$$|x|^2 - |x| - 6 = 0$$

 $(|x| - 3) (|x| + 2) = 0$
Either, $|x| = 3 \Rightarrow x = \pm 3$
or, $|x| = -2$ (no real roots)
Product $= 3 \times (-3) = -9$

86.(d)
$$\frac{(4+3i)^3}{i-1} = \frac{161}{2} - \frac{73}{2}i$$
 i.e. 4th quadrant

87.(d) |adj. A| = |C|
or, |A|³⁻¹ = |C|
or,
$$4^2 = \begin{vmatrix} 1 & k & 3 \\ 1 & 3 & 3 \\ 2 & 4 & 4 \end{vmatrix}$$

or, 16 = 2k - 6 (By expanding determinant)

$$\therefore$$
 k = 11

88.(b) Number of rectangles =
$${}^{10}C_4 - {}^4C_4 - {}^4C_3 \times {}^6C_1$$

= $210 - 1 - 24 = 185$

89.(c)
$$\lim_{x \to 0} \frac{x - \sin x}{x^3} \left[\frac{0}{0} \text{ form} \right]$$

Using L Hospital's rule

$$\begin{aligned} &\lim_{x \to 0} \frac{1 - \cos x}{3x^2} \left[\frac{0}{0} \text{ form} \right] \\ &= \lim_{x \to 0} \frac{\sin x}{6x} \left[\frac{0}{0} \text{ form} \right] = \lim_{x \to 0} \frac{\cos x}{6} = \frac{1}{6} \end{aligned}$$

90.(a) Total no. of cases =
$${}^{40}C_2 = 780$$

Sum of two integers is odd if one of them is odd and other is even.

No. of favourable cases = ${}^{20}C_1 \times {}^{20}C_1 = 400$

Required probability =
$$\frac{400}{780} = \frac{20}{39}$$

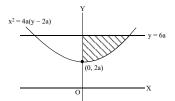
91.(b)
$$\frac{dy}{dx} = \frac{1}{1+x^3}$$
 $\left(\frac{dy}{dx}\right)_{x=1} = \frac{1}{1+1^3} = \frac{1}{2}$

92.(a)
$$\frac{dy}{dx} - \frac{t}{1+t}y = \frac{1}{1+t}$$

Which is a linear diff, eqn. with

I.F. =
$$(t+1) e^{-t}$$

$$y(1+t) e^{-t} = \int \frac{1}{1+t} (1+t) e^{-t} dt$$


$$y(1+t) e^{-t} = -e^{-t} + c$$

When
$$t = 0$$
, $y = -1$, So, $-1 = -1 + c \Rightarrow c = 0$

When
$$t = 1$$
, $y.2.e^{-1} = -e^{-1} \Rightarrow y = -\frac{1}{2}$

93.(c)

94.(a)

$$\begin{split} A &= \int_{2a}^{6a} x dy \\ &= \int_{2a}^{6a} 2 \sqrt{a} \, \sqrt{y - 2a} \, dy \\ &= 2 \sqrt{a} \left[\frac{(y - 2a)^{3/2}}{\frac{3}{2}} \right]_{2a}^{6a} = \frac{32a^2}{3} \, \text{sq. units} \end{split}$$

$$a^{2} = 4, b^{2} = 9$$
Vertices = $(h \pm a, k)$
= $(1 \pm 2, -2)$
= $(3, -2) & (-1, -2)$
95.(a) D.r's of OP = $(a - 0, b - 0, c - 0)$
= (a, b, c)
Eqⁿ of plane through P(a, b, c) is
$$A(x - a) + B(y - b) + C(z - c) = 0 \dots(i)$$
Since (i) is \bot^{t} to OP, $\frac{A}{a} = \frac{B}{b} = \frac{C}{c} = k$ (suppose)
$$\therefore A = ak, B = bk, C = ck$$
Using in (i), $a(x - a) + b(y - b) + c(z - c) = 0$

h = 1, k = -2

$$ax + by + cz - a^{2} - b^{2} - c^{2} = 0$$

$$96.(d) \quad x^{2} - 4x - 8y + 12 = 0$$
i.e. $(x - 2)^{2} = 8(y - 1)$
Comparing with $(x - h)^{2} = 4a(y - k)$, $4a = 8$
Length of latus rectum $= 4a = 8$

...The End...