Kantipur Engineering College Dhapakhel, Lalitpur Tel: 5229204, 5229005 2082-3-28 Hints & Solution				
1.(b)	$\frac{\text{Section} - I}{\text{Average velocity}} = \frac{\frac{\text{Displacement}}{\text{Time}}}{\text{Time}}$	15.(c)	First find the number of moles of CH ₄ (molecular weight = 16 g/mol). Then multiply by Avogadro's number and remember that each CH ₄ molecule	
	$= \frac{2R}{\left(\frac{2\pi R}{v}\right) \times \frac{1}{2}} = \frac{2v}{\pi}$	16.(b)	contains 5 atoms (1 carbon + 4 hydrogen). Remember the flame test colors: Mg burns with bright white light, Ca gives brick red, Sr gives crimson red, and Ba gives apple green color.	
2.(d)	$E = \frac{1}{2} m v_0^2 = \frac{1}{2} m \frac{GM}{R} = \frac{GMm}{2R}$ Here, E + E' = KE for escape	17.(b)	NH ₃ acts as a proton acceptor (Brønsted base) but doesn't completely ionize in water, making it a weak base.	
	or, $E' = \frac{1}{2}mv_e^2 - E$	18.(c)	Compare ionic compounds with covalent molecular compounds. Ionic bonds are much stronger than intermolecular forces like van der Waals forces.	
	$= \frac{1}{2} m \times \frac{2GM}{R} - \frac{GMm}{2R}$ $= \frac{GMm}{2R} = E$	19.(c)	Consider how C ₄ H ₁₀ can be arranged - think about straight chain vs branched chain arrangements of carbon atoms.	
3.(b)	$\frac{2R}{\sec} = \frac{\pi p r^4}{8\eta l}$	20.(c)	Look for a molecule with symmetrical geometry where the polar bonds cancel each other out due to the molecular shape.	
	$\therefore \frac{(\text{Vol/sec})_{2nd}}{(\text{Vol/sec})_{1st}} = \left(\frac{r_2}{r_1}\right)^4 = \left(\frac{2r}{r}\right)^4 = 16$	21.(c)	Color in transition metal ions arises from d-d electronic transitions. Ions with d^0 or d^{10} electronic configurations don't show d-d transitions.	
4.(c) 5.(c)	% rise = (Expansivity $\times \Delta \theta$) $\times 100\%$ Here $\gamma > \beta > \alpha$ so, max. for volume Heat lost by water = Heat gained by ice	22.(d)	Atomic radius decreases from left to right across a period due to increasing nuclear charge pulling	
	or, $50(100 - \theta) = 50 \times 80 + 50\theta$ or, $100 - \theta = 80 + \theta$	23.(a)	electrons closer. Elements in the same group have similar chemical properties because they have the same number of	
6.(a)	or, $\theta = \frac{20}{2} = 10^{\circ}\text{C}$ $m = -\frac{1}{2} = \frac{v}{u}$	24.(b)	valence electrons. The period number is determined by the highest principal quantum number (n value) in the electron	
	or, $v = -\frac{u}{2}$	25.(a)	configuration. Among the hydrogen halides, acid strength increases down the group due to decreasing H-X bond strength, making it easier to release H ⁺ .	
	Now $\frac{1}{f} = \frac{1}{u} + \frac{1}{v}$ or, $-\frac{1}{10} = \frac{1}{u} - \frac{2}{u} = -\frac{1}{u}$	26.(b)	In Cr_2Or^{2-} , chromium is in +6 oxidation state. When reduced to Cr^{3+} , each Cr atom gains 3 electrons. Remember there are 2 Cr atoms.	
	\therefore u = 10 cm	27.(b)	In dilute acid solutions, water molecules are preferentially electrolyzed rather than the acid itself.	
7.(c)	$\frac{\lambda}{2} = 5 \text{ cm}$ $\lambda = 10 \text{ cm} = 0.1 \text{ m}$	28.(a)	The $C = C$ double bond is electron-rich and readily attacks electrophiles, leading to a specific type of reaction.	
8.(c)	$f = \frac{v}{\lambda} = \frac{2}{0.1} = 20 \text{ Hz}$ $I_R = I_1 + 2\sqrt{I_1 I_2} \cos\phi + I_2$	29.(a)	$x^2 = 16 \Rightarrow x = \pm 4$ and $2x = 6 \Rightarrow x = 3$ There is no value of x which satisfies both the above equations. Thus, $A = \phi$.	
0.(0)	$= 16a^{2} + 2\sqrt{16a^{2} \times a^{2}} \times \cos^{0} + a^{2}$ $= 21a^{2} = 21 \text{ units}$	30.(d)	$\left[\left(x^{2}-2+\frac{1}{x^{2}}\right)^{2}\right]^{10}=\left(x^{2}-2+\frac{1}{x^{2}}\right)^{20}$	
9.(a)	$\theta_{i} - \theta_{n} = \theta_{n} - \theta_{0}$ or, $\theta_{i} = 2\theta_{n} - \theta_{0} = 2 \times 300 - 10 = 590^{\circ}\text{C}$ $d\theta_{i} = 5.5 \times 10^{-4} - 5 \times 10^{-4}$		$=\left[\left(x-\frac{1}{x}\right)^{2}\right]^{20}=\left(x-\frac{1}{x}\right)^{40}$	
10.(b)	$Q = \frac{d\phi}{R} = \frac{5.5 \times 10^{-4} - 5 \times 10^{-4}}{10} = 5 \times 10^{-6} C$ $= 5 \ \mu c$ $I_{max} = \sqrt{I_1^2 + I_2^2}$	31.(c)	Total no. of terms after expansion = $40 + 1 = 41$ 3AB = $3^{3} A B $ = $27 \times (-1) \times 2$	
11.(c)	$I_{max} = \sqrt{I_1^2 + I_2^2}$ $I_{rms} = \frac{I_{max}}{\sqrt{2}} = \frac{1}{\sqrt{2}} (I_1^2 + I_2^2)^{1/2}$	32.(c)	$= -54$ $\sum_{n=1}^{\infty} \frac{1}{(2n-1)!} = \frac{1}{1!} + \frac{1}{3!} + \frac{1}{5!} + \dots$	
12.(b) 13.(c)	Intensity is independent of applied voltage. 'S' wave can travel from solid only.		$=\frac{e-e^{-1}}{2}$	
14.(c)	Potential at every point inside sphere is equal to potential on surface.	33.(a)	If α and β are the roots, then	

9.(a)
$$x^2 = 16 \Rightarrow x = \pm 4$$
 and $2x = 6 \Rightarrow x = 3$
There is no value of x which satisfies both the above equations. Thus, $A = \phi$.

Kantipur Engineering College Dhapakhel, Lalitpur Tel: 5229204, 5229005 2082-3-28 Hints & Solution				
	$A = \frac{\alpha + \beta}{2} \Longrightarrow \alpha + \beta = 2A$		Squaring $41 + 8k = 25$ $\therefore k = -2$	
	and $G = \sqrt{\alpha\beta} \Rightarrow \alpha\beta = G^2$ The quadratic eq ⁿ is	47.(d)	$y^{2} + 2y + x = 0$ or, $(y + 1)^{2} = -(x - 1)$	
	$x^{2} - (\alpha + \beta)x + \alpha\beta = 0$ $\therefore x^{2} - 2Ax + G^{2} = 0$	48.(d)	$\therefore \text{Vertex} = (1, -1) \text{ which lies in } 4^{\text{th}} \text{ quadrant.}$ $a^2 = 25 \Rightarrow a = 5$ $b^2 = 144 \Rightarrow b = 12$	
34.(c)	$\tan 5\theta = \cot 2\theta = \tan \left(\frac{\pi}{2} - 2\theta\right)$		$b = 144 \implies b = 12$ Length of latus rectum $= \frac{2b^2}{a} = \frac{2 \times 144}{5}$	
	$\Rightarrow 5\theta = n\pi + \frac{\pi}{2} - 2\theta$		$=\frac{288}{5}$	
	$\Rightarrow 7\theta = n\pi + \frac{\pi}{2} \Rightarrow \theta = (2n+1)\frac{\pi}{14}$	49.(a) 55.(c)	50.(c)51.(b)52.(d)53.(a)54.(a)56.(d)57.(b)58.(d)59.(a)60.(c)	
35.(b)	Let $\cot^{-1}x = \theta \Rightarrow \cot\theta = x$ Now, $\operatorname{sincot}^{-1}x = \sin\theta = \frac{1}{\csc \theta}$		Section – II	
	$=\frac{1}{\sqrt{1+\cot^2\theta}}=\frac{1}{\sqrt{1+x^2}}$	61.(b)	$1^{st} \operatorname{cast}_{R} = \sqrt{\underline{2^2 + 2 \times 2 \times 3\cos\theta + 3^2}}$	
			$=\sqrt{13+12\cos\theta}$ 2nd case	
36.(c)	$\begin{vmatrix} a & 1 & 1 \\ 1 & b & 1 \\ 1 & 1 & c \end{vmatrix} = 0 \Longrightarrow a + b + c = abc + 2$		$2R = \sqrt{2^2 + 2 \times 2 \times 6\cos\theta + 6^2}$ $= \sqrt{40 + 24\cos\theta}$	
37.(c)	$ \vec{a} + \vec{b} ^2 = \vec{a} ^2 + \vec{b} ^2 + 2\vec{a}.\vec{b}$ = 1 + 1 + 0 = 2		Now, $2\sqrt{13 + 12\cos\theta} = \sqrt{40 + 24\cos\theta}$ or, $52 + 48\cos\theta = 40 + 24\cos\theta$	
	$\therefore \qquad \vec{a} + \vec{b} = \sqrt{2}$		or, $12 = -24\cos\theta$ or, $\cos\theta = -\frac{12}{24} = -\frac{1}{2} = \cos 120^\circ$	
38.(d)	$P(E) = \frac{5}{5+4} = \frac{5}{9}$		$\theta = 120^{\circ}$	
39.(b)	$\lim_{x \to 0} \left(\frac{\frac{\sin x}{x} + \frac{\sin 3x}{x}}{\frac{\sin 3x}{x} - \frac{\sin x}{x}} \right)$	62.(b)	Impulse = Ft = mat = 0.15 \times 20 \times 0.1	
			$= 0.15 \times 20 \times 0.1$ $= 0.3 \text{ NS}$ $gsin\theta$	
	$= \lim_{x \to 0} \left(\frac{\frac{\sin x}{x} + \frac{\sin 3x}{3x} \times 3}{\frac{\sin 3x}{2x} \times 3 - \frac{\sin x}{x}} \right) = \frac{1+3}{3-1} = 2$		$a = \frac{gsm\theta}{1 + \frac{K^2}{r^2}}$	
40.(c)	$\left(3x^{3}x^{5}-x\right)$		$=\frac{g\sin 30}{1+\frac{1}{2}}=\frac{2}{3}g\times\frac{1}{2}=\frac{g}{3}$	
41.(b) 42.(d)	Slope of normal = $-\frac{dx}{dy}$	64.(a)	$\frac{1.004P}{P} = \frac{T+1}{T}$	
42.(u)	$\Rightarrow \tan\frac{3\pi}{4} = -\left(\frac{dx}{dy}\right)_{(3,4)}$		or, $1.004 = \frac{T+1}{T}$	
	- · · · · · · · · · · · · · · · · · · ·		or, $1.004T = T + 1$	
	$\Rightarrow \left(\frac{dy}{dx}\right)_{(3,4)} = 1$ i.e. $f'(3) = 1$	65.(b)	or, $T = \frac{1}{0.004} = 250 \text{ k}$ In series	
43.(c)	$\int_{0}^{2} x^{2}[x] dx = \int_{0}^{1} x^{2}(0) dx + \int_{1}^{2} x^{2}(1) dx$		$\frac{Q}{t} = \frac{KAd\theta}{2l} = 2W$	
	$= \left[\frac{x^3}{3}\right]_1^2 = \frac{7}{3}$		In parallel, $\left(\frac{Q}{t}\right)' = \frac{K2Ad\theta}{l} = 4\left(\frac{KAd\theta}{2l}\right)$	
44.(c) 45.(b)	Centroid divides the join of orthocentre and		$= 4 \times 2 = 8W$	
	circumcentre in the ratio 2:1. By section formula,	66.(d)	$y = 8\sin 2\pi (0.1x - 2t)$ Now, $2\pi \times 0.1x = \frac{2\pi x}{\lambda}$	
	$(\mathbf{x}, \mathbf{y}) = \left(\frac{2.6 + 1.(-3)}{2 + 1}, \frac{2.2 + 1.5}{2 + 1}\right) = (3, 3)$		or, $\lambda = \frac{1}{0.1} = 10 \text{ cm}$	
46.(a)	Length of tangent = 5 i.e. $\sqrt{5^2 + 4^2 + 2k \cdot 4} = 5$		$\therefore \qquad \phi = \frac{2\pi x}{\lambda} = \frac{2\pi \times 2}{10} = \left(\frac{4 \times 180}{10}\right)^{\circ} = 72^{\circ}$	
	•	I		

Kantipur Engineering College Dhapakhel, Lalitpur Tel: 5229204, 5229005 2082-3-28 Hints & Solution				
67.(c)	Length of diagonal	77.(c)	When H ₂ O ₂ acts as a reducing agent, it gets oxidized	
	$l = \sqrt{3} a$ Distance of midpoint (r) $= \frac{l}{2} = \frac{\sqrt{3}a}{2}$	78.(b)	(oxygen goes from -1 to 0). Look for a reaction where H_2O_2 reduces another species. First ionization energy generally increases across a period from left to right due to increasing nuclear	
	$V = 8 \times \frac{Q}{4\pi\epsilon_0 r} = \frac{8Q \times 2}{4\pi\epsilon_0 \times \sqrt{3}a}$ $= \frac{4Q}{\sqrt{3}\pi\epsilon_0 a}$	79.(b)	charge, also ionization energy is affected by the electronic configuration. Notice that heat is released as a product in this reaction. This indicates the direction of energy flow.	
68.(a)	$I_1 = \frac{2}{6} = \frac{1}{3} A$ $V_{AB} = I_1 R_{AB} = \frac{1}{3} \times 3 = 1 V$	80.(d)	Volatility is inversely related to boiling point. Higher molecular weight alcohols have stronger intermolecular forces and higher boiling points.	
69.(a)	$v_{AB} = I_1 K_{AB} = \frac{1}{3} \times 3 = 1 v$ $\eta = \frac{P_{out}}{P_{in}} \times 100\%$	81.(a)	Count all single bonds carefully: C-H bonds, C-C single bonds. Remember that a triple bond contains 1 σ bond and 2 π bonds.	
	or, $80\% = \frac{I_s E_s}{I_p E_p} \times 100\%$	82.(a)	$y = \sin^{-1} \left[\log_3 \left(\frac{x}{3} \right) \right]$	
	$I_{p} = \frac{20 \times 120}{1000} \times \frac{100}{80} = 3A$		$\Rightarrow -1 \le \log_3\left(\frac{x}{3}\right) \le 1$	
70.(a)	$0 = \sqrt{I_1 I_2}$ or, $3^2 = 9 \times I_2$		$\Rightarrow \frac{1}{3} \le \frac{x}{3} \le 3$	
71.(d)	or, $l_2 = 1 \text{ cm}$ $\frac{\beta}{2} = \frac{D\lambda}{2d}$	83.(b)	$\Rightarrow 1 \le x \le 9$ $\therefore Domain = [1, 9]$ $\sum n = 55$	
	$=\frac{1 \times 550 \times 10^{-9}}{2 \times 1.1 \times 10^{-3}}$ = 2.5 × 10 ⁻⁴ m = 0.25 mm		$\frac{n(n+1)}{2} = 55$ or, $n^2 + n - 110 = 0$ or, $n = 10, -11$ (not possible)	
72.(b)	$\frac{m}{m_0} = \left(\frac{1}{2}\right)^{\nu T_{1/2}}$		∴ $n = 10$ $\sum n^2 = \frac{n(n+1)(2n+1)}{6}$	
	or, $m = m_0 \left(\frac{1}{2}\right)^{\nu T_{1/2}}$ = 10.38 $\left(\frac{1}{2}\right)^{19/3.8}$		$=\frac{10 \times 11 \times 21}{6}$ $= 385$	
73.(b)	= 0.32g $\lambda_{\text{particle}} = \lambda$	84.(a)	Let $Z = \cos\frac{\pi}{8} + i \sin\frac{\pi}{8}$	
	or, $\frac{h}{m_p v_p} = \lambda$		Then $\frac{1}{Z} = \cos\frac{\pi}{8} - i\sin\frac{\pi}{8}$	
	or, $m_p = \frac{h}{v_p \lambda}$ $KE_{particle} = \frac{1}{2} m_p v_p^2$		Given expression = $\left(\frac{1+Z}{1+\frac{1}{Z}}\right)^{\circ} = Z^{8}$	
	$\frac{\text{KE}_{\text{particle}}}{\text{E}_{\text{photon}}} = \frac{2^{-\frac{1}{p}-p}}{\frac{hc}{p}}$		$=\left(\cos\frac{\pi}{8}+\sin\frac{\pi}{8}\right)^8$	
	$=\frac{1}{2} \times \frac{h}{v_{\rm s}\lambda} \frac{v_{\rm p}^2}{hc} \times \lambda$		$=\cos\left(\frac{\pi}{8}\cdot 8\right) + i\sin\left(\frac{\pi}{8}\cdot 8\right)$	
	$= \frac{1}{2} = \frac{v_{p}}{c} = \frac{2.25 \times 10^{8}}{2 \times 3 \times 10^{8}}$	85.(b)	$= \cos \pi + i \sin \pi = -1$ Case I: Ending at 0	
	$=\frac{2.25}{6}=\frac{225}{600}=\frac{3}{8}$		$\begin{array}{cccc} \text{Th} & \text{H} & \text{T} & \text{U} \\ \downarrow & \downarrow & \downarrow & \downarrow \end{array}$	
74.(a)	6 600 8 Count π bonds carefully. Remember that a triple bond consists of 1 σ bond + 2 π bonds, while a		3 4 5 1 (Choices) No. of ways = $3 \times 4 \times 5 \times 1 = 60$ Case II: Ending at 2 or 4	
75.(b)	double bond has 1σ bond + 1π bond. Use the formula $2n^2$ where n is the shell number. For		The H T U $\downarrow \downarrow \downarrow \downarrow \downarrow$	
76.(c)	n=3, calculate 2(3) ² . This reaction involves a hydrocarbon burning in oxygen to produce carbon dioxide and water, which		4 4 3 2 (Choices) No. of ways = $4 \times 4 \times 3 \times 2 = 96$ Required no. of ways = $60 + 96 = 156$	
	is characteristic of a specific type of reaction.	86.(b)	$\frac{\cos C + \cos A}{c + a} + \frac{\cos B}{b}$	

Kantipur Engineering College Dhapakhel, Lalitpur Tel: 5229204, 5229005 2082-3-28 Hints & Solution				
	$=\frac{b\cos C + b\cos A + \cos B + a\cos B}{b(c+a)}$		Put $ln \sin x = t$ $\cot x dx = dt$	
	$=\frac{a+c}{b(a+c)}$ [By projection law]		$I = \int \frac{1}{t} dt = lnt + c = ln(ln sinx) + c$	
	$=\frac{1}{b}$	93.(b)	$A = 2 \int_{0}^{1} y dx$	
87.(b)	$\vec{a} + \vec{b} + \vec{c} = 0$		$=2\int_0^1(1-x)\mathrm{d}x$	
	$\Rightarrow (\vec{a} + \vec{b} + \vec{c}).(\vec{a} + \vec{b} + \vec{c}) = 0$ $\Rightarrow \vec{a} ^2 + \vec{b} ^2 + \vec{c} ^2 + 2(\vec{a}.\vec{b} + \vec{b}.\vec{c} + \vec{c}.\vec{a}) = 0$		$= 2 \int_{0}^{1} (1-x) dx = 2 \left[x - \frac{x^{2}}{2} \right]_{0}^{1} = 2 \times \frac{1}{2} = 1$	
	$\Rightarrow \mathbf{a} ^{+} + \mathbf{b} ^{-} + \mathbf{c} ^{-} + 2(\mathbf{a}.\mathbf{b} + \mathbf{b}.\mathbf{c} + \mathbf{c}.\mathbf{a}) = 0$ $\Rightarrow \vec{\mathbf{a}}.\vec{\mathbf{b}} + \vec{\mathbf{b}}.\vec{\mathbf{c}} + \vec{\mathbf{c}}.\vec{\mathbf{a}} = \frac{-1 - 4 - 9}{2} = -7$	94.(b)	D.r's of the normal to the plane: $2, -3, 6$ D.r's of x-axis: 1, 0, 0	
88.(c)	Given equations 2		$\sin\theta = \frac{2.1 + (-3) \cdot 0 + 6.0}{\sqrt{2^2 + (-3)^2 + 6^2} \sqrt{1^2 + 0^2 + 0^2}}$	
	$4\dot{X} + 3Y + 7 = 0$ $3X + 4Y + 8 = 0$ $X = -\frac{3}{4}Y - \frac{7}{4}$ $Y = -\frac{3}{4}X - 2$		or, $\sin\theta = \frac{2}{7}$	
	$\therefore b_{XY} = -\frac{3}{4} \qquad \qquad b_{YX} = -\frac{3}{4}$		or, $\theta = \sin^{-1}\left(\frac{2}{7}\right)$	
	$r = -\sqrt{b_{\rm XY}.b_{\rm YX}} = -\frac{3}{4}$		or, $\sin^{-1}(\lambda) = \sin^{-1}\left(\frac{2}{7}\right)$	
89.(b)	$\lim_{x \to 0} \frac{\sin(\pi \cos^2 x)}{x^2} \left[\frac{0}{0} \text{ form} \right]$		$\therefore \lambda = \frac{2}{7}$	
	$= \lim_{x \to 0} \frac{\cos(\pi \cos^2 x).(-\pi) \sin 2x}{2x}$	95.(c)	Let the slopes be m and 3m.	
	[By L' Hospital rule]		Then, m + 3m = $-\frac{2h}{b^2}$ 2h	
	$= -\pi \lim_{x \to 0} \cos(\pi \cos^2 x) \cdot \lim_{x \to 0} \frac{\sin 2x}{2x}$ $= (-\pi) (-1) (1) = \pi$		$\Rightarrow 4m = -\frac{2h}{b^2}$	
90.(c)	$y = \tan^{-1}\left(\frac{\cos x + \sin x}{\cos x - \sin x}\right)$		$\Rightarrow m = -\frac{h}{2b^2} \dots (i)$	
	$= \tan^{-1} \left(\frac{1 + \tan x}{1 - \tan x} \right)$		and $m.3m = \frac{a^2}{b^2}$	
			or, $3\left(-\frac{h}{2b^2}\right)^2 = \frac{a^2}{b^2}$ [Using (i)]	
	$= \tan^{-1} \left(\frac{\tan \frac{\pi}{4} + \tan x}{1 - \tan \frac{\pi}{4} \cdot \tan x} \right)$		$\therefore h = \frac{2}{\sqrt{3}} ab$	
		96.(b)	CD = $\sqrt{(1+1)^2 + (0-2)^2 + (5-4)^2} = 3$ D.c's of CD:	
	$= \tan^{-1} \tan\left(\frac{\pi}{4} + x\right)$		$l = \frac{1+1}{3} = \frac{2}{3}$	
	$=\frac{\pi}{4}+x$		$m = \frac{0-2}{3} = -\frac{2}{3}$	
91.(d)	$\therefore \frac{dy}{dx} = 1$ Here, $x = -2$. So, $x < 0$		$n = \frac{5-4}{3} = \frac{1}{3}$	
,(-)	Then, $ \mathbf{x} = -\mathbf{x}$ as $\mathbf{x} < 0$ $f(\mathbf{x}) = (-\mathbf{x})^2 - (-\mathbf{x}) = \mathbf{x}(\mathbf{x} + 1) $		The projection of AB on CD = $(x_2 - x_1) l + (y_2 - y_1) m + (z_2 - z_1)n$	
	= x(x + 1) as x < -1 = $x^2 + x$		$= (4-3)\frac{2}{3} + (6-4)\left(-\frac{2}{3}\right) + (11-5)\frac{1}{3}$	
	f'(x) = 2x + 1 f'(-2) = -4 + 1 = -3		$=\frac{2-4+6}{3}=\frac{4}{3}$	
	Slope of normal = $-\frac{1}{\text{slope of tangent}} = \frac{1}{3}$	97.(c)	98.(c) 99.(c) 100.(d)	
92.(b)	Let I = $\int \frac{\cot x}{\ln \sin x} dx$			

...Best of Luck...