Section – 1 1.(b) Resultant of \vec{A} & \vec{B} lies on a plane and \vec{C} lies in another plane so resultant can never be zero. 2.(c) $P = \frac{W}{t}$ or, $t = \frac{W}{P} = \frac{mgh}{P}$ $= \frac{200 \times 10 \times 40}{10 \times 10^3} = 8 \sec$ 3.(b) When spring is cut in 4 equal parts then K' = 4K $\frac{T}{T} = \sqrt{\frac{K}{K}} = \sqrt{\frac{K}{4K}} = \frac{1}{2}$ \therefore $T = \frac{T}{2}$ 4.(a) On heating upthrust decreases so it sink. 5.(a) $\frac{E'}{E} = \left(\frac{540}{273}\right)^4 = 16$ \therefore $E' = 16E$ 6.(a) $\omega t = 40t$ $kx = x$ $\sigma, f = \frac{40}{2\pi} \frac{2\pi}{\lambda} = 1$ $\sigma, f = \frac{40}{2\pi} \frac{2\pi}{\lambda} = 1$ $\frac{\lambda = 2\pi}{\sqrt{\pi}}$ \therefore $v = 6\lambda = \frac{40}{2\pi} \times 2\pi = 40 \text{ m/s}$ \therefore $v = \sqrt{\frac{1}{m}}$ $\sigma, T = vm = 40^2 \times 10^2 = 16N$ 7.(d) Distance $= 30 + 10 + 10$ = 25 cm 8.(c) Near point $= -40 \text{ cm}$ u = 25 cm 8.(c) Near point $= -40 \text{ cm}$ u = 25 cm 8.(c) Near point $= -40 \text{ cm}$ u = 25 cm 8.(c) Near point $= -40 \text{ cm}$ u = 25 cm 8.(c) Near point $= -40 \text{ cm}$ u = 25 cm 8.(c) Near point $= -40 \text{ cm}$ u = 25 cm 8.(c) Near point $= -40 \text{ cm}$ u = 25 cm 8.(c) Near point $= -40 \text{ cm}$ u = 25 cm 8.(c) Near point $= -40 \text{ cm}$ u = 25 cm $y = \frac{4}{2} = -\frac{32}{2} = +1.5D$ y = 0 cm y = 0 cm $y = 4 which is s-interceptNow, area of triangle = \frac{1}{2} \times \text{ sintercept} \times \text{ yinterce}Now, area of triangle = \frac{1}{2} \times \text{ sintercept} \times \text{ yinterce}Now, area of triangle = \frac{1}{2} \times \text{ sintercept} \times \text{ yinterce}$	5358
1.(b) Resultant of A & B lies on a plane and C lies in another plane so resultant can never be zero. 2.(c) $P = \frac{W}{t}$ or, $t = \frac{W}{P} = \frac{mgh}{P}$ $= \frac{200 \times 10 \times 40}{10 \times 10^3} = 8 \sec$ 3.(b) When spring is cut in 4 equal parts then K' = 4K $\frac{T}{T} = \sqrt{\frac{K}{K}} = \sqrt{\frac{K}{4K}} = \frac{1}{2}$ $\therefore T = \frac{T}{2}$ 4.(a) On heating upthrust decreases so it sink. 5.(a) $\frac{E'}{E} = \left(\frac{546}{273}\right)^4 = 16$ $\therefore t = 16E$ 6.(a) of t= 40t kx = x or, $n = 40$ kk = 1 or, $f = \frac{40}{2\pi} = \frac{2\pi}{\lambda} = 1$ $\lambda = 2\pi$ $\therefore v = f\lambda = \frac{40}{2\pi} \times 2\pi = 40$ m/s $\therefore v = f\lambda = \frac{40}{2\pi} \times 2\pi = 40$ m/s $\therefore v = f\lambda = \frac{40}{2\pi} \times 2\pi = 40$ m/s $\therefore v = \sqrt{\frac{T}{m}}$ v = 25 cm = 402 $v = \frac{25(40)}{3} \text{ cm} = \frac{2}{3}$ m $P = \frac{1}{l_{tim}} = \frac{3}{2} = 1.5D$ 9.(a) $V = \frac{W}{Q} = \frac{4}{20} = 0.2 V$ V	
2.(c) $P = \frac{W}{t}$ or, $t = \frac{W}{P} = \frac{mgh}{P}$ $= \frac{200 \times 10 \times 40}{10 \times 10^3} = 8 \sec$ 3.(b) When spring is cut in 4 equal parts then K' = 4K $\frac{T}{T} = \sqrt{\frac{K}{K}} = \sqrt{\frac{K}{4K}} = \frac{1}{2}$ \therefore $T = \frac{T}{2}$ 4.(a) On heating uptrust decreases so it sink. 5.(a) $\frac{E'}{E} = \left(\frac{546}{273}\right)^4 = 16$ \therefore $E' = 16E$ 6.(a) out = 40t $k = 1$ or, $\sigma = 40$ $k = 1$ or, $f = \frac{40}{2\pi} \times 2\pi = 40$ m/s \therefore $v = f\lambda = \frac{40}{2\pi} \times 2\pi = 40$ m/s \therefore $v = f\lambda = \frac{40}{2\pi} \times 2\pi = 40$ m/s $\frac{1}{25}$ (b) 20 (b) $21.(a)$ $22.(c)$ $23.(b)$ 25.(b) $26.(d)$ $27.(d)$ $28.(a)$ 20.(b) $21.(a)$ $22.(c)$ $23.(b)25.(b)$ $26.(d)$ $27.(d)$ $28.(a)29.(b)$ $21.(a)$ $22.(c)$ $23.(b)26.(c)$ Near point = -40 cm $u = 25$ cm $v = 40^2 \times 10^{-2} = 16N$ 8.(c) Near point = -40 cm $u = 25$ cm $v = 40^2$ cm $f = \frac{uv}{u + v} = \frac{25(-40)}{25} + \frac{200}{3}$ cm $= \frac{2}{3}$ m $P = \frac{1}{f_{mm}} = \frac{3}{2} = +1.5D$ 9.(a) $V = \frac{W}{u} = \frac{4}{20} = 0.2$ V	
or, $t = \frac{W}{10} = \frac{100}{P}$ $= \frac{200 \times 10 \times 40}{10 \times 10^3} = 8 \sec$ 3.(b) When spring is cut in 4 equal parts then K' = 4K $\frac{T}{T} = \sqrt{\frac{K}{K}} = \sqrt{\frac{K}{4K}} = \frac{1}{2}$ $\therefore T = \frac{T}{2}$ 4.(a) On heating upthrust decreases so it sink. 5.(a) $\frac{E'}{E} = \left(\frac{540}{273}\right)^4 = 16$ $\therefore E' = 16E$ 6.(a) on t= 40t kx = x or, $\omega = 40$ k = 1 or, $f = \frac{40}{2\pi} \times 2\pi = 40$ m/s $\therefore v = f\lambda = \frac{40}{2\pi} \times 2\pi = 40$ m/s $\therefore v = \sqrt{\frac{T}{m}}$ or, $T = v^{T}m = 40^{2} \times 10^{-2} = 16N$ 7.(d) Distance $= 30 + 10 + 10$ = 50 cm 8.(c) Near point $= -40$ cm $t = \frac{v}{u + v} = \frac{25(-40)}{25 - 40} + \frac{200}{3}$ cm $= \frac{2}{3}$ m $p = \frac{1}{f_m} = \frac{3}{2} = +1.5D$ 9.(a) $V = \frac{W}{2} = \frac{40}{20} = 0.2 V$ $V = \frac{W}{L} = \frac{40}{2\pi} \times 2\pi$	
$=\frac{200 \times 10 \times 40}{10 \times 10^3} = 8 \sec $ 3.(b) When spring is cut in 4 equal parts then K' = 4K $\frac{\Gamma}{T} = \sqrt{\frac{K}{K}} = \sqrt{\frac{K}{4K}} = \frac{1}{2}$ $\therefore T' = \frac{T}{2}$ 4.(a) On heating upthrust decreases so it sink. 5.(a) $\frac{E'}{E} = \left(\frac{546}{273}\right)^4 = 16$ $\therefore E' = 16E$ 6.(a) on teating upthrust decreases so it sink. 5.(a) $\frac{E'}{E} = \left(\frac{546}{273}\right)^4 = 16$ $\therefore E' = 16E$ 6.(a) on teating upthrust decreases so it sink. 5.(a) $\frac{E'}{E} = \left(\frac{540}{273}\right)^4 = 16$ $\therefore E' = 16E$ 6.(a) on teating upthrust decreases so it sink. 5.(a) $\frac{E'}{E} = \left(\frac{540}{2\pi}, \frac{2\pi}{\lambda} = 1$ $\frac{1}{\sqrt{k}} = \frac{2\pi}{\lambda} = 1$ $\frac{1}{\sqrt{k}} = \frac{2\pi}{\lambda} \times 2\pi = 40 \text{ m/s}$ $\frac{1}{\sqrt{k}} = \sqrt{\frac{1}{2\pi}} \times 2\pi = 40 \text{ m/s}$ $\frac{1}{\sqrt{k}} = \frac{\sqrt{k}}{\sqrt{2}\pi} = \frac{1}{\sqrt{k}} = \frac{1}{\sqrt{k}} \times 2\pi = 40 \text{ m/s}$ $\frac{1}{\sqrt{k}} = \frac{\sqrt{k}}{\sqrt{2}\pi} = \frac{1}{\sqrt{k}} = \frac{\sqrt{k}}{\sqrt{2}\pi} = 16N$ $\frac{1}{\sqrt{k}} = \sqrt{\frac{1}{2\pi}} \times 2\pi = 40 \text{ m/s}$ $\frac{1}{\sqrt{k}} = \frac{\sqrt{k}}{\sqrt{2}\pi} = \frac{1}{\sqrt{k}} = \frac{\sqrt{k}}{\sqrt{2}\pi} = 16N$ $\frac{1}{\sqrt{k}} = \sqrt{\frac{1}{2\pi}} = \frac{1}{\sqrt{k}} = \frac{1}{\sqrt{k}} \times 2\pi = 40 \text{ m/s}$ $\frac{1}{\sqrt{k}} = \sqrt{\frac{1}{2\pi}} = \frac{1}{\sqrt{k}} = \frac{1}{\sqrt{k}} \times 2\pi = 40 \text{ m/s}$ $\frac{1}{\sqrt{k}} = \sqrt{\frac{1}{2\pi}} = \frac{1}{\sqrt{k}} = $	
5.(b) When spring is cut in 4 equal parts then $K = 4K$ $\frac{T}{T} = \sqrt{\frac{K}{K}} = \sqrt{\frac{4K}{4K}} = \frac{1}{2}$ $\therefore T = \frac{T}{2}$ 4.(a) On heating upthrust decreases so it sink. 5.(a) $\frac{E}{E} = \left(\frac{5473}{21}\right)^4 = 16$ $\therefore E' = 16E$ 6.(a) $\omega t = 40t$ $kx = x$ $\sigma r, \omega = 40$ $k = 1$ $\sigma r, f = \frac{40}{2\pi} \frac{2\pi}{\lambda} = 1$ $\lambda = 2\pi$ $\therefore v = f_{\lambda} = \frac{40}{2\pi} \times 2\pi = 40 \text{ m/s}$ $\therefore v = f_{\lambda} = \frac{40}{2\pi} \times 2\pi = 40 \text{ m/s}$ $\therefore v = f_{\lambda} = \frac{40}{2\pi} \times 2\pi = 40 \text{ m/s}$ $\therefore v = f_{\lambda} = \frac{40}{2\pi} \times 2\pi = 40 \text{ m/s}$ $\therefore v = f_{\lambda} = \frac{40}{2\pi} \times 2\pi = 40 \text{ m/s}$ $\therefore v = \sqrt{\frac{T}{m}}$ $or, T = v^{rm} = 40^{2} \times 10^{-2} = 16N$ 7.(d) Distance $= 30 + 10 + 10$ = 50 cm 8.(c) Near point $= -40 \text{ cm}$ u = 25 cm v = 400 cm $f = \frac{uv}{u+v} = \frac{25(-40)}{22,-40} + \frac{200}{3} \text{ cm} = \frac{2}{3} \text{ m}$ $p = \frac{1}{f_{mm}} = \frac{3}{2} = +1.5D$ 9.(a) $V = \frac{W}{W} = \frac{40}{20} = 0.2 V$ 9.(a) $V = \frac{W}{W} = \frac{40}{20} = 0.2 V$	
$\sum_{i} T = \frac{T}{2}$ \sum_{i	
4.(a) On heating upthrust decreases so it sink. 5.(a) $\frac{E'}{E} = \left(\frac{546}{273}\right)^4 = 16$ $\therefore E' = 16E$ 6.(a) $\cot = 40t$ $kx = x$ $\cot x = 0$ $k = 1$ $H_2SO_4 \longrightarrow H^+ + SO_4^{}$ $H_2O \longrightarrow H^+ + OH^ H_2O_2$ $cathode anode 19.(b) 20.(b) 21.(a) 22.(c) 23.(b) 25.(b) 26.(d) 27.(d) 28.(a) 29.(b)$ $20.(b) 21.(a) 22.(c) 23.(b) 25.(b) 26.(d) 27.(d) 28.(a) 29.(b)$ $20.(b) 21.(a) 22.(c) 23.(b) 25.(b) 26.(d) 27.(d) 28.(a) 29.(b)$ $40 \times 10^{}$ $10 \times 10^{$	
5.(a) $\frac{F}{E} = \left(\frac{546}{273}\right)^4 = 16$ $\therefore F' = 16E$ 6.(a) $\cot = 40t$ $kx = x$ $or, \ \omega = 40$ $k = 1$ $or, \ f = \frac{40}{2\pi}$ $\frac{2\pi}{\lambda} = 1$ $\lambda = 2\pi$ $\therefore v = f\lambda = \frac{40}{2\pi} \times 2\pi = 40 \text{ m/s}$ $\therefore v = f\lambda = \frac{40}{2\pi} \times 2\pi = 40 \text{ m/s}$ $\therefore v = \sqrt{\frac{T}{m}}$ $or, \ T = v^2m = 40^2 \times 10^{-2} = 16N$ 8.(c) Near point = -40 cm u = 25 cm v = 40 cm $f = \frac{uv}{u+v} = \frac{25(-40)}{25-40} = \frac{200}{3} \text{ cm} = \frac{2}{3} \text{ m}$ $P = \frac{1}{f_{mm}} = \frac{3}{2} = +1.5D$ 9.(a) $V = \frac{W}{Q} = \frac{4}{20} = 0.2 \text{ V}$ F = 50	$I > \Delta E$
$H_{2} = O_{2}$ or, $f = \frac{40}{2\pi}$ $\frac{2\pi}{\lambda} = 1$ $\lambda = 2\pi$ $\therefore v = f\lambda = \frac{40}{2\pi} \times 2\pi = 40 \text{ m/s}$ $\therefore v = f\lambda = \frac{40}{2\pi} \times 2\pi = 40 \text{ m/s}$ $\therefore v = \sqrt{\frac{T}{m}}$ or, $T = v^{2}m = 40^{2} \times 10^{-2} = 16N$ $T.(d) Distance = 30 + 10 + 10$ $= 50 \text{ cm}$ 8.(c) Near point = -40 cm $u = 25 \text{ cm} v = 40 \text{ cm}$ $f = \frac{uv}{u + v} = \frac{25(-40)}{25 - 40} = +\frac{200}{3} \text{ cm} = \frac{2}{3} \text{ m}$ $P = \frac{1}{f_{imm}} = \frac{3}{2} = +1.5D$ 9.(a) $V = \frac{W}{Q} = \frac{4}{20} = 0.2 \text{ V}$ $F = 50$ $H_{2} = O_{2}$ H	
$H_{2} = O_{2}$ or, $f = \frac{40}{2\pi}$ $\frac{2\pi}{\lambda} = 1$ $\lambda = 2\pi$ $\therefore v = f\lambda = \frac{40}{2\pi} \times 2\pi = 40 \text{ m/s}$ $\therefore v = f\lambda = \frac{40}{2\pi} \times 2\pi = 40 \text{ m/s}$ $\therefore v = \sqrt{\frac{1}{2\pi}}$ or, $T = v^{2}m = 40^{2} \times 10^{-2} = 16N$ $\therefore v = \sqrt{\sqrt{\frac{1}{m}}}$ or, $T = v^{2}m = 40^{2} \times 10^{-2} = 16N$ $B.(c) \text{Near point} = -40 \text{ cm}$ $u = 25 \text{ cm} v = 40 \text{ cm}$ $f = \frac{uv}{u + v} = \frac{25(-40)}{25 - 40} = +\frac{200}{3} \text{ cm} = \frac{2}{3} \text{ m}$ $P = \frac{1}{f_{inm}} = \frac{3}{2} = +1.5D$ $P.(a) V = \frac{W}{Q} = \frac{4}{20} = 0.2 \text{ V}$ $F = 50$ $H_{2} = O_{2}$ H_{2	
$\lambda = 2\pi$ $x = f\lambda = \frac{40}{2\pi} \times 2\pi = 40 \text{ m/s}$ $\therefore v = f\lambda = \frac{40}{2\pi} \times 2\pi = 40 \text{ m/s}$ $\therefore v = \sqrt{\frac{1}{2\pi}}$ or, $T = v^2m = 40^2 \times 10^{-2} = 16N$ or, $T = v^2m = 40^2 \times 10^{-2} = 16N$ $B.(c) \text{Near point} = -40 \text{ cm}$ $u = 25 \text{ cm} v = 40 \text{ cm}$ $f = \frac{uv}{u + v} = \frac{25(-40)}{25 - 40} = +\frac{200}{3} \text{ cm} = \frac{2}{3} \text{ m}$ $P = \frac{1}{f_{\text{finm}}} = \frac{3}{2} = +1.5D$ $P.(a) V = \frac{W}{Q} = \frac{4}{20} = 0.2 \text{ V}$ $F = 50$ $P.(a) V = \frac{W}{Q} = \frac{4}{20} = 0.2 \text{ V}$ $P(x = 1, y = $	
$\therefore \mathbf{v} = f\lambda = \frac{40}{2\pi} \times 2\pi = 40 \text{ m/s}$ $\therefore \mathbf{v} = f\lambda = \frac{40}{2\pi} \times 2\pi = 40 \text{ m/s}$ $\therefore \mathbf{v} = \sqrt{\frac{1}{2\pi}}$ or, $T = \mathbf{v}^2 \mathbf{m} = 40^2 \times 10^{-2} = 16\text{N}$ or, $T = \mathbf{v}^2 \mathbf{m} = 40^2 \times 10^{-2} = 16\text{N}$ $30.(c) A^2 - A + I = 0 \text{ or } I = A - A^2 \text{ or } I = A(I - A)$ $30.(c) A^2 - A + I = 0 \text{ or } I = A - A^2 \text{ or } I = A(I - A)$ $\therefore A^{-1} = I - A$ $31.(c) We have, Adj. A = A I = 3\begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} = \begin{pmatrix} 3 \\ 0 \\ 0 \end{pmatrix}$ $P = \frac{1}{f_{nm}} = \frac{3}{2} = +1.5D$ $9.(a) V = \frac{W}{Q} = \frac{4}{20} = 0.2 \text{ V}$ $E = 50$ $29.(b) \text{Here, } f(-x) = f(x) \rightarrow \text{even}$ $f(-x) = -g(x) \rightarrow \text{odd}$ $Now, (fog)(-x) = f(g(-x)) = f(-g(x)) = f(-g(x$	24.(d)
$\therefore v = \sqrt{\frac{T}{m}}$ or, $T = v^2m = 40^2 \times 10^{-2} = 16N$ 7.(d) Distance $= 30 + 10 + 10$ $= 50 \text{ cm}$ 8.(c) Near point $= -40 \text{ cm}$ $u = 25 \text{ cm} v = 40 \text{ cm}$ $f = \frac{uv}{u + v} = \frac{25(-40)}{25 - 40} = +\frac{200}{3} \text{ cm} = \frac{2}{3} \text{ m}$ $P = \frac{1}{f_{inm}} = \frac{3}{2} = +1.5D$ 9.(a) $V = \frac{W}{Q} = \frac{4}{20} = 0.2 \text{ V}$ E 50	
or, $T = v^2 m = 40^2 \times 10^{-2} = 16N$ Distance $= 30 + 10 + 10$ = 50 cm 8.(c) Near point $= -40 \text{ cm}$ u = 25 cm v = 40 cm $f = \frac{uv}{u + v} = \frac{25(-40)}{25 - 40} = +\frac{200}{3} \text{ cm} = \frac{2}{3} \text{ m}$ $P = \frac{1}{f_{inm}} = \frac{3}{2} = +1.5D$ 9.(a) $V = \frac{W}{Q} = \frac{4}{20} = 0.2 \text{ V}$ E 50 So, composite of even and odd functions is $30.(c)$ $A^2 - A + I = 0 \text{ or } I = A - A^2 \text{ or } I = A(I - A)$ $A^{-1} = I - A$ 31.(c) We have, Adj. $A = A I = 3\begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} = \begin{pmatrix} 3 \\ 0 \\ 0 \end{pmatrix}$ $g = 0 \rightarrow x$ -axis and line $4x + 5y = 20$ Put $x = 0, y = 4$ which is y-intercept Put $y = 0 \times x = 5$ which is x-intercept Now, area of triangle $= \frac{1}{2} \times x$ -intercept $\times y$ -intercept	x))
8.(c) Near point = -40 cm u = 25 cm v = 40 cm $f = \frac{uv}{u + v} = \frac{25(-40)}{25 - 40} = +\frac{200}{3} \text{ cm} = \frac{2}{3} \text{ m}$ $P = \frac{1}{f_{\text{inm}}} = \frac{3}{2} = +1.5D$ 9.(a) $V = \frac{W}{Q} = \frac{4}{20} = 0.2 \text{ V}$ E 50 $S(u) = 10^{-1} \text{ m}^{-1} \text{ m}^{$	
$f = \frac{uv}{u+v} = \frac{25(-40)}{25-40} = +\frac{200}{3} \text{ cm} = \frac{2}{3} \text{ m}$ $P = \frac{1}{f_{inm}} = \frac{3}{2} = +1.5D$ $9.(a) \qquad V = \frac{W}{Q} = \frac{4}{20} = 0.2 \text{ V}$ $B(x) = \frac{1}{2} \times x \text{ intercept } x$	0
P = $\frac{1}{f_{inm}} = \frac{3}{2} = +1.5D$ Put x = 0, y = 4 which is y-intercept Put y = 0 x x = 5 which is x-intercept Now, area of triangle = $\frac{1}{2} \times x$ -intercept × y-intercept	-)
9.(a) $V = \frac{W}{Q} = \frac{4}{20} = 0.2 V$ Now, area of triangle $= \frac{1}{2} \times x$ -intercept $\times y$ -intercept x)
$10 (c) = \frac{E}{50} = 50$	ept
10.(c) $I = \frac{1}{R+r} = \frac{50}{10+r}$ $= \frac{1}{2} \times 5 \times 4 = 10$ sq.	units
or, $10 + r = \frac{50}{4.5} = 11.1$ 33.(c) The circle is $x^2 + y^2 = 16$ Now, $5^2 + 4^2 - 16 = 25 > 0$. So the point	nt (5, 4) is
$\begin{array}{ll} \therefore & r = 1.1 \ \Omega \\ \hline \textbf{11.(a)} & \text{When current divide in circle magnetic field at centre} \end{array} \qquad $	
is zero. 12.(d) $T = 2\pi \sqrt{\frac{I}{MH}}$ $x = \operatorname{asech} t, y = b \operatorname{canh} t$ Now, $\left(\frac{x}{a}\right)^2 + \left(\frac{y}{b}\right)^2 = \operatorname{sech}^2 t + \operatorname{tanh}^2 t$	
$I = \left(\frac{l^2 + b^2}{12}\right) \text{ m, M} = 2\text{ml}$ i.e., $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$, which is an ellipse.	
Independent of length of suspension $35.(d)$ Given conic section is $4x^2 - 9y^2 = 36$	
13.(b) $\frac{1}{\lambda} = R \left[\frac{1}{2^2} - \frac{1}{3^2} \right]$ for Hydrogen 2. So $ PS - PS' = 2a = 2 \times 3 = 6$.	a = 3, b =
or, $\frac{C}{\lambda} = CR \begin{bmatrix} \frac{5}{36} \end{bmatrix}$ 36.(c) $\frac{C}{36} = CR \begin{bmatrix} \frac{5}{36} \end{bmatrix}$ 37.(c) $\frac{C}{36} \end{bmatrix}$ 37.(c) $\frac{C}{36} \end{bmatrix}$ 37.(c) $\frac{C}{3$	i.
or, $f_0 = \frac{5RC}{36}$ Here we can take any value of Z. So (0, 0 Z-axis.	Z) lies on
For Helium $\frac{1}{\lambda} = Z^2 R \left[\frac{1}{2^2} - \frac{1}{3^2} \right]$ 37.(b) Here, centroid of triangle ABC = (2, 3, 4) So, coordinates of A = (3 × 2, 0, 0) = (6, intercept = 6)	$0,0) \Rightarrow x-$

1

		49.(a)	50.(a)	51.(d)	52.(d)	53.(a)	54.(c)
	intercept = 9 $(2 - 2) = (2 - 2)$	55.(b)	56.(d)	57.(b)	58.(c)	59.(b)	60.(a)
	Coordinates of C = $(0, 0, 3 \times 4) = (0, 0, 12) \Rightarrow$ z-intercept = 12			Sectio	n – II		
	Required equation of plane is	61.(c)	PE of dart	= Energy c			
	$\frac{x}{6} + \frac{y}{9} + \frac{z}{12} = 1$ or, $\frac{6x + 4y + 3z}{36} = 1$	01.(0)		$\frac{h_2}{h_1} = \left(\frac{x_2}{x_1}\right)^2$	1 0	9	
	i.e., $6x + 4y + 3z = 36$		8	· (·)		4	
8.(b)	Here, $\vec{a} = \vec{i} + 2\vec{j} + 2\vec{k}$ So, $ \vec{a} = \sqrt{1^2 + 2^2 + 2^2} = 3$		\therefore h ₂ =	$\frac{9}{4} \times 2 = 4.5$	5 m		
	$\vec{b} = 6\vec{i} - 2\vec{j} + 3\vec{k}$ So, $ \vec{b} = \sqrt{b^2 + (-2)^2 + 3^2} = 7$	62.(a)	$0 = \omega_0 + \alpha$			_	
	$\therefore \qquad \frac{\text{Projection of } \vec{b} \text{ on } \vec{a}}{2} = \frac{ \vec{b} }{2} = \frac{7}{2}$		or, $\alpha =$	$-\frac{\omega_0}{t} = -\frac{2\pi t}{10}$	$\frac{f}{f} = -\frac{2\pi \times 2}{10}$	$\frac{0}{2} = -4\pi$ rad	$1/s^2$
	Projection of \vec{a} on \vec{b} $ \vec{a} ^{3}$		τ =	Ια	10		
9.(c)	Given $a = 1, b = 2, C = 60^{\circ}$		_	$5 \times 10^{-3} \times 4$	$4\pi = \frac{\pi}{50}$ N		
	We have, area of $\triangle ABC = \frac{1}{2} \times ab \sin C$	63.(a)	Vol/s = Av		50		
	$=\frac{1}{2} \times 1 \times 2 \times \sin 60^\circ = \frac{\sqrt{3}}{2}$ sq. units		or, 70 >	$< 10^{-6} = 10^{-6}$	⁴ v		
0.(a)	2 2 Sq. and Regression equations are		or, 70 >	$< 10^{-2} = \sqrt{2}$ (70×10^{-2}) 2g	$\frac{\text{gh}}{2}$ (70 × 1)	$(1-2)^2$	
0.(<i>a</i>)	20x - 9y - 107 = 0 and $4x - 5y + 33 = 0$		or, h =	$\frac{(70\times10^{-5})}{2g}$	$=\frac{(70\times10)}{20}$	<u> </u>	
	The point of intersection (13, 17) But point of intersection of regression lines			1	= 0.0245	m	
	$=(\overline{\mathbf{X}},\overline{\mathbf{Y}})$	64.(d)	$T_2 V_2^{\gamma - 1} = T_2 V_2^{\gamma$	$\Gamma_1 V_1^{\gamma-1}$	= 2.45 cr	n	
	$\therefore \mathbf{X} = 13, \mathbf{Y} = 17$		$T_2 v_2^{-1} = 1$	$201\left(\frac{V}{2}\right)^{1}$.4 – 1		
1.(b)	Given $P(A \cap B) = \frac{1}{4}P(\overline{B}) = \frac{5}{8}$, So $P(B) = 1 - P(B)$		O , 1 ₂ -	$\left(\frac{V}{2}\right)$	and the second s		
	$=1-\frac{5}{8}=\frac{3}{8}$			$= 291(8)^{0.4} =$			
				= 395 - 18	- 305°C		
	:. $P(A/B) = \frac{P(A \cap B)}{P(B)} = \frac{\frac{1}{4}}{\frac{3}{8}} = \frac{1}{4} \times \frac{8}{3} = \frac{2}{3}$.: ΔT	= 395 - 18	= 377°C		
	$P(B) = \frac{3}{8} + \frac{3}{3} + \frac{3}{3}$	65.(b)	gain in tim	e in 1 day	$\frac{1}{2}\alpha(\theta - \theta)$	16) × 1 day	
2.(c)	We have, $\sim (p \Rightarrow q) \equiv p \land (\sim q)$	U3.(D)	<u>gain in tim</u> lose in tim	e in 1 day	$\frac{1}{2}\alpha$ (40 –	$(\theta) \times 1 day$	
	So the negation of "If battery is low then mobile		_		2		
	doesnot work well" is battery is low and mobile works well.		or, $\frac{5}{15}$ =	(
3.(c)	To have unique solution of $AX = B$, A^{-1} must exists		or, 30-	- 48 = 40 -	θ or, θ	$=\frac{88}{4}=22^{\circ}$	С
	and for this we must have $ A \neq 0$ lim lim					4	
4.(d)	Here, $\lim_{x \to a^{-}} f(x) \neq \lim_{x \to a^{+}} f(x)$. So by definition the	66.(c)	$\frac{\mathbf{v}}{4l_{\mathbf{c}_1}} - \frac{\mathbf{v}}{4l_{\mathbf{c}_2}} =$	= 4			
Q.	discontinuity is jump.		or, $\frac{\mathrm{v}}{4}$	$\frac{1}{1} - 1 =$	4		
5.(a)	$\lim_{n \to \infty} \frac{1+2+3+\ldots+n}{n^2}$						
	$=\frac{\lim_{n\to\infty}\frac{n(n+1)}{2n^2}}$		or, $\frac{1}{l_{c_1}} =$	$=\frac{4\times4}{330}+1=$	$=\frac{340}{330}$		
			or $l =$	$=\frac{330}{346}=0.95$	5 m = 95 cm	n	
	$=\lim_{n\to\infty}\left(\frac{1}{2}+\frac{1}{n}\right)=\frac{1}{2}+0=\frac{1}{2}$			510) III 95 CI		
6.(c)	Here, $\log_5 x = \log_5 e \log_e x$	67.(c)	$\mu = \frac{\text{Rea}}{\text{Appar}}$	ent depth			
	So, $\frac{d\log_5 x}{dx} = \log_5 e \frac{d\log_c x}{dx} = \frac{\log_c 5}{x}$		$\frac{4}{3} = \frac{x}{21 - x}$				
7.(a)	Suppose, $y = x^2$ So, $dy = 2x dx$		3 21 - x 84 - 4x = 1				
7.(a)	Suppose, $y - x$ so, $dy - 2x dx$ = $2 \times 2 \times 0.01 = 0.04$		or, x =	$\frac{84}{7} = 12 \text{ cm}$	1		
8.(c)	Given $\frac{dy}{dx} = ye^x$ or, $\frac{dy}{y} = e^x dx$	68.(a)	$d\sin\theta_1 = \lambda$	/			
0.(0)	1			$h_1 = \frac{\lambda}{d}$			
	Integrating $\int \frac{dy}{y} = \int e^x dx$			u		228×10^{-10})
	$lny = e^{x} + c$		or, $\theta_1 =$	$\sin^{-1}\left(\frac{\lambda}{d}\right)$	$=\sin^{-1}\left(\frac{6}{2}\right)$	$\frac{528 \times 10^{-3}}{6.2 \times 10^{-3}}$	-) = 0.1
	Using $y(0) = e$, we have $lne = e^0 + c \Rightarrow c = 0$ Then $lny = e^x$ So $lny = e^1 \therefore y = e^e$			$= 2 \times 0.18^{\circ}$	· ·	-	/

N	NCIT Nepal College of Information Technology Balkuari, Lalitpur Tel: 01-5186354, 5186358 2082-3-07 Hints & Solution						
69.(b)	$Q = (C_1 + C) V'$ or, $C_1V_1 = (C_1 + C) V'$	81.(c)	01				
	or, $C_1 + C = \frac{5 \times 10^{-6} \times 12}{3}$	CH2 –	$\begin{array}{c} O^{\overline{}} & OH \\ \\ CH + HCN \longrightarrow CH_3 - CH - CN \\ + & \\ \end{array}$				
70.(c)	or, $C = 20 \ \mu F - 5 \ \mu F = 15 \ \mu F$ Deflection fall 50 div to 10 div means I = 5I _g	eny	Hydrolysis				
	$\therefore \qquad S = \frac{I_g G}{I - I_g} \qquad G = \frac{12(5I_g - I_g)}{I_g} = 48\Omega$		OH				
71.(d)	$E = \frac{d\phi}{dt} = AN \frac{dB}{dt}$		CH ₃ – CH – COOH				
	$= (0.1)^2 \times 500 \times 1$ = 5V		2-Hydroxy propanoic acid				
72.(b)	1 st case	92 (J)	a(D = 140 a(A) = 75 a(D) = 85				
	$\frac{hc}{\lambda} = \phi + e \times 2.5 V$	82.(d)	n(U) = 140, n(A) = 75, n(B) = 85 Here maximum possible value of $n(A \cup B) = 140$				
	or, $ev = \left(\frac{hc}{\lambda} - \phi\right) \times \frac{1}{2.5} \dots (1)$	4	Minimum possible value of $n(A \cup B) = 85$ So, $n(A' \cap B') = n(A \cup B)' = n(U) - n(A \cup B)$				
	$\frac{2^{nd} case}{\frac{hc}{1.5\lambda}} = \phi + ev$		i.e., $n(A' \cap B') = 140 - n(A \cup B)$ \therefore Maximum value of $n(A' \cap B') = 140 - 85 = 55$				
	or, $ev = \left(\frac{hc}{1.5\lambda} - \phi\right) \dots (2)$	83.(a)	Let a, b be two numbers. Then $a_1A_1A_2$, b are in A,P. So $A_1 - a = A_1 - A_2$ i.e., $A_1 + A_2 = a + b$				
	From (1) & (2)		a ₁ , G ₁ , G ₂ , b are in G.P. So $\frac{G_1}{a} = \frac{b}{G_2} \Rightarrow G_1G_2 = ab$				
	$\left(\frac{\mathrm{hc}}{\lambda}-\phi\right)\frac{1}{2.5}=\frac{\mathrm{hc}}{1.5\lambda}-\phi$		and a_1, H_1, H_2 b are in HP. So $\frac{1}{a}, \frac{1}{H_1}, \frac{1}{H_2}, \frac{1}{b}$ are in				
	or, $\frac{hc}{2.5\lambda} - \frac{\phi}{2.5} = \frac{hc}{1.5\lambda} - \phi$		A.P.				
	or, $\frac{hc}{1.5\lambda} - \frac{hc}{2.5\lambda} = \phi - \frac{\phi}{2.5}$		Then, $\frac{1}{H_1} - \frac{1}{a} = \frac{1}{b} - \frac{1}{H_2} \Rightarrow \frac{1}{H_1} + \frac{1}{H_2} = \frac{1}{a} + \frac{1}{b} = \frac{a+b}{ab}$ H ₁ + H ₂ a + b A ₁ + A ₂				
	or, $\frac{hc}{\lambda} \left(\frac{1}{1.5} - \frac{1}{2.5} \right) = \frac{hc}{\lambda_0} \left(1 - \frac{1}{2.5} \right)$		or, $\frac{H_1 + H_2}{H_1 H_2} = \frac{a + b}{ab} = \frac{A_1 + A_2}{G_1 G_2}$ $\therefore \frac{G_1 G_2}{H_1 H_2} = \frac{A_1 + A_2}{H_1 + H_2}$				
	or, $\lambda_0 = \frac{1.5}{2.5} \times \frac{2.5 \times 1.5}{1} \lambda$						
73.(c)	= 2.25λ Initially	84.(a)	$\left(\frac{1+i}{1-i}\right)^{x} = 1$ $(1+i) + i + i + i$				
	$N_0 = \frac{6.023 \times 10^{23}}{99} \times 10^{-12}$		or, $\left(\frac{1+1}{1-i} \times \frac{1+1}{1+i}\right)^{n} = 1$				
	$= 6.08 \times 10^9$ After 1 hr		or, $\left(\frac{1^2 + 2i + i^2}{1^2 - i^2}\right)^x = 1$				
44	$N = N_0 \left(\frac{1}{2}\right)^{tT_{1/2}}$		or, $\left(\frac{1+21-1}{1+1}\right)^n = 1$				
	$= 6.08 \times 10^9 \left(\frac{1}{2}\right)^{1/6} = 5.41 \times 10^9$		or, $\left(\frac{2i}{2}\right)^x = 1$				
	$\mathbf{A} = \lambda \mathbf{N} = \frac{0.693}{T_{1/2}} \times \mathbf{N}$		or, $i^{x} = 1$ $\therefore x = 4n, n \in \mathbb{Z}^{+}$				
	$=\frac{0.693}{6}\times 5.41\times 10^9 = 6.24\times 10^8 \text{ dis/hr}$	85.(c)	as $i^2 = -1$ Given equation is $x^2 - x - 6 = 0$				
74.(b)	5 moles of A need 10 moles of B So B is limiting reagent		x - x - 6 = 0 When $x > 0$, the equation is $x^2 - x - 6 = 0$ i.e. $x = -2, 3$				
75.(c)	8 moles of B gives 4 moles C		$\Rightarrow x = 3$ When x < 0 the equation, is $x^2 + x - 6 = 0$				
76.(b)	$V_a = ? N_a = \frac{98 \times 1.8 \times 10}{49} V_b = 200 \text{ ml} N_b = 0.5 \text{N}$		i.e. $x = -3, 2 \Rightarrow x = -3$ \therefore Product of real roots = $3 \times -3 = -9$				
77.(c) 78.(b)	Like CO ₂ , SnS ₂ is $[Sn^{+++}] \& [S^{}]^2$ If conc ⁿ of A double rate also double so A is 1 st order & B is 2 nd order.	86.(c)	Here, number of diagonals = 44 or, $\frac{n(n-3)}{2} = 44$				
79.(b)	$Zn + NaOH \longrightarrow Na_2ZnO_2 + H_2O$ excess amionic part		or, $n^2 - 3n = 88$				
80.(d)	-		or, $n^2 - 3n - 88 = 0$ or, $n^2 - 11n + 8n - 88 = 0$				

NCIT Nenal College of Information Technology Balkuari Lalitour Tel: 01-5186354, 5186358

3

NCIT Nepal College of Information Technology Belsori, Lelipur Tel: 01-5186354, 5186358
2082-3-07 Hints & Solution
or,
$$n(n-11) + 8(n-11) = 0$$

 \therefore , $(n-11) + 8(n-11) = 0$
 \therefore , $(n+2)^{2n} - C_{n} + C_{n} + C_{n}^{2n} + \dots + C_{n}^{2n}$
Differentiating,
 $mx(1+x)^{n} + (1+x)^{n} = C_{n} + 2C_{n} + 3C_{n} + \dots + (n+1)C_{n}$
 \therefore , $(n+2)^{2n} - C_{n} + 2C_{n} + 3C_{n} + \dots + (n+1)C_{n}$
 \therefore , $(n+2)^{2n} - C_{n} + 2C_{n} + 3C_{n} + \dots + (n+1)C_{n}$
 \therefore , $(n+2)^{2n} - C_{n} + 2C_{n} + 3C_{n} + \dots + (n+1)C_{n}$
 \therefore , $(n+2)^{2n} - C_{n} + 2C_{n} + 3C_{n} + \dots + (n+1)C_{n}$
 \therefore , $(n+2)^{2n} - C_{n} + 2C_{n} + 3C_{n} + \dots + (n+1)C_{n}$
 \therefore , $(n+2)^{2n} - C_{n} + 2C_{n} + 3C_{n} + \dots + (n+1)C_{n}$
 \therefore , $(n+2)^{2n} - C_{n} + 2C_{n} + 3C_{n} + \dots + (n+1)C_{n}$
 \therefore , $(n+2)^{2n} - C_{n} + 2C_{n} + 3C_{n} + \dots + (n+1)C_{n}$
 \therefore , $(n+2)^{2n} - C_{n} + 2C_{n} + 3C_{n} + \dots + (n+1)C_{n}$
 \therefore , $(n+2)^{2n} - C_{n} + 2C_{n} + 3C_{n} + \dots + (n+1)C_{n}$
 \therefore , $(n+2)^{2n} - C_{n} + 2C_{n} + 3C_{n} + \dots + (n+1)C_{n}$
 \therefore , $(n+2)^{2n} - C_{n} + 2C_{n} + 3C_{n} + 2C_{n} + 3C_{n} + 2C_{n} + 3C_{n} + 3C_$

...Best of Luck...