PEA Association Pvt. Ltd. Thapathali, Kathmandu, Tel: 5345730, 5357187 2082-2-03 Hints & Solution							
	Section – I	14.(a)	The expansion is valid if $ 3x < 2$				
1. (a)	Given equation is $x^2 + px + q = 0$		i.e. $ x < \frac{2}{3}$				
	Let α and β are roots. Then $\alpha + \beta = -p$, $\alpha\beta = q$		5				
	Now, $\alpha^2 + \beta^2 = \alpha + \beta$		i.e. $-\frac{2}{3} < x < \frac{2}{3}$				
	$(\alpha + \beta)^2 - 2\alpha\beta = \alpha + \beta$ $p^2 - 2q = -p$ i.e. $p^2 + p = 2q$	15.(a)	$\lim_{n \to \infty} \frac{1+2+3+\ldots+n}{n^2} = \lim_{n \to \infty} \frac{n(n+1)}{2n^2} = \frac{1}{2}$				
2.(a)	$y = 1 + x + x^2 + \dots$ to $\infty = \frac{1}{1 - x}$	16.(b)	$y = e^{3\log_e x} = x^3$ and $\frac{dy}{dx} = 3x^2$				
	or, $1 - x = \frac{1}{y}$ or, $x = 1 - \frac{1}{y}$	17.(c)	$\int e^{x}[f(x) + f'(x)] dx = e^{x} f(x) + c$				
	i.e. $x = \frac{y-1}{y}$		So, $\int e^{x} \left[\log_{e} x + \frac{1}{x} \right] dx = e^{x} \log_{e} x + c$				
3.(c)	Skew symmetric matrix has all principal diagonal	18.(b)	By definition				
4 (b)	elements zero and so their sum is 0. 4N = (4, 8, 12, 16, 20, 24, 28,)	19.(c)	Checking $y(1) = 2$ which is 'C'				
4.(b)	$4N = \{4, 8, 12, 16, 20, 24, 28,\}$ $6N = \{6, 12, 18, 24, 30,\}$	20.(a)	Area enclosed = $\pi ab = \pi \times 5 \times 4 = 20\pi$ sq. units				
	$4N \cap 6N = \{12, 24,\} = 12N$	21.(b)	K.E \propto (3t + 4) or, F.S = K(3t + 4).				
= ()	Vectors $3\vec{i} + \vec{j} + \vec{k}$ and $\lambda\vec{i} + \lambda\vec{j} + \lambda\vec{k}$ are collinear		or, $F.v = K \times 3$				
5.(a)	Vectors $31 + j + k$ and $\lambda 1 + \lambda j + \lambda k$ are columnar so $\frac{3}{\lambda} = \frac{1}{4} = \frac{1}{4}$ i.e. $\lambda = 12$		$F = \frac{3K}{v} \propto \frac{1}{v}$				
6.(b)	Area = $\frac{1}{2} \times x$ -intercept $\times y$ -intercept	22.(a)	In SHM, K. $E_{max} = P.E_{max} = K_0$				
	$=\frac{1}{2} \times 4 \times 5$	23. (a)	$L = \vec{r} \times \vec{p}$				
	2		About origin, $\vec{\mathbf{r}} = 0$ so $\mathbf{L} = 0$				
- / \	= 10 sq. units	24.(d)	$\frac{1}{F} = \frac{1}{f} + \frac{1}{(-f)} = 0$				
7.(c)	Circle is $x^2 + y^2 + 4x + 6y - 12 = 0$ Comparing with $x^2 + y^2 + 2gx + 2fy + c = 0$, we get		$F = \infty$				
	g = 2, f = 3, c = -12	25.(b)	Sensitivity of potentiometer can be increased by				
	So length of intercepts on x-axis = $2\sqrt{g^2 - c} = 2 \times 4 =$		increasing the potential gradient i.e. length of potentiometer wire.				
9 (J)	8 Focus – mide int of latus and um	200	$\mathbf{r} = \frac{\varepsilon}{\mathbf{I}} = \frac{2}{4} = 0.5 \ \Omega$				
8.(d)	Focus = midpoint of latus rectum (-1 + (-1)) 5 + (-11)	26.(a)	1 7				
	$=\left(\frac{-1+(-1)}{2},\frac{5+(-11)}{2}\right)$	27.(d)	$\mathbf{C} = \boldsymbol{\varepsilon}_{\mathrm{r}} \mathbf{C}_{0} (\mathbf{C}^{\uparrow})$				
	= (-1, -3)		Again, $V = \frac{Q}{C}$ i.e. $V \downarrow$				
9.(d)	$y = 0 \frac{\lambda \cdot 3 + 1 \cdot (-1)}{\lambda + 1} = 0$	28.(c)	Equation of state is valid for any process				
	$3\lambda - 1 = 0$ $\Rightarrow \lambda = \frac{1}{3}$	29.(d)	$\phi = \frac{2\pi}{\lambda} \mathbf{x}$				
10.(c)	$\operatorname{cosec}^{-1}\operatorname{cosec}\frac{5\pi}{4}$		$\mathbf{x} = \frac{\lambda}{2\pi} \phi = \frac{\lambda}{2\pi} \cdot \frac{\pi}{3} = \frac{\lambda}{6}$				
	$= \operatorname{cosec}^{-1}\operatorname{cosec}\left(\pi + \frac{\pi}{4}\right) = \operatorname{cosec}^{-1}\left[-\operatorname{cosec}\frac{\pi}{4}\right] = -\frac{\pi}{4}$	30.(b)	$r = \frac{mv}{qB} \propto \frac{v}{B}$				
11 (1)	$\operatorname{Im}(z) = \frac{1}{2i}(z-\bar{z}) = -\frac{i^2}{2i}(z-\bar{z}) = \frac{1}{2}(\bar{z}-z)i$		$\frac{\mathbf{r}'}{\mathbf{r}} = \frac{\mathbf{v}'}{\mathbf{v}} \cdot \frac{\mathbf{B}}{\mathbf{B}'}$				
11.(d)	$Im(z) = \frac{1}{2i}(z-z) = -\frac{1}{2i}(z-z) = \frac{1}{2}(z-z)i$		2v B				
12.(a)	$r = \frac{\text{cov}(X, Y)}{\sqrt{\text{var}(X)}\sqrt{\text{var}(Y)}} = \frac{18}{\sqrt{16}\sqrt{81}} = 0.50$		$=\frac{2\mathbf{v}}{\mathbf{v}}\cdot\frac{\mathbf{B}}{\mathbf{B}}=4$				
13.(d)	$P(A \cup B) = P(A) + P(B) - P(A) P(B)$		$\mathbf{r}' = 4\mathbf{r}$				
	or, $0.61 = 0.48 + P(B) - 0.48 P(B)$	31.(d)	Sound can be identified by overtones.				
	or, $0.13 = 0.52 P(B)$ $\therefore P(B) = 0.25$	I					
		1					

	2082-2-(& Solution				
32. (a)	$E \propto Z^2$					он	
	$\frac{E'}{E_{a}} = \left(\frac{Z_{2}}{Z_{1}}\right)^{2} = 4$		Ethyl alcoh				
	$E_n (Z_1)$ $E' = 4E_n$	48. (d)	Alkynes ha Tollen's tes				arbon give
33. (a)	$\beta = \frac{\lambda D}{d} \propto \lambda$	49.d 55.d	50.b 56.b	51.d 57.a	52.a 58.d	53.c 59.c	54.b 60.c
	$\lambda_y > \lambda_b$, fringe width is greater for yellow			Sectio	n – II		
	than blue.	61.(c)	a, b, c cons $=$ b + 1	secutive po	ositive integ	gers then a	= b - 1, c
34.(d)	$\frac{P'}{P} = \left(\frac{T'}{T}\right)^4 = \left(\frac{1.05T}{T}\right)^4 = 1.2155$			(1 + ac) = 1	$\log_{e}[1 + (b + b)]$	– 1) (b + 1))]
	% increase = $\left(\frac{P'}{P} - 1\right) \times 100\%$				$\log_{e}(1 + b^{2})$ $\log_{e}b^{2} = 2\log_{e}b^{2}$	/	
	= 21.55%		1		00	20	
35.(b)	0.1 mole of $C_6H_{12}O_6 = 18g$	62.(a)	$\frac{1}{x+1} + \frac{1}{2(x)}$				
	11.2 litres CO_2 at $STP = 22g$		1 ($\left(\frac{1}{x+1}\right)^2$	$\frac{\left(\frac{1}{x+1}\right)^3}{3}$ +		
	N_A of CH_4 molecules = 16g		$= \frac{1}{x+1} + \frac{1}{x+1}$	2 +	3 +	to ∞	
36.(c)	Conjugate acid-base pair differ by a proton (\mathbf{H}^{+}).		$= -\log_{e} (1)$	$\left(\frac{1}{1+1}\right)$	$= -\log_{e} \frac{x+1}{x+1}$	$\frac{1}{1}$	
37.(c)	1 gm equivalent (i.e. 29.35 gm) of Ni is deposited by 1 Faraday of electricity.			,			
	0.1 F deposits 2.93 gm of Nickel.		$= -\log_{e_{X}} \frac{x}{x}$	$\overline{1} = \log_e \frac{X}{2}$	$\frac{1}{K} = \log_{e} \left(\frac{1}{K} \right)$	$1+\frac{1}{x}$	
38. (a)	Strong acid + strong base \rightarrow Normal salt	63.(b)	C(n, r + 1)	+ C(n, r -	1) + 2C(n,	r)	
39. (a)	$Z_{eff} = Z - \sigma (Z = atomic no. \sigma = shielding constant)$		= C(n, r + 1)	1) + C(n, r)	+ C(n, r) -	+ C(n, r − 1)
	(Zeff = effective nuclear charge)		= C(n + 1)				
	$Z_{\rm eff} \propto = \frac{1}{r_{\rm adius}}$	64.(c)	$= C(n + 1 - 1)$ Put $\alpha = \omega$	⊦l,r+l): β:		(+1)	
40.(d)	Chloro-flurocarbons destroy ozone layer.	04.(0)		,	- 00		
41.(c) 42.(b)	At 300°C, Na + NH ₃ \rightarrow NaNH ₂ + H ₂		Then $\frac{\alpha}{\beta} + \frac{\beta}{\alpha}$	$\frac{1}{\alpha}$ + 1			
42.(0)			$=\frac{\omega}{\omega^2}$	$+\frac{\omega^2}{\omega}+1=$	$=\frac{\omega.\omega^3}{\omega^2}+\frac{\omega^3}{\omega}$	$\frac{2}{1}$ + 1	
	H S O O H		$= \omega^2$	$^{2} + \omega + 1 =$	0		
	o	65.(d)	Given $ \vec{a} =$	$ \vec{b} = 1$			
43.(c)	Hydrazine does not contain carbon.		and $ \vec{a} + \vec{a} $	$\vec{b} = 1$			
44.(c)	Both camphor and benzoic acid undergo sublimation so separated by chemical method.		or, $(\vec{a} + \vec{a})$	$\vec{b})^2 = 1$			
	ОН		or, $a^2 +$	$b^2 + 2(\vec{a}.\vec{b})$) = 1		
45.(c)	n-propyl alcohol = $CH_3 - CH_2 - CH_2$		or, 1+	$1 + 2\vec{a}.\vec{b} =$	1		
	OH iso-propyl alcohol = $CH_3 - CH - CH_3$		i.e. $2\vec{a}.\vec{b}$				
46.(d)	$CH_3C(CH_3)_2CH_3$ is known as neopentane.		So, $ \vec{a} - \vec{a} $	$\vec{b} = \sqrt{\vec{a}}$			
47.(b)	$\begin{array}{ccc} O & OH \\ \parallel & \parallel \\ The compounds having CH_3 - C - and CH_3 - CH - \end{array}$				•	+1+1 = -	•
(0)	group gives iodoform test.	66.(c)	Let the line = mx and y	-	-	+ 2hxy + by	$y^2 = 0$ be y
		I	- mx and y	- 2007. 1			

PEA Association Pvt. Ltd. Thapathali, Kathmandu, Tel: 5345730, 5357187 2082-2-03 Hints & Solution

PEA Association Pvt. Ltd. Thapathali, Kathmandu, Tel: 5345730, 5357187 2082-2-03 Hints & Solution i.e. $m = -\frac{2h}{3h}$ $m + 2m = -\frac{2h}{h}$ $\tan\frac{A}{2} = \frac{1}{4}$ ÷. and $m.2m = \frac{a}{b}$ or, $2\left(-\frac{2h}{3b}\right)^2 = \frac{a}{b}$ 72.(d) h(x) = f(x) + f(-x)So, h'(x) = f'(x) - f'(-x)As h has an extrema, So h'(x) = 0 f'(x) = f'(-x)or, $2 \cdot \frac{4h^2}{9h^2} = \frac{a}{h}$ f '(x) is an even function \therefore 8h² = 9ab $y = \sqrt{\sin x} + \sqrt{\sin x} + \sqrt{\sin x} + \dots + \frac{1}{2} \cos x$ 73.(c) Given circle are $x^2 + y^2 - 4x - 6y - 12 = 0$, $x^2 + y^2 + y^2$ 67.(c) $y = \sqrt{\sin x + y}$ or. kx + 4y - 12 = 0 $y^2 = sinx + y$ or. Here, $g_1 = 2$, $f_1 = 3$, $C_1 = -12$, On differentiation, $2y\frac{dy}{dx} = \cos x + \frac{dy}{dx}$ $g_2 = -\frac{K}{2}, f_2 = 2, C_2 = -12$ $\frac{dy}{dx} = \frac{\cos x}{2y - 1}$ Two circles cut orthogonally if So, $2g_1g_2 + 2f_1f_2 = C_1 + C_2$ Put $y = \sqrt{x - \beta}$ 74.(a) $y^2 = x - \beta$ $2.2\left(-\frac{K}{2}\right) = 2.(-3)(-2) = -12 - 12$: K = 6or, i.e. $x = y^2 + \beta$ -2K - 12 = -24or, -2K = -12or. Then $\int \frac{\mathbf{u}\mathbf{x}}{(\mathbf{x}-\alpha)(\mathbf{x}-\beta)} = \int$ Given parabola is $y^2 = 12x$. So, a = 68.(b) Line is x + y = KSo, m = -1, C = K $=2\int \frac{\mathrm{d}y}{\sqrt{y^2+(\sqrt{\beta-\alpha})^2}}$ So, line is a normal to parabola if $C = -2am - am^3$ i.e. $K = -2.3.(-1) - 3(-1)^3 = 6 + 3 = 9$ $=2ln (y + \sqrt{y^2 + \sqrt{(\beta - \alpha)^2}}) + c$ Distance between directrices = $3 \times \text{distance between}$ 69.(c) foci $2\frac{a}{a} = 3 \times 2ae$ $\frac{1}{3}$ i.e. e $=2ln(\sqrt{x-\beta}+\sqrt{x-\beta+\beta-\alpha})+c$ or, e² $=2ln(\sqrt{x-\alpha}+\sqrt{x-\beta})+c$ Given plane is $kx^2 + 6y^2 - 12z^2 + 6yz + 2zx + 7xy =$ 70.(a) 75.(b) Given curve is Comparing it with $ax^2 + by^2 + cz^2 + 2fyz + 2gzx +$ $y = -x^2 + 2x + 3$ 2hxy = 0Putting y = 0, $x^2 - 2x - 3 = 0$ We get, a = K, b = 6, c = -12, f = 3, g = 1, $h = \frac{1}{2}$ i.e. x = -1, 3Since it represents a pair of planes so Required area = $\int_{-1}^{3} (-x^2 + 2x + 3) dx$ $abc + 2fgh - af^2 - bg^2 - ch^2 = 0$ or, $=\left[-\frac{x^{3}}{3}+x^{2}+3x\right]_{-1}^{3}$ K.6.(-12)+2.3.1 $\frac{7}{2}$ -K.3²-6.1²-(-12). $\left(\frac{7}{2}\right)^2 = 0$ or, $-72K + 21 - 9K - 6 + 12 \cdot \frac{49}{4} = 0$ $=\left(-\frac{27}{3}+9+9\right)-\left(\frac{1}{3}+1-3\right)$ or. -81K + 15 + 147 = 0or, $=9+\frac{5}{3}=\frac{32}{3}$ sq. units i.e. K = 281K = 162or, Here $\Delta = a^2 - (b - c)^2$ 71.(c) $P = \sqrt{P_1^2 + P_2^2}$ 76.(a) = (a + b - c) (a - b + c) $3\text{m.v} = \sqrt{(\text{m} \times 30)^2 + (\text{m} \times 30)^2}$ = (2s - 2c) (2s - 2b)→ m $v = \frac{30\sqrt{2}}{3} = 10\sqrt{2} \text{ m/s}$ = 4(s-b)(s-c) $s(s-a)(s-b)(s-c) = 16(s-b)^2(s-c)^2$ 77.(d) $P.A = 2\pi rT$ $\frac{1}{16} = \frac{(s-b)(s-c)}{s(s-a)}$ $\rho gh.\pi r^2 = 2\pi rT$ $h = \frac{2T}{\rho gr} = \frac{4T}{\rho gd} = \frac{4 \times 75 \times 10^{-3}}{1000 \times 10 \times 0.1 \times 10^{-3}} = 0.3m$ $\sqrt{\frac{1}{16}} = \sqrt{\frac{(s-b)(s-c)}{s(s-a)}}$

PEA Association Pvt. Ltd. Thapathali, Kathmandu, Tel: 5345730, 5357187 2082-2-03 Hints & Solution						
	2002-2-0	- mints				
78.(b)	$\Delta P.E = \left\{ -\frac{GMm}{(R+R)} - \left(-\frac{GMm}{R} \right) \right\}$		$= 2 \times 10^3 \text{ Cal}$			
	$=\frac{\mathrm{GMm}}{\mathrm{R}}\left(1-\frac{1}{2}\right)$	86.(b)	Fraction left $\left(\frac{N}{N_0}\right) = \left(\frac{1}{2}\right)^{\overline{T_{1/2}}}$			
	$=\frac{gR^2.m}{R}\cdot\frac{1}{2}=\frac{mgR}{2}$		$=\left(\frac{1}{2}\right)\frac{3\times60}{60}=\frac{1}{8}$			
79.(b)	Gain in time in a day = $\frac{1}{2} \alpha \Delta \theta \times 1$ day		% decayed = $\left(1 - \frac{1}{8}\right) \times 100\%$			
	$\alpha = \frac{15 \times 2}{20 \times 86400} = 1.73 \times 10^{-5/\circ} C$		= 87.5%			
80.(b)	$d = 2r = \frac{2h}{\sqrt{\mu^2 - 1}} = \frac{2 \times 1}{\sqrt{\left(\frac{4}{3}\right)^2 - 1}} = \frac{6}{\sqrt{7}}$	87.(a)	$\frac{\lambda'}{\lambda} = \frac{P}{P'} = \frac{\sqrt{2m \times \frac{3}{2} KT}}{\sqrt{2m \times \frac{3}{2} KT'}} = \sqrt{\frac{300}{1200}} = \frac{1}{2}$			
81. (a)	$\varepsilon = B_H v l$ 100 × 1000		$\lambda^* = \frac{\lambda}{2}$			
	$= (0.18 \times 10^{-4}) \times 1 \times \frac{100 \times 1000}{3600}$ $= 0.5 \text{ mV}$	88. (d)	Energy (E) = $hf_{max} = \frac{hc}{\lambda_{min}}$			
82.(c)	$n\left(\frac{1}{2}C_{1}V_{1}^{2}\right) = \frac{1}{2}C_{2}V_{2}^{2}$		$\lambda_{\min} = \frac{hc}{E} = \frac{6.62 \times 10^{-34} \times 3 \times 10^8}{40 \times 10^3 \times 1.6 \times 10^{-19}}$			
	$n = \frac{16 \times 10^{-6} \times (1000)^2}{8 \times 10^{-6} \times (250)^2}$	89.(c)	$= 0.31 \times 10^{-10} \text{ m} = 0.31 \text{ Å}$			
	$= 2 \times 16 = 32$	90.(c)	Use PV = nRT for getting n and number of molecules = $n \times 6.023 \times 10^{23}$.			
83. (a)	$I = \frac{\text{total e.m.f.}}{\text{total resistance}} = \frac{10-6}{10} = 0.4A$	91.(c)	Minimum mol. wt. = $\frac{32 \times 100}{4}$. At least one S atom			
	For 10V cell, $V = \varepsilon - Ir_1 = 10 - 0.4 \times 5 = 8V$ For 6V cell, $V = \varepsilon + Ir_2 = 6 + 0.4 \times 3 = 7.2 V$	92.(d)	must be present. $Fe^{24} \rightarrow Fe^{3+} + e$. In other species reduction (gain of electron occurs).			
84.(c)	For A $f' = \frac{V - V_0}{V} f \qquad \xrightarrow{V} \qquad \xrightarrow{V}$	93.(d)	$N(+5)$ in $NO_3^- \rightarrow N(-3)$ in NH_3 i.e. 8e			
	For B $A \longrightarrow V_0$ B	94.(c)	HH] ²⁺			
	$f'' = \frac{V + V_0}{V}f$	Ť	H Cu H H O O $O^{2^{2}}$			
	$\therefore \qquad f'' - f' = f_b$ $\frac{V + V_0}{V} f - \frac{V - V_0}{V} f = 10$		H H H H Hydrogen bonding			
	$\frac{2V_0}{V}f = 10$	95.(c)	The compound dissolves in NaOH and gives characteristic colour with FeCl ₃ , hence, it is phenol on treatment with Br_2 it gives a tribromoderivative hence two ortho and one para position with respect to OH group must be free.			
05 ()	$V_0 = \frac{10 \times 340}{2 \times 680} = 2.5 \text{ m/s}$ $Q = \int_{-0}^{10} dQ = \int_{-0}^{10} msd\theta = \int_{-0}^{10} m.(0.6\theta^2)d\theta$	96.(d) 97.c	Buta - 1, 2 - diene is $CH_2 = C = CH - CH_3$. 98.d 99.b 100.b			
85.(a)	$Q = \int_{0}^{0} dQ = \int_{0}^{0} msd\theta = \int_{0}^{0} m.(0.6\theta^{2})d\theta$ $= 10 \times 0.6 \left[\frac{\theta^{3}}{3}\right]_{0}^{10}$					

...The End...