
PEA Association Pvt. Ltd. Thapathali, Kathmandu, Tel: 5345730, 5357187 2082-01-27 Hints & Solution						
1.(d)	$\frac{\text{Section} - \mathbf{I}}{\text{When a particle move with uniform velocity then position of}}$		p q 11 12 13 e 10 10 10 10			
2.(c)	particle changes. Both wheel travel equal linear distance is same time a = 1		Most force of attraction between electron & Nucleus in case Al so smaller size for Al^{+++} than Mg^{++} than			
3.(b)	so $v_f = v_r$ $h = \frac{2T\cos\theta}{\rho gr}$, i.e. pressure	17.(b)	Na ⁺ than F ⁻ . $\Delta n = 2 - 1 = 1$			
4.(d)	$\frac{Q}{t} = \frac{KAd\theta}{dl}$		$\therefore \qquad K_p = K_c (RT)$ or, $\frac{K_p}{K_c} = RT \qquad \therefore K_p > K_c$			
5.(a)	For a diabetic process $\Delta Q = 0$ So du + dw = 0 or, -dw = du	18.(b)	Since $conc^n B$ is double rate 4 times thus order of B			
6.(b)	$PE = \frac{1}{4}E_{T}$	19.(b)	is 2 nd so, A is 1 st . Only Mg and Mn can displace hydrogen from dil. HNO ₃ .			
	or, $\frac{1}{2} m\omega^2 y^2 = \frac{1}{4} \times \frac{1}{2} m\omega^2 (A^2)$	20.(d)	11103.			
	or, $2 \text{ mos } y - 4 \wedge 2 \text{ mos } (A')$ or, $4y^2 = A^2$ or, $A = 2y$	21.(b)	$NH_3 + CO_2 + H_2O \rightarrow NH_4HCO_3$ $NH_4HCO_3 + NaCl \rightarrow NaHCO_3\downarrow + NH_4Cl$			
	or, $y = \frac{A}{2}$	22.(b)	White crystal $Fe^{+++} \Rightarrow 1s^2 2s^2 2p^6 3s^2 2p^6 3s^2 3p^6 3d^5 \pmod{2}$ (most impaired)			
7.(d)	At Q, $E = \frac{2Q}{4\pi\epsilon_0 t^2}$	23.(d)	NaCNS + FeCl ₃ \rightarrow Fe(CNS) ₃ + NaCl blood red			
	At -2Q, E' = $\frac{Q}{4\pi\epsilon_0 t^2} = \frac{E}{2}$	24.(d) 25.(b)	Priority of numbering goes to double bond.			
8.(d)	$R_{eq} = \frac{R_{ABC} \times R_{AC}}{R_{eq} + R_{eq}} = \frac{8 \times 4}{8 + 4} = \frac{32}{2} = \frac{8}{3}\Omega$	26.(b) 27.(d)	Reimer Tieman reaction)			
9.(c)	$M = \sqrt{M^2 + M^2 + 2M^2 \cos 60^{\circ}}$	28.(c) 29.(c)	Given equations $x^2 + bx + c = 0$, $x^2 + dx + c = 0$			
10.(c)	$= \sqrt{3} M$ $P = I_{rms} V_{rms} \cos\phi$ $= \frac{I_0}{\sqrt{2}} \times \frac{V_0}{\sqrt{2}} \cos60^\circ$ $I00$	30.(c)	If the both roots are common then $\frac{1}{1} + \frac{b}{d} = \frac{c}{e} \Rightarrow be = cd$ Given $1 + 2 + 3 + + n = \frac{1}{5} (1^2 + 2^2 + + n^2)$			
11.(d)	$= \frac{100}{\sqrt{2}} \times 10^{-3} \times \frac{100}{\sqrt{2}} \times \frac{1}{2}$ = 2.5 W $\frac{1}{f} = (\mu - 1) \left(\frac{1}{R_1} + \frac{1}{R_2} \right)$		or, $\frac{n(n+1)}{2} = \frac{1}{5} \frac{n(n+1)(2n+1)}{6}$ or, $2n+1 = 15$ i.e. $n = 7$			
	f will be maximum if μ is least Where $\mu = A + \frac{B}{\lambda^2}$ i.e. $\lambda_r > \lambda_v$ So, $\mu_r < \mu_v$	31.(d) 32.(b)	Using properties, $(AB)^T = B^T A^T$ $A \cap B = \{3, 4\}, n(A \cap B) = 2$ So $n[(A \times B) \cap (B \times A)] = \{n(A \cap B)\}^2 = 2^2 = 4$			
12.(b)	$\frac{\beta_{\rm r}}{\beta_{\rm v}} = \frac{\lambda_{\rm r}}{\lambda_{\rm v}} = \frac{8000 \times 10^{-10}}{4000 \times 10^{-10}} = 2:1$	33.(a)	By definition, projection of \vec{b} on $\vec{a} = \frac{a.b}{ \vec{a} }$			
13.(a)	$mvr = \frac{nh}{2\pi}$ or, $mv = \frac{nh}{2\pi r}$	34.(a) 35.(d)	$\begin{aligned} x^2 + y^2 &= a^2 cos^2 \theta + a^2 sin^2 \theta = a^2 \\ Circle \ is \ x^2 + y^2 - 4x - 6y - 12 &= 0 \\ Comparing \ with \ x^2 + y^2 + 2gx + 2fy + c &= 0 \\ g &= -2, \ f &= -3, \ c &= -12 \end{aligned}$			
	$\therefore \lambda = \frac{h}{mv} = \frac{h}{nh} \times 2\pi r = \frac{2\pi r}{n}$	36.(d)	So, $r = \sqrt{g^2 + f^2 - c} = 5$ and circumference $= 2\pi r = 2\pi \times 5 = 10\pi$ Eq ⁿ is $y^2 = 4ax + 4a^2$			
14.(a)	$\alpha = 0.98 = \frac{I_c}{I_c}$	25.4.)	i.e. $(y-0)^2 = 4a\{x-(-a)\}$ So the vertex is $(-a, 0)$			
15.(b)	$\beta = \frac{\alpha}{1 - \alpha} = \frac{0.98}{1 - 0.98} = 49$ Last electron of Cl is 3P	37.(b)	$\frac{\sin^2\alpha + \sin^2\beta + \sin^2\gamma = 1 - \cos^2\alpha + 1 - \cos^2\beta + 1 - \cos^2\gamma}{2\alpha + (\alpha^2 + 1)^2 + (\alpha^2 + 1)^2}$			
13.(D)	Last electron of C1 is 3P n = 3, $l = 1, m = 0, s = -\frac{1}{2}$	38.(c)	$= 3 - (\cos^2 \alpha + \cos^2 \beta + \cos^2 \gamma) = 3 - 1 = 2$ $\sin^{-1} x + \cos^{-1} x = \frac{\pi}{2}$			
16.(c)	F Na Mg Al		i.e. $\cos^{-1}x = \frac{\pi}{2} - \sin^{-1}x = \frac{\pi}{2} - \frac{\pi}{10} = \frac{5\pi - \pi}{10}$			

ΡΕΛ -1: TZ - 11 _

PEA Association Pvt. Ltd. Thapathali, Kathmandu, Tel: 5345730, 5357187						
	2082-01-27 Hints & Solution					
	$=\frac{4\pi}{10}=\frac{2\pi}{5}$		or, $\frac{T_1 l}{l_1 - l} = YA \dots (i)$			
39.(b)	$Z^2 = (1 + i)^2 = 1 + 2i + i^2 = 1 + 2i - 1 = 2i$ So multiplicative inverse of		$2^{nd} \operatorname{case}_{T_2} = \frac{YA(l_2 - l)}{l}$			
	$Z^{2} = \frac{1}{2i} = -\frac{i^{2}}{2i} = -\frac{i}{2}$		or, $\frac{T_2 l}{l_2 - l} = YA \dots (2)$			
40.(c)	Fact 5 3		From (1) & (2)			
41.(b)	$P(B) = 1 - P(\overline{B}) = 1 - \frac{5}{8} = \frac{3}{8}$		$\frac{\mathbf{T}_1 l}{l_1 - l} = \frac{\mathbf{T}_2 l}{l_2 - l}$			
	and $P(A/B) = \frac{P(A \cap B)}{P(B)} = \frac{\frac{1}{4}}{\frac{3}{8}} = \frac{1}{4} \times \frac{8}{3} = \frac{2}{3}$		or, $T_1l_2 - T_1l = T_2l_1 - T_2l$ or, $(T_1 - T_2)l = T_1l_2 - T_2l_1$ or, $l = \frac{T_1l_2 - T_2l_1}{T_1 - T_2}$			
42.(a)	$\frac{2}{2!} + \frac{3}{3!} + \frac{4}{4!} + \dots$	64.(a)	m be mass of steam condensed $m \times 540 + m(100 - 90) = 22 \times (90 - 20)$			
	$=\frac{1}{1!} + \frac{1}{2!} + \frac{1}{3!} + \dots = 1 + \frac{1}{1!} + \frac{1}{2!} + \frac{1}{3!} + \dots - 1$ $= e - 1$		or, $m = \frac{22 \times 70}{560} = 2.75g$ Water = 22 + 2.75 = 24.75g			
	$\frac{1}{x}$ lim 1 1	65.(c)	$\left(\frac{T_2}{T_1}\right) = \left(\frac{P_2}{P_1}\right)$			
43.(c)	$\lim_{x \to 0^+} \frac{e^x}{\frac{1}{e^x} + 1} = \lim_{x \to 0^+} \frac{1}{1 + e^{-1x}} = \frac{1}{1 + 0} = 1$		or, $T_2 = 300 \left(\frac{P}{8P}\right)^{\frac{5(3-1)}{5(3)}} = 300 \left(\frac{1}{8}\right)^{\frac{2}{3} \times \frac{3}{5}}$			
44.(b)	$y = \sin^{-1}(3x - 4x^3) = 3\sin^{-1}x$		= 130.5 K			
	So, $\frac{dy}{dx} = \frac{3}{\sqrt{1-x^2}}$	(6 (b)	$\frac{\Delta f}{f} = \frac{2v_s}{v}$			
45.(d)	$I = \int \frac{\sin^4 x}{\cos^6 x} dx = \int \frac{\sin^4 x}{\cos^4 x} \frac{dx}{\cos^2 x} dx$	66.(b)	f v or, $2\% = \frac{2v_s}{v_s}$			
	$= \int \tan^4 x \sec^2 x dx = \frac{\tan^5 x}{5} + c$					
46.(b)	For tangent parallel to x-axis, put $x = 0$, $y^2 = 25$ i.e. $y = \pm 5$	(7.(1))	or, $v_s = \frac{2}{100} \times \frac{300}{2} = 3 \text{ m/s}$ $E_1 = \frac{1}{2} CV_0^2 = \frac{1}{2} \frac{\epsilon_0 AV_0^2}{d}$			
47.(b)	$I.F. = e^{iPdx} = \sec x$ $\Rightarrow [Pdx = \log_e \sec x \Rightarrow P = \tan x]$	67.(d)				
48.(c)	Required area = $\int_{1}^{3} y dx = \int_{1}^{3} \frac{1}{x} dx$ = $lnx \int_{1}^{3} -ln (3 - ln) 1$		$E_{2} = \frac{Q^{2}}{2C'} = \frac{\left(\frac{\varepsilon_{0}AV_{0}}{d}\right)^{2}}{2 \times \frac{\varepsilon_{0}A}{2d}}$			
	= ln 3 sq. units	A PART	30			
49.c 55.d	50.d 51.a 52.a 53.c 54.a 56.b 57.c 58.a 59.a 60.c		$=\frac{\varepsilon_0^2 A^2 V_0^2}{d^2} \times \frac{3d}{2\varepsilon_0 A}$			
	Section – II $v_1 = \sqrt{2gh_1} = \sqrt{2 \times 10 \times 5} = 10 \text{ m/s}$		$=\frac{3}{2}\frac{\varepsilon_0 A V_0^2}{d}$			
61.(c)	$v_1 = \sqrt{2gn_1} = \sqrt{2 \times 10 \times 5} = 10 \text{ m/s}$ $v_2 = \sqrt{2gh_2} = \sqrt{2 \times 10 \times 1.8} = 6 \text{ m/s}$		$W = E_2 - E_1 = \frac{3}{2} \frac{\varepsilon_0 A V_0^2}{d} - \frac{\varepsilon_0 A V_0^2}{2d}$			
	Fractional decrease in velocity $= \frac{V}{V}$		$=\frac{\varepsilon_0 A V_0^2}{d}$			
	$=\frac{\mathbf{v}_1-\mathbf{v}_2}{\mathbf{v}_1}=1-\frac{6}{10}$	68.(c)	$Q = ms\Delta\theta = \frac{V^2}{R}t = \frac{(V/2)^2}{R} \times t'$			
	$=\frac{2}{5}$		or, $t = \frac{t'}{4}$			
62.(b)	$I = I_{cm} + mh^2$		or, $t' = 4t$			
	$=\frac{1}{2}mR^2 + mR^2$	69.(a)	$E = \left(\frac{-BAN - BAN}{t}\right) = \frac{2BAN}{t}$			
	$=\frac{3}{2}mR^{2}=\frac{3}{2}\times 2\times 0.1^{2}$		$=\frac{2 \times 0.3 \times 70 \times 10^{-4} \times 200}{0.1} = 8.4 \text{ V}$			
	$= 0.03 \text{ kgm}^2$	70.(d)	u = mf			
63.(c)	1^{st} case YA $(l_1 - l_1)$		$\frac{1}{f} = \frac{1}{u} + \frac{1}{v}$			
	$T_1 = \frac{YA(l_1 - l_1)}{l}$		or, $-\frac{1}{f} = \frac{1}{mf} + \frac{1}{v}$			

PEA Association Pvt. Ltd. Thapathali, Kathmandu, Tel: 5345730, 5357187					
	2082-01-2	27 Hints	& Solution		
	or, $\frac{1}{v} = -\frac{(m+1)}{mf} \Rightarrow v = -\frac{mf}{m+1}$		$W = \frac{EVN}{1000} = 7.17 \text{ gm}$		
	$\therefore \qquad \text{Magnification} = \frac{v}{u} = \frac{mf}{(m+1) \times mf}$	78.(b)			
		79.(b) 80.(a)	Both HCl & NaCl are strong electrolyte.		
	$=\frac{1}{m+1}$	81.(c)	$4\mathrm{KI} + 2\mathrm{CuSO}_4 \rightarrow \mathrm{Cu}_2\mathrm{I}_2 \downarrow + 2\mathrm{K}_2\mathrm{SO}_4 + \mathrm{I}_2$		
71.(d)	$\frac{\mathbf{x}}{\mathbf{D}} = \frac{\lambda}{\mathbf{d}}$	82.(c)	As $1 + x^2 \neq 0$ for real x. So domain = R		
	2 4		$x^2 \ge 0$ so $1 + x^2 > x^2$		
	$x = \frac{D\lambda}{d}$		So, $\frac{x^2}{1+x^2} < 1$ i.e. $y < 1$		
	$\therefore \qquad 2\mathbf{x} = \frac{2\mathrm{D}\lambda}{\mathrm{d}} = \frac{2\times2\times600\times10^{-9}}{10^{-3}}$		$\therefore \text{ Range} = [0, 1]$		
	$= 2.4 \times 10^{-3} \mathrm{m}$	83.(b)	We have $(1 + x)^n = C_0 + C_1 x + C_2 x^2 + + C_n x^n$		
()	= 2.4 mm		Integrating, $\frac{(1+x)^{n+1}}{n+1} = C_0 x + \frac{C_1}{2} x^2 + \frac{C_2}{3} x^3 + \dots +$		
72.(d)	1 st case		$\frac{C_n}{m+1}x^{n+1} + K$		
	$\frac{\mathrm{hc}}{\lambda} = \phi + \frac{1}{2} \mathrm{mv}^2$				
	or, $v = \sqrt{\frac{2}{m} \left(\frac{hc}{\lambda} - \phi\right)}$		Putting $x = 0, K = \frac{1}{n+1}$		
			Then $\frac{(1+x)^{n+1}}{n+1} = C_0 x + \frac{C_1}{2} x^2 + \frac{C_2}{3} x^3 + \dots + \frac{C_n}{n+1}$		
	2^{nd} case 4hc 1 2				
	$\frac{4hc}{3\lambda} = \phi + \frac{1}{2}mv'^2$		$x^{n+1} + \frac{1}{n+1}$		
	or, $v' = \sqrt{\frac{2}{3} \left(\frac{4hc}{3\lambda} - \phi\right)}$		Putting $x = 1$, we get		
	$V_{1} = \sqrt{3(3\lambda^{-1})}$		$C_0 + \frac{C_1}{2^n} + \frac{C_2}{3} + \dots + \frac{C_n}{n+1} = \frac{2^{n+1}}{n+1} - \frac{1}{n+1}$		
	$\int \frac{4}{3} \frac{hc}{hc} - \phi$		$=\frac{2^{n+1}-1}{2^{n+1}-1}$		
	$\therefore \frac{v'}{v} = \sqrt{\frac{\frac{4}{3}\frac{hc}{\lambda} - \phi}{\frac{hc}{\lambda} - \phi}}$		11 1.1		
	$\sqrt{\lambda} - \Phi$	84.(c)	Given word is SOCIETY There are 3 yowels and 4 consonants so there are 3		
	A $(1)^{\frac{t}{T_{1/2}}}$	*	choices for vowels and 4 choices for consonants for		
73.(a)	$\frac{A}{A_0} = \left(\frac{1}{2}\right)^{\frac{t}{T_{1/2}}}$		the alternate arrangements so total no. of arrangements = $P(3, 3) \times P(4, 4)$		
	20 602		= 3! × 4!		
	or, $A = A_0 \left(\frac{1}{2}\right)^{\frac{30}{0.693} \times \frac{6.93}{60}}$ = $128 \left(\frac{1}{2}\right)^{\frac{6.93}{0.693 \times 2}}$	85.(b)	$x + \frac{1}{x} = -1$ i.e. $x^2 + x + 1 = 0$		
	$\frac{6.93}{0.693 \times 2}$		1.e. $x = \frac{-1 \pm \sqrt{1^2 - 4.1.1}}{24} = \frac{-1 \pm \sqrt{3}i}{2} = w, w^2$		
	$= 128(\frac{1}{2})$		2.1 2		
74.(d)	= 4 mci Given mole ratio (1:2:3) and mole ratio in the		So, $x^{2010} + \frac{1}{x^{2010}} = w^{2010} + \frac{1}{w^{2010}}$		
/4.(u)	reaction (2:6:3)		$= (w^3)^{670} + \frac{1}{(w^3)670} = 1 + \frac{1}{1} = 2$		
	Thus, H_2O is limiting reagent				
	\therefore 6 mole H ₂ O gives 4 mole Fe(OH) ₃	86.(c)	Given $ \mathbf{a} = \mathbf{b} = \mathbf{c} = 1$		
	1 mole H ₂ O gives $\frac{1}{6}$ mole Fe(OH) ₃ 2 mole		and $\vec{a} + \vec{b} + \vec{c} = \vec{0}$		
	H ₂ O gives $\frac{4}{6} \times 2$ mole Fe(OH) ₃		So, $\vec{b} + \vec{c} = -\vec{a}$		
	= 1.34 mole Fe(OH) ₃		$(\vec{b} + \vec{c})^2 = (-\vec{a})^2$		
75.(c)	Since 3 mole of $Zn(NO_3)_2 \Rightarrow 6HNO_3$ as acid 2 mole NO is formed by reduction of HNO ₃		or, $b^2 + c^2 + 2 \vec{b} \vec{c} \cos\theta = a^2$		
	2 mole HNO ₃ act as oxidizing agent.		or, $1+1+2\cos\theta = 1$		
76.(a)	$T = 273$ $P_T = 1$ atm R = 0.0821		or, $2\cos\theta = -1$		
			or, $\cos\theta = -\frac{1}{2}$ i.e. $\theta = 120^{\circ}$		
	$nH_2 = \frac{4}{2} = 2$ mole & $nN_2 = \frac{2.8}{28} = 0.1$	87.(b)	Given equations are $ax^2 + 2hxy - ay^2 = 0(i)$		
	$V_{T} = \frac{n_{T}RT}{P_{T}} = \frac{2.1 \times 0.0821 \times 273}{1}$		ax + 2nxy - ay = 0(1) $bx^2 + 2gxy - by^2 = 0(i)$		
	= 47.07 litre		Eq ⁿ of bisector of angle between lines represented by		
77.(c)	VAgCl = 500 ml NAgCl = 0.1		(i) is $h(x^2 - y^2) = (a + a) xy$		
	EAgCl = 143.8		i.e. $hx^2 - 2axy - hy^2 = 0$ (iii)		
	WAgCl = ?		Since (ii) & (iii) are identical, b 2g -b		
			So, $\frac{b}{h} = \frac{2g}{-2a} = \frac{-b}{h}$		

PEA Association Pvt. Ltd. Thapathali, Kathmandu, Tel: 5345730, 5357187

....The End....