ACME ENGINEERING COLLEGE Sitapaila, Kathmandu Tel: 01-5670924, 5670925, 5382962

 2079-4-21 (Set - B) Hints \& Solution
Section -

1.(b) $2 x+1=5 \Rightarrow x=2$
and $8+y=0 \Rightarrow y=-8$
2.(a) $x=1$

But function is undefined
at $\mathrm{x}=1$.
3.(b) $\lim _{\mathrm{n} \rightarrow \infty}\left[\frac{\mathrm{n}(\mathrm{n}+1)}{2}\right]^{2} \times \frac{1}{\mathrm{n}^{4}}$
$=\lim _{n \rightarrow \infty} \frac{\left(1+\frac{1}{n}\right)^{2}}{4}$
$=\frac{1}{4}$
4.(a) $\mathrm{b}^{2}=\mathrm{ac}$
or, $\quad \operatorname{logb}^{2}=\log (\mathrm{ac})$
or, $2 \log b=\log a+\log c$
5.(a) $\frac{d y}{d x}=\frac{1}{\sec x} \times \sec x \cdot \tan x$

$$
=\tan x
$$

6.(b) $\quad \mathrm{A}=\{3,5,7,9,11\}$
$B=\{1,4,7,10\}$
$\mathrm{B}-\mathrm{A}=\{1,4,10\}$
7.(c) \quad Put xzy $=1$
or, $(1+2 \times 1)^{\mathrm{n}}=2187$
or, $3^{\mathrm{n}}=2187$
$3^{n}=3^{7}$
$\therefore \quad \mathrm{n}=7$
8.(a) $\frac{3}{\mathrm{k}}=4[\because \mathrm{a}=\mathrm{b}]$
or, $\mathrm{k}=\frac{3}{4}$
9.(d) Obvious (By defination)
10.(a) $\tan \theta+\cot \theta=2 \operatorname{cosec} \theta$
or, $\sin ^{2} \theta+\cos ^{2} \theta=2 \cos \theta$

$$
\begin{aligned}
& \cos \theta=\frac{1}{2}=\cos \frac{\pi}{3} \\
& \theta=2 n \pi \pm \frac{\pi}{3}
\end{aligned}
$$

11.(c)
12.(c) $\cos \beta=\frac{\mathrm{y}}{\mathrm{r}}=0$
$\beta=90^{\circ}$
13.(c) $\mathrm{z}^{-1}=\frac{1}{7+24 \mathrm{i}}$

$$
\begin{aligned}
& =\frac{7-24 i}{7^{2}+24^{2}} \\
& =\frac{7-24 i}{625}
\end{aligned}
$$

14.(b) $\sin ^{-1} x+\sin ^{-1} y=\frac{2 \pi}{3}$
or, $\frac{\pi}{2}-\cos ^{-1} x+\frac{\pi}{2}-\cos ^{-1} y=\frac{2 \pi}{3}$
or, $\cos ^{-1} x+\cos ^{-1} y=\frac{\pi}{3}$
15.(a) ${ }^{\frac{n}{n} p_{r}}{ }^{n_{r}}=\frac{336}{56}$
or, $r!=6=3!$
16.(c) $\mathrm{y}=\mathrm{e}^{\mathrm{x}}$
$\frac{d y}{d x}=e^{x}=y$
17.(b) $\int \mathrm{a}^{\mathrm{ffx})} \cdot \mathrm{f}^{\prime}(\mathrm{x}) \mathrm{dx}$
$=\frac{a^{f(x)}}{\log a}+c$
18.(a) $\mathrm{a} \times 1-2 \mathrm{~b}+\mathrm{c}=0$
or, $b=\frac{a+c}{2}$
19.(b) $x^{2}-3 x+2>0$
or, $(x-2)(x-1)>0$
$x>2$ or $x<1$
$\therefore \quad \mathrm{x} \in(-\infty, 1) \cup(2, \infty)$
20.(c) $x=\sqrt{2+x}$
or, $\quad x^{2}=2+x$

$$
x^{2}-x-2=0
$$

$$
x=2,-1
$$

$\therefore \quad \mathrm{x}=2$
21.(c)

22.(c)

$$
{ }^{3} X_{B}^{2} \rightarrow A_{2} B_{3}
$$

23.(b) Alkali metal have lowest ionization energy

$$
(\mathrm{Na} \text { - metal) }
$$

24.(c)
25.(a) Weak acid has strong conjugate base.
29.(a) It is an alloy of $\mathrm{Fe}+\mathrm{C}+\mathrm{Mb}$
30.(b) ${ }_{1}^{2} \mathrm{H}$
$\therefore \quad$ Neutron $=$ At. mass -P

$$
=2-1=1
$$

ACME ENGINEERING COLLEGE Sitapaila, Kathmandu Tel: 01-5670924, 5670925, 5382962

 2079-4-21 (Set - B) Hints \& Solution31.(d) $\mathrm{Pb}\left(\mathrm{CH}_{3} \mathrm{COO}\right)_{2}+\mathrm{H}_{2} \mathrm{~S} \rightarrow \mathrm{PbS} \downarrow+\mathrm{CH}_{3} \mathrm{COOH}$ black
32.(c) When body is moving with constant velocity then the speed of body must be constant.
33.(b) The position of centre of mass of body depends on mass and its distribution.
34.(c) $\%$ increase in diameter
$=\frac{\Delta \mathrm{d}}{\mathrm{d}} \times 100 \%$
$\Delta \theta \times 100 \%$ i.e. depends on nature \& change in temperature.
35.(c) $\mathrm{f}_{0}=\frac{\mathrm{v}}{4 l}=\frac{336}{4 \times 1.05}=80 \mathrm{~Hz}$

First overtone $=3 \mathrm{f}_{0}=3 \times 80=240 \mathrm{~Hz}$
36.(b)
37.(d) $v=\omega \sqrt{r^{2}-y^{2}}$
$\mathrm{v}=\frac{\mathrm{v}_{\text {max }}}{\mathrm{r}} \sqrt{\mathrm{r}^{2}-\mathrm{y}^{2}}$
or, $8 \sqrt{3}=\frac{16}{4} \sqrt{\mathrm{r}^{2}-\mathrm{y}^{2}}$
or, $\quad 12=16-y^{2}$

$$
\mathrm{y}=2 \mathrm{~cm}
$$

38.(a) $\mathrm{E}=-\mathrm{L} \frac{\mathrm{dI}}{\mathrm{dt}}$
$\mathrm{L}=\frac{0.4}{1-0.2} \times 10=5 \mathrm{H}$
39.(c) $\mathrm{E}=\frac{\mathrm{Q}}{4 \pi \varepsilon_{0} \mathrm{r}^{2}}=\frac{\sigma}{\varepsilon_{0}}$
40.(b) $\delta=(\mu-1) \mathrm{A}$
and $\mu=A+\frac{B}{\lambda^{2}}$
Here λ_{b} is least, so δ will be maximum.
41.(b) In $1^{\text {st }}$ case $T=2 \pi \sqrt{\frac{\mathrm{~m}}{\mathrm{k}}}$

If spring is cuts in 4 equal parts $\mathrm{k}^{\prime}=4 \mathrm{k}$
$\mathrm{T}^{\prime}=2 \pi \sqrt{\frac{\mathrm{~m}}{\mathrm{k}^{\prime}}}=2 \pi \sqrt{\frac{\mathrm{~m}}{4 \mathrm{k}}}$
$\mathrm{T}^{\prime}=\frac{\mathrm{T}}{2}$
42.(c)
$\mathrm{Y}=\frac{\text { stress }}{\text { strain }}=\frac{\frac{\mathrm{F}}{\mathrm{A}}}{\text { strain }}$
$\mathrm{A}=\frac{\mathrm{F}}{\mathrm{Y} \times \text { strain }}=\frac{10^{4} \times 100}{7 \times 10^{9} \times 0.2}$
$=7.1 \times 10^{-4} \mathrm{~m}^{2}$
43.(c) $y=\frac{1}{2} a t^{2}=\frac{1}{2} \frac{e E}{m} \frac{x^{2}}{v^{2}}$

$$
=\frac{\mathrm{Eex}^{2}}{4 \mathrm{~K} \cdot \mathrm{E}}
$$

$\therefore \quad$ Path will be equally curved.
44.(c) $\mathrm{R}=\frac{\Delta \mathrm{V}}{\Delta \mathrm{I}}=\frac{20-10}{(50-25) \times 10^{-6}}=400 \mathrm{~K} \Omega$
45.(c)
$\frac{\mathrm{v}_{\mathrm{H}}}{\mathrm{v}_{\mathrm{He}}}=\sqrt{\frac{\gamma_{\mathrm{H}} \mathrm{M}_{\mathrm{He}}}{\mathrm{M}_{\mathrm{H}} \gamma_{\mathrm{He}}}}$

$$
=\sqrt{\frac{7 \times 3 \times 4}{5 \times 2 \times 5}}=\frac{\sqrt{42}}{5}
$$

46.(b) $B=\frac{\mu_{0} I}{2 \pi r} \quad$ i.e. $B \propto \frac{1}{r}$
47.(b) $\mathrm{eV}=\frac{1}{2} \mathrm{mv}^{2}$
$\mathrm{v}=\sqrt{\frac{2 \mathrm{eV}}{\mathrm{m}}}$
$=2.3 \times 10^{7} \mathrm{~m} / \mathrm{s}$
48.(b) $\mathrm{v}=760 \mathrm{~m} / \mathrm{s}$
$\mathrm{f}=\frac{1800}{60}=30 \mathrm{~Hz}$
$\mathrm{v}=\mathrm{f} \times \lambda$
$\lambda=\frac{760}{30}=25.3 \mathrm{~m}$

49.(b)	$50 .(\mathrm{a})$	$51 .(\mathrm{b})$	$52 .(\mathrm{b})$	$53 .(\mathrm{c})$	$54 .(\mathrm{b})$
$55 .(\mathrm{d})$	$56 .(\mathrm{a})$	$57 .(\mathrm{c})$	$58 .(\mathrm{c})$	$59 .(\mathrm{c})$	$60 .(\mathrm{d})$

Section - II

61.(c)

From figure
4 points
(inter section)
62.(b) $I=\int|x| d x$
$I=|x| \int 1 . d x-\int\left[\frac{d|x|}{d x} \int 1 . d x\right] d x$
$I=x|x|-\int \frac{x}{|x|} \cdot x d x \quad\left[\because x^{2}=|x|^{2}\right]$
$=x|x|-\int|x| d x$
$I=\frac{x|x|}{2}$
63.(c) $\frac{d y}{d x}=\frac{\frac{d y}{d t}}{\frac{d x}{d t}}=\frac{2 e^{t} \sin t}{2 e^{t} \cos t}=\operatorname{tant}$
64.(c)
$4^{\frac{1}{2}+\frac{1}{4}+\frac{1}{8}+\ldots}$
$4^{\frac{\frac{1}{2}}{1-\frac{1}{2}}}=4$

Check option using calculator.
Roots of (c) are 4 and 1.

ACME ENGINEERING COLLEGE Sitapaila, Kathmandu Tel: 01-5670924, 5670925, 5382962

2079-4-21 (Set - B) Hints \& Solution

65.(a) $\operatorname{cosc}=\frac{a^{2}+b^{2}-c^{2}}{2 a b}$

Since, side C is greatest
Angle c is greatest

$$
\begin{aligned}
\cos \mathrm{C} & =\frac{3^{2}+5^{2}-7^{2}}{2 \times 3 \times 5} \\
& =120^{\circ}>90^{\circ}
\end{aligned}
$$

66.(b) $\operatorname{Max}=\frac{1}{\min \text { value }}$

$$
\begin{aligned}
& =\frac{1}{-\sqrt{3^{2}+4^{2}}+7} \\
& =\frac{1}{-5+7} \\
& =\frac{1}{2}
\end{aligned}
$$

67.(d) $\log _{a} a b=x$
$\log _{a} a+\log _{a} b=x$
or, $\quad 1+\log _{a} b=x$
$\log _{\mathrm{a}} \mathrm{b}=\mathrm{x}-1 \ldots$... (i)
or, $\quad \log _{\mathrm{b}} \mathrm{ab}=\log _{\mathrm{b}} \mathrm{a}+\log _{\mathrm{b}} \mathrm{b}$

$$
\begin{aligned}
& =\log _{\mathrm{b}} \mathrm{a}+1 \\
& =\frac{1}{\mathrm{x}-1}+1=\frac{1+\mathrm{x}-1}{\mathrm{x}-1}=\frac{\mathrm{x}}{\mathrm{x}-1}
\end{aligned}
$$

68.(d) $\left\{1+x+x^{3}(1+x)\right\}^{10}$
$=(1+x)^{10}\left(1+x^{3}\right)^{10}$
$=\left({ }^{10} c_{0}+{ }^{10} c_{1} x+{ }^{10} c_{2} x^{2}+{ }^{10} c_{3} x^{3}+{ }^{10} c_{4} x^{4}+\ldots.\right)$
$\left({ }^{10} c_{0}+{ }^{10} c_{1} \mathrm{x}^{3}+\ldots ..\right)$
Coeff. of $\mathrm{x}^{4}={ }^{10} \mathrm{c}_{1} \times{ }^{10} \mathrm{c}_{1}+{ }^{10} \mathrm{c}_{4} \times{ }^{10} \mathrm{c}_{0}$

$$
=10 \times 10+210=310
$$

69.(b) $\mathrm{z}=(\mathrm{i}+\sqrt{2})^{10}$
$|z|=|i+\sqrt{2}|^{10}$

$$
=(\sqrt{1+2})^{10}
$$

$$
=(\sqrt{3})^{10}
$$

70.(a) $E q^{n}$ of plane parallel to $3 x-4 y+5 z=0$ is $3 x-$
$4 y+5 z+k=0$
Pass point ($1,2,3$)
$\mathrm{k}=-10$
71.(c) $A=2 \int_{0}^{a} y d x$
$=2 \int_{0}^{\mathrm{a}} \sqrt{4 \mathrm{ax}} \mathrm{dx}$
$=\frac{8}{3} \mathrm{a}^{2}$

72.(b)
$\xrightarrow[\text { Projection of } \vec{a} \text { on } \vec{b}]{\vec{b}}=\frac{|\vec{a}|}{|\vec{b}|}$
Projection of \vec{b} on $\vec{a} \quad|\vec{b}|$
73.(b) $r=4 R \sin \frac{A}{2} \cdot \sin \frac{B}{2} \cdot \sin \frac{C}{2}$

Put $\mathrm{A}=\mathrm{B}=\mathrm{C}=60^{\circ}$
74.(a)
(4)

Gentleman
3
(6)

Ladies
2
4
${ }^{4} c_{3} \times{ }^{6} c_{2}+{ }^{4} c_{4} \times{ }^{6} c_{1}$
75.(b)
$D_{1}=x\left(x^{2}-a b\right)-b(a x-a b)+b\left(a^{2}-a x\right)$
$=x^{3}-3 a b x+a b^{2}+b a^{2}$
$\frac{\mathrm{d}\left(\mathrm{D}_{1}\right)}{\mathrm{dx}}=3 \mathrm{x}^{2}-3 \mathrm{ab}$

$$
=3\left(\mathrm{x}^{2}-\mathrm{ab}\right)
$$

\& $\quad \mathrm{D}_{2}=\mathrm{x}^{2}-\mathrm{ab}$
$\therefore \quad \frac{\mathrm{d}\left(\mathrm{D}_{1}\right)}{\mathrm{dx}}=3 \mathrm{D}_{2}$
76.(b) 6 mole of $\mathrm{e}=6 \mathrm{~F}=1 \mathrm{~mole} \mathrm{Cr}=52 \mathrm{gm}$
$\therefore \quad 6 \times 96500 \mathrm{C}=52 \mathrm{gm} \mathrm{Cr}$

$$
36000 \mathrm{C}=\frac{52 \times 36000}{6 \times 96500}=3.23 \mathrm{~g}
$$

77.(a)

$$
\mathrm{N}_{\text {salt }} \quad=\frac{200 \times 0.4-200 \times 0.2}{400}
$$

$\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$

$$
=\frac{40}{400}=\frac{1}{10}=0.1 \mathrm{~N}
$$

$\mathrm{M}_{\mathrm{Na}_{2} \mathrm{SO}_{4}}=\frac{\mathrm{N}_{\mathrm{Na}_{2} \mathrm{SO}_{4}}}{\text { Charge }}=\frac{0.1}{2}=0.05 \mathrm{M}$
78.(b) $\mathrm{pH}=4, \mathrm{So} \frac{\mathrm{H}^{+}=10^{-4}}{1000}=10^{-7}$

No neutral <7 so 6.69
79.(c) $0.16 \times 60 \mathrm{gm} \mathrm{CO}_{3}^{--}=9.6 \mathrm{gm}$
80.(d)

$\mathrm{C}=\frac{80}{12}=6.66$	$\frac{6.66}{6.66}=1$
$\mathrm{H}=\frac{20}{1}=20$	$\frac{20}{6.66}=3$

$\mathrm{CH}_{3} \Rightarrow \mathrm{C}_{2} \mathrm{H}_{6}$
81.(b) $\mathrm{Cr}_{(24)}-1 \mathrm{~s}^{2} 2 \mathrm{~s}^{2} 2 \mathrm{p}^{6} 3 \mathrm{~s}^{2} 3 \mathrm{p}^{6} 4 \mathrm{~s}^{1} 3 \mathrm{~d}^{5}$ \Downarrow
6 unpaired electrons
82.(b) HBr is dried by passing through anhydrous CaCl_{2}.
83.(c) $\frac{\mathrm{T}_{1}}{\mathrm{~T}_{2}}=\frac{\mathrm{m}(\mathrm{g}+\mathrm{a})}{\mathrm{m}(\mathrm{g}-\mathrm{a})}=\frac{10+5}{10-5}=3: 1$
84.(b) Change in K.E. = workdone against friction.
$\frac{p^{2}}{2 m}=F \times s$
$\frac{\mathrm{p}^{2}}{2 \mathrm{~m}}=\mu \mathrm{mgs}$
$\therefore \quad \mathrm{s}=\frac{\mathrm{p}^{2}}{2 \mu \mathrm{~m}^{2} \mathrm{~g}}$
85.(b) $\mathrm{v}=$ volume inside water
$\mathrm{V}=$ total vol. of iceberg
$\mathrm{V} \gamma \mathrm{g}=\mathrm{v} \sigma \mathrm{g}$

ACME ENGINEERING COLLEGE Sitapaila, Kathmandu Tel: 01-5670924, 5670925,5382962

2079-4-21 (Set - B) Hints \& Solution

$\frac{\mathrm{v}}{\mathrm{V}}=\frac{\rho}{\sigma}=\frac{0.92}{1.03}=\frac{92}{103}$
Fraction of volume outside
$=1-\frac{\mathrm{v}}{\mathrm{V}}=1-\frac{92}{103}=\frac{11}{103}$
$\%$ outside $=\frac{11}{103} \times 100 \%=11 \%$
86.(c) $\frac{50}{100} \times \frac{1}{2} \mathrm{mv}^{2}=\mathrm{ms} \Delta \theta$
$\Delta \theta=\frac{1}{4} \frac{\mathrm{v}^{2}}{\mathrm{~s}}=\frac{300^{2}}{4 \times 150}=150^{\circ} \mathrm{C}$
87.(b) $\sin 60^{\circ}=\frac{\mathrm{h}}{\mathrm{vt}}$
$\mathrm{h}=\mathrm{vt} \sin 60^{\circ}=330 \times \sin 60^{\circ}$
88.(d) $\frac{f^{\prime}}{f}=\frac{v}{v-v_{s}}=\frac{v}{v-\frac{v}{10}}=\frac{10}{9}$
89.(b) Each arm of resistor has resistance 2Ω and 4Ω are in parallel
$\mathrm{R}_{\mathrm{eq}}=\frac{2 \times 4}{2+4}=1.3 \Omega$
90.(c) $\lambda=\frac{\mathrm{h}}{\mathrm{p}}=\frac{\mathrm{h}}{\sqrt{2 \mathrm{mE}}}$
$\mathrm{E}=\frac{\left(6.62 \times 10^{-34}\right)^{2}}{2 \times 9.1 \times 10^{-31} \times\left(1.224 \times 10^{-10}\right)^{2}}$
$=1.61 \times 10^{-17} \mathrm{~J}$
$=\frac{1.6 \times 10^{-17}}{1.6 \times 10^{-19}}=100 \mathrm{eV}$
91.(a) $\frac{\mathrm{N}}{\mathrm{N}_{0}}\left(\frac{1}{2}\right)^{\frac{\mathrm{t}}{\mathrm{T}_{1 / 2}}}=\left(\frac{1}{2}\right)^{\frac{5 \mathrm{~T}_{1 / 2}}{\mathrm{~T}_{1 / 2}}}=\frac{1}{32}$
$\frac{\mathrm{N}}{\mathrm{N}_{0}} \times 100 \%=\frac{1}{32} \times 100=3 \%$
92.(b) $\mathrm{NP}=50 \mathrm{~cm}$
$\mathrm{u}=25 \mathrm{~cm} \quad \mathrm{v}=-50 \mathrm{~cm}$
$\mathrm{f}=\frac{\mathrm{uv}}{\mathrm{u}+\mathrm{v}}=\frac{25(-50)}{25-50}=50 \mathrm{~cm}=0.5 \mathrm{~m}$
$\mathrm{P}=\frac{1}{\mathrm{f}}=\frac{1}{0.5}=+2 \mathrm{D}$
93.(b) $\mathrm{E}_{1} \mathrm{t}_{1}=\mathrm{E}_{2} \mathrm{t}_{2}$

or, $\mathrm{t}_{2}=\left(\frac{\mathrm{r}_{2}}{\mathrm{r}_{1}}\right)^{2} \mathrm{t}_{1}=\left(\frac{25+15}{25}\right)^{2} \times 5=12.8 \mathrm{~s}$
94.(c) $1^{\text {st }}$ case, $\mathrm{mg}=6 \pi \eta \mathrm{rv}_{0} \ldots$ (i)
$2^{\text {nd }}$ case $\mathrm{QE}=\mathrm{mg}$.... (ii)
Again, $\mathrm{mg}+6 \pi \eta \mathrm{rv}_{0}=\mathrm{E}(\mathrm{Q}+3 \mathrm{q}) \ldots$.... (iii)
Now $2 \mathrm{mg}=\mathrm{E}(\mathrm{Q}+3 \mathrm{q})$.... (iv)
Dividing (iv) by (ii)
$\frac{2 \mathrm{mg}}{\mathrm{mg}}=\frac{\mathrm{E}(\mathrm{Q}+3 \mathrm{q})}{\mathrm{EQ}}$
or, $2 \mathrm{Q}=\mathrm{Q}+3 \mathrm{q}$

$$
\mathrm{Q}=3 \mathrm{q}
$$

95.(b) $\theta=\frac{\beta}{D}=\frac{D \lambda}{d . D}=\frac{\lambda}{d}$

$$
=\frac{6.5 \times 10^{-7}}{10^{-3}}
$$

$$
=6.5 \times 10^{-4} \mathrm{rad}
$$

96.(d) $\quad B=\frac{\mu_{0} \mathrm{NI}_{1}}{2 \mathrm{r}_{1}}-\frac{\mu_{0} \mathrm{NI}_{2}}{2 \mathrm{r}_{2}}$

$$
\begin{aligned}
& =5 \mu_{0}\left(1-\frac{3}{4}\right)=\frac{5}{4} \mu_{0} \\
& \text { 97.(a) } \quad 98 .(\mathrm{a})
\end{aligned}
$$

...The End...

