ACME ENGINEERING COLLEGE Sitapaila, Kathmandu Tel: 01-5670924, 5670925,5382962

2079-4-21 (Set - A) Hints \& Solution

Section -

1.(a) $\mathrm{A}^{-1}\left(\mathrm{~A}^{2}-\mathrm{A}+\mathrm{I}\right)=\mathrm{A}^{-1} 0=0$
or, $\quad \mathrm{A}-\mathrm{I}+\mathrm{A}^{-1}=0$

$$
\mathrm{A}^{-1}=\mathrm{I}-\mathrm{A}
$$

2.(b)

3.(b) $\lim _{n \rightarrow \infty} \frac{n(n+1)}{2 n^{2}}=\lim _{n \rightarrow \infty} \frac{\left(1+\frac{1}{n}\right)}{2}$

$$
=\frac{1}{2}
$$

4.(c) $\mathrm{t}_{3}=4=\mathrm{a}+2 \mathrm{~d}$
$S_{5}=\frac{5}{2}[2 a+4 d]$

$$
=5(a+2 d)
$$

$$
=20
$$

5.(d) $y^{2}=|x|^{2}=x^{2}$
$2 y \frac{d y}{d x}=2 x$
$\frac{\mathrm{dy}}{\mathrm{dx}}=\frac{\mathrm{x}}{|\mathrm{x}|}$
6.(a) $x^{2}=-9 \Rightarrow x= \pm 3 i \rightarrow$ Imaginary
7.(d) $\quad(1+x)^{n}={ }^{n} c_{0}+{ }^{n} c_{1} x+{ }^{n} c_{2} x^{2}+\ldots+{ }^{n} c_{n} x^{n}$

Put $x=4$;
$5^{n}={ }^{n} c_{0}+4 .{ }^{n} c_{1}+4^{2 n} c_{2}+\ldots .+4^{n}{ }^{n} c_{3}$
8.(d) Centre; $(-\mathrm{g},-\mathrm{f})=(-3,3)$
$2 \mathrm{x}-\mathrm{y}+\mathrm{k}$ passes through $(-3,3)$
or, $-2 \times 3-3+\mathrm{k}=0$ $\mathrm{k}=9$
9.(d) $|k||\vec{a}|=1$
$|k|=\frac{1}{|\vec{a}|}$
$\therefore \quad \mathrm{k}=\frac{1}{ \pm|\overrightarrow{\mathrm{a}}|}$
10.(b) $\tan ^{2} \theta+\frac{1}{\tan ^{2} \theta}=2$
$\tan ^{2} \theta=1=\tan ^{2} \frac{\pi}{4}$
$\theta=n \pi \pm \frac{\pi}{4}$
11.(a) $x y$ will be maximum

When $\mathrm{x}=\mathrm{y}$
$\therefore \quad \mathrm{x}=\mathrm{y}=6$
12.(a) Direction cosines are
$\frac{a}{\sqrt{a^{2}+b^{2}+c^{2}}}, \frac{b}{\sqrt{a^{2}+b^{2}+c^{2}}} \frac{c}{\sqrt{a^{2}+b^{2}+c^{2}}}$
13.(a) $\mathrm{i}^{\mathrm{n}}\left(1+\mathrm{i}+\mathrm{i}^{2}+\mathrm{i}^{3}\right)$
$=\mathrm{i}^{\mathrm{n}}(1+\mathrm{i}-1-\mathrm{i})=0$
14.(b) $\cos ^{-1} x=\frac{\pi}{2}-\cos ^{-1} y=\sin ^{-1} y$
$\cos ^{-1} x=\cos ^{-1} \sqrt{1-y^{2}}$
or, $x^{2}+y^{2}=1$
15.(c) ${ }^{8} \mathrm{c}_{2}-{ }^{3} \mathrm{c}_{2}+1=26$
16.(c) Put $\mathrm{x}=\sin \theta$
$y=\sin ^{-1}(\sin 3 \theta)=3 \sin ^{-1} x$
$\frac{d y}{d x}=\frac{3}{\sqrt{1-x^{2}}}$
17.(d) $=\int x^{9} d x=\frac{x^{10}}{10}+c$
18.(c)

$x+y=6$
Circumcentre - mid point of hypotaneous
$\left(\frac{0+6}{2}, \frac{6+0}{2}\right)=(3,3)$
19.(b) $5-x>0$
$\mathrm{x}<5$
$x \in(-\infty, 5)$
20.(a) $R=f(k)=6 k^{2}-k-2=0$
$\mathrm{k}=-\frac{1}{2}, \frac{2}{3}$
21.(d) $\mathrm{HXO}_{3}{ }^{-}$
$\mathrm{x}+1-2 \times 3=-1$
$x=+4$
22.(b) Structure

23.(c) At. No. $=24$, element chromium $4^{\text {th }}$ period, dblock, VI B group.
24.(c)
25.(a) Which gives 1 mole of cation or anion.
26.(a) Electron releasing group.
27.(b)
28.(d) Composition Fe , $\mathrm{Ni} \& \mathrm{Cr}$
29.(a) An acid salt $\left(\mathrm{NaHCO}_{3}\right)$ can not exist with a base
(NaOH) in a solution.
30.(a) $\mathrm{Mg}+2 \mathrm{HNO}_{3} \rightarrow \mathrm{Mg}\left(\mathrm{NO}_{3}\right)_{2}+\mathrm{H}_{2}$
31.(d) $\mathrm{SO}_{2}+\mathrm{H}_{2} \mathrm{~S} \rightarrow \mathrm{H}_{2} \mathrm{O}+\mathrm{S} \downarrow \mathrm{ppt}$
32.(c) $\mathrm{x}=\mathrm{at}^{2}-\mathrm{bt}^{3}$
$v=\frac{d x}{d t}=2 a t-3 b t^{2}$
and $\mathrm{a}=\frac{\mathrm{dv}}{\mathrm{dt}}=2 \mathrm{a}-6 \mathrm{bt}$

ACME ENGINEERING COLLEGE Sitapaila, Kathmandu Tel: 01-5670924, 5670925, 5382962

2079-4-21 (Set - A) Hints \& Solution

or, $0=2 \mathrm{a}-6 \mathrm{bt}$
$\mathrm{t}=\frac{2 \mathrm{a}}{6 \mathrm{~b}}=\frac{\mathrm{a}}{3 \mathrm{~b}}$
33.(d) $\mathrm{F}=\frac{\mathrm{YA} l}{\mathrm{~L}}=\mathrm{K} l$
$K=\frac{Y A}{L}$
34.(c) In myopia, image is formed infront of retina.
35.(a) $\mathrm{E}_{\mathrm{k}}=\frac{3}{2} \mathrm{k}_{\mathrm{B}} \mathrm{T}$ at $\mathrm{T}=\mathrm{OK}$
$\Rightarrow \quad \mathrm{E}_{\mathrm{k}}=0$
36.(a) Velocity of sound is independent of change in pressure.
37.(a) When light passes through glass slab then its velocity decreases so wavelength decreases.
38.(b) $E=\frac{V}{d}=\frac{Q}{C d}$

On introducing dielectric slab capacitance increases so electric field intensity decreases.
39.(b) Stream of proton at as parallel conductor carrying current in same direction so they attract each other.
40.(a) To emit x-ray energy difference between two energy level must lie in x-ray region.
41.(b) $\frac{V_{\text {out }}}{V_{\text {in }}}=\frac{I_{c} R_{c}}{I_{b} R_{b}}$
or, $\frac{3}{0.01}=\beta \times \frac{\mathrm{R}_{\mathrm{c}}}{1000}$
$\Rightarrow \mathrm{R}_{\mathrm{c}}=3000 \Omega=3 \mathrm{~K} \Omega$
42.(a) $\mathrm{R}=\sqrt{(2 \mathrm{p})^{2}+2.2 \mathrm{p} \sqrt{2} \mathrm{p} \cos \theta+(\sqrt{2} \mathrm{p})^{2}}$
or, $(\sqrt{10} p)^{2}=4 p^{2}+4 \sqrt{2} p^{2} \cos \theta+2 p^{2}$
or, $\cos \theta=\frac{1}{\sqrt{2}}=\cos 45^{\circ}$
$\therefore \quad \theta=45^{\circ}$
43.(c) $\mathrm{a}=\frac{\mathrm{g} \sin \theta}{1+\mathrm{R}^{2} / \mathrm{R}^{2}}=\frac{\mathrm{g} \sin 30^{\circ}}{1+1}=\frac{\mathrm{g}}{4}$
44.(c) $\mathrm{m}_{\mathrm{T}}=\mathrm{m}_{0} \times \mathrm{m}_{\mathrm{e}}$ $=25 \times 6=150$
45.(d) Sound can be identified by overtones.
46.(c) $\mathrm{V}_{1}=\mathrm{V} \quad \mathrm{r}_{1}=10 \mathrm{~cm}$
$\mathrm{V}_{2}=$? $\quad \mathrm{r}_{2}=10+5=25 \mathrm{~cm}$
$\frac{\mathrm{V}_{2}}{\mathrm{~V}_{1}}=\frac{\mathrm{r}_{1}}{\mathrm{r}_{2}}=\frac{10}{25}=\frac{2}{5}$
$\mathrm{V}_{2}=\frac{2 \mathrm{~V}}{5}$
47.(b) $\mathrm{Bqv}=\frac{\mathrm{mv}^{2}}{\mathrm{r}}$
$\mathrm{Bqr}=\mathrm{mv} . .$. (1)
Here $\frac{\mathrm{Bq}}{2} \mathrm{r}^{\prime}=\mathrm{m} \times 2 \mathrm{v} \ldots$. (2)
Dividing (2) by (1)
$\frac{r^{\prime}}{2 r}=2 \Rightarrow r^{\prime}=4 r$
48.(c) $\frac{1}{\lambda_{l}}=\mathrm{R}\left[\frac{1}{1}-\frac{1}{4}\right]$
$\lambda_{l}=\frac{4}{3 \mathrm{R}}$.
For Balmer series
$\frac{l}{\lambda_{\mathrm{B}}}=\mathrm{R}\left(\frac{1}{2^{2}}-\frac{1}{3^{2}}\right)$
$\lambda_{\mathrm{B}}=\frac{36}{5 \mathrm{R}}$.
Now $\frac{\lambda_{B}}{\lambda_{C}}=\frac{36}{5 R} \times \frac{3 R}{4}$

$$
\lambda_{\mathrm{B}}=\frac{27}{5} \times 1215 \AA=6561 \AA
$$

49.(d)	$50 .(\mathrm{c})$	$51 .(\mathrm{c})$	$52 .(\mathrm{a})$	$53 .(\mathrm{b})$	$54 .(\mathrm{b})$
$55 .(\mathrm{b})$	$56 .(\mathrm{b})$	$57 .(\mathrm{c})$	$58 .(\mathrm{d})$	$59 .(\mathrm{c})$	$60 .(\mathrm{a})$

Section - II

61.(d) $e^{x}=e^{-x}$
$\mathrm{e}^{2 \mathrm{x}}=1=\mathrm{e}^{0}$
$\therefore \quad \mathrm{x}=0$
and $y=e^{0}=1$
$\therefore \quad \mathrm{n}(\mathrm{A} \cap \mathrm{B})=1$
62.(b) $x+2 x+7 x=180$
or, $x=18$

Angles are $18^{\circ}, 36^{\circ}, 126^{\circ}$

$$
\text { A } \quad \text { B } \quad \text { C }
$$

$\frac{\text { greatest side (c) }}{\text { least side (a) }}=\frac{2 \mathrm{R} \operatorname{sinC}}{2 \mathrm{R} \sin \mathrm{A}}$

$$
=\frac{\sin 126^{\circ}}{\sin 18^{\circ}}=2.61
$$

(Check option)
63.(b) $\mathrm{t}_{2}={ }^{\mathrm{n}} \mathrm{c}_{1} ; \mathrm{t}_{3}={ }^{\mathrm{n}} \mathrm{c}_{2} ; \mathrm{t}_{4}={ }^{\mathrm{n}} \mathrm{c}_{3}$
(Coefficient)
${ }^{n} c_{2}=\frac{{ }^{n} c_{1}+{ }^{n} c_{3}}{2}$
Check with option.
64.(c) For $2 \alpha, 2 \beta$ roots
$\mathrm{f}\left(\frac{\mathrm{x}}{2}\right)=0$
or, $7\left(\frac{x}{2}\right)^{2}-4\left(\frac{x}{2}\right)+3=0$
$7 \mathrm{x}^{2}-8 \mathrm{x}+12=0$
65.(d) $\quad(-2 \omega)^{6}+\left(-2 \omega^{2}\right)^{6} \quad\left[\because 1+\omega+\omega^{2}=0\right]$
or, $64 \omega^{6}+64 \omega^{12}$
or, $64\left(\omega^{3}\right)^{2}+64\left(\omega^{3}\right)^{4}$
$=64+64=128$

ACME ENGINEERING COLLEGE Sitapaila, Kathmandu Tel: 01-5670924, 5670925, 5382962

2079-4-21 (Set - A) Hints \& Solution

66.(a) $I_{1}+I_{2}=\int_{0}^{\pi / 4}\left(\sin ^{2} x+\cos ^{2} x\right) d x$

$$
=[\mathrm{x}]_{0}^{\pi / 4}=\frac{\pi}{4}
$$

$\therefore \quad \mathrm{I}_{1}=\frac{\pi}{4}-\mathrm{I}_{2}$
67.(a) $\mathrm{c}=\frac{\mathrm{a}}{\mathrm{m}}$
or, $\mathrm{c}=\frac{4}{2}=2$
68.(a)

$\frac{\mathrm{a}+0+0}{3}=\alpha \Rightarrow \mathrm{a}=3 \alpha$
Similarly $b=3 \beta$
and $\mathrm{c}=3 \gamma$
Eq ${ }^{\mathrm{n}}: \frac{\mathrm{x}}{3 \alpha}+\frac{\mathrm{y}}{3 \beta}+\frac{\mathrm{z}}{3 \gamma}=1$
69.(c) In x-axis; $y=0$

So, $4 \mathrm{x}-\mathrm{x}^{2}-3=0$
or, $\mathrm{x}=1,3$

$$
\int_{1}^{3}\left(4 x-x^{2}-3\right) d x=\frac{4}{3}
$$

70.(a)

71.(a) $a+b=0$
72.(a) $\int \frac{1-\sin x}{1-\sin ^{2} x} d x$
$=\int \frac{1-\sin \mathrm{x}}{\cos ^{2} \mathrm{x}} \mathrm{dx}$
$=\int\left(\sec ^{2} x-\sec x \tan x\right) d x$
$=(\tan x-\sec x)+c$
73.(c) Perform $\mathrm{R}_{2} \rightarrow \mathrm{R}_{2}-\mathrm{R}_{1}$
$\mathrm{R}_{3} \rightarrow \mathrm{R}_{3}-\mathrm{R}_{1}$
$\therefore \quad \Delta=\left|\begin{array}{ccc}1 & 1 & 1 \\ 0 & \sin \theta & 0 \\ 0 & 0 & \cos \theta\end{array}\right|$

$$
\begin{aligned}
& =\sin \theta \cdot \cos \theta \\
\Delta & =\frac{1}{2} \sin 2 \theta
\end{aligned}
$$

Max. value of $\Delta=\frac{1}{2}$
74.(c) $\sin ^{-1} y=\frac{\pi}{2}-\sin ^{-1} x=\cos ^{-1} x$

$$
\begin{array}{ll}
& =\sin ^{-1} \sqrt{1-x^{2}} \\
\therefore \quad & y=\sqrt{1-x^{2}} \\
& \frac{d y}{d x}=\frac{1}{2 \sqrt{1-x^{2}}} \times(-2 x)=-\frac{x}{y}
\end{array}
$$

75.(c)

Intercept: $\mathrm{AB}=\sqrt{2} \mathrm{a}$
and $A^{\prime} B^{\prime}=\sqrt{2}$ ar \ldots and so on.
Sum $=\sqrt{2} a+\sqrt{2} a r+\ldots \ldots$
$=\sqrt{2} \mathrm{a}\left(1+\mathrm{r}+\mathrm{r}^{2}+\ldots ..\right)$
$=\sqrt{2} \mathrm{a} \cdot \frac{1}{1-\mathrm{r}}$
$=\sqrt{2} \mathrm{a} \times \frac{1}{\left(1-\frac{1}{2}\right)}=2 \sqrt{2} \mathrm{a}$
76.(a) $\mathrm{Na}_{2} \mathrm{SO}_{4} \longrightarrow 2 \mathrm{Na}^{+}+\mathrm{SO}_{4}^{--}$

more tendency more tendency
to get reduce to get oxidize
77.(b) N wt of $\mathrm{NaH}_{2} \mathrm{PO}_{4} \&$ volume of NaOH
$\frac{\mathrm{W}}{\mathrm{E}}=\frac{\mathrm{V} \times \mathrm{N}}{1000}$
$\frac{12}{60}=\frac{\mathrm{V} \times 1}{1000}=200 \mathrm{ml}$
78.(c) For ppt ${ }^{\text {n }}$
$\mathrm{K}_{\mathrm{ip}}>\mathrm{K}_{\mathrm{sp}}$
79.(d) $3 \mathrm{BaCl}_{2}+2 \mathrm{Na}_{3} \mathrm{PO}_{4} \rightarrow \mathrm{Ba}_{3}(\mathrm{POH})_{2}+6 \mathrm{NaCl}$

3 mole 2 mole
0.5 mole $\frac{2}{3} \times 0.5=0.33$ mole $\mathrm{Na}_{3} \mathrm{POH}$
0.2 mole $\mathrm{Na}_{3} \mathrm{PO}_{4}$ limiting

Thus 2 mole $\mathrm{Na}_{3} \mathrm{PO}_{4}$ gives 1 mole $\mathrm{Ba}_{3}(\mathrm{POH})_{2}$ 0.2 mole $\mathrm{Na}_{3} \mathrm{PO}_{4}$ gives 0.1 mole $\mathrm{Ba}_{3}(\mathrm{POH})_{2}$
80.(c) $\mathrm{CH}_{3}-\mathrm{C} \equiv \mathrm{C}-\mathrm{CH}_{3}$ but-2-yne does not contain Acidic Hydrogen.

ACME ENGINEERING COLLEGE Sitapaila, Kathmandu Tel: 01-5670924, 5670925, 5382962

 2079-4-21 (Set - A) Hints \& Solution81.(b) $\mathrm{Cu}_{2} \mathrm{O}+\mathrm{Cu}_{2} \mathrm{~S} \rightarrow \mathrm{Cu}+\mathrm{SO}_{2}$
82.(d) IF_{7}
$1+7=8$
83.(a) $m v \cos \theta=-\frac{m}{2} v \cos \theta+\frac{m}{2} v^{\prime}$
$\frac{3 \mathrm{mvcos} \theta}{2}=\frac{\mathrm{mv}^{\prime}}{2}$
$\mathrm{v}^{\prime}=3 \mathrm{v} \cos \theta$
84.(a) $\mathrm{v}=\sqrt{2 \mathrm{gh}}$
volme $/ \mathrm{sec}=\mathrm{Av}$
$=10^{-4} \times \sqrt{2 \times 10 \times 5}$
$=10^{-3} \mathrm{~m}^{3} / \mathrm{sec}$
85.(b) The speed of child observed by stationary observer in platform is
$\mathrm{v}=(9+4.5) \mathrm{km} / \mathrm{hr}$

$$
\begin{aligned}
& =\frac{13.5 \times 1000}{3600} \\
& =3.75 \mathrm{~m} / \mathrm{s}
\end{aligned}
$$

86.(a) Dew point $=\frac{4.6+5.4}{2}=5^{\circ} \mathrm{C}$
R.H. $=\frac{\text { SVP at dew point }}{\text { SVP at room temperature }}$
$=\frac{6.8}{17.6} \times 100 \%=37 \%$
87.(c) $\quad 1^{\text {st }}$ case $\eta=\left(1-\frac{T_{2}}{T_{1}}\right) \times 100 \%$
or, $\frac{40}{100}=1-\frac{T_{2}}{T_{1}}$
or, $\frac{\mathrm{T}_{2}}{800}=1-\frac{2}{5}=\frac{3}{5}$
$\mathrm{T}_{2}=480 \mathrm{~K}$
$2^{\text {nd }}$ case $\eta_{2}=\left(1-\frac{T_{2}^{\prime}}{T_{1}}\right) \times 100 \%$
$\mathrm{T}_{2}{ }^{\prime}=400 \mathrm{~K}$
$\therefore \quad$ Temperature of sink should be decreased $=\mathrm{T}_{2}-\mathrm{T}_{2}{ }^{\prime}=80 \mathrm{~K}$
88.(d) $I=\frac{P}{A}=\frac{200 \pi}{4 \pi \times 10^{2}}=0.5 \mathrm{w} / \mathrm{m}^{2}$
$\mathrm{L}=10 \log \left(\frac{\mathrm{I}}{\mathrm{I}_{0}}\right)=10 \log \left(\frac{0.5}{10^{-12}}\right)=117 \mathrm{db}$
89.(b) $\quad \omega=\frac{\frac{\delta_{B}-\delta_{R}}{\delta_{B}+\delta_{R}}}{2}=\frac{2}{11}$
$\omega^{\prime}=\frac{\delta_{\mathrm{B}^{\prime}}-\delta_{\mathrm{R}^{\prime}}}{\frac{\delta_{\mathrm{B}^{\prime}}+\delta_{\mathrm{R}}{ }^{\prime}}{2}} \frac{2}{9}$
$\frac{\omega}{\omega^{\prime}}=\frac{2}{11} \times \frac{9}{2}=\frac{9}{11}$
90.(c) $\quad \Delta \mathrm{U}=\frac{\mathrm{C}_{1} \mathrm{C}_{2}\left(\mathrm{~V}_{1}-\mathrm{V}_{2}\right)^{2}}{2\left(\mathrm{C}_{1}+\mathrm{C}_{2}\right)}$ $=0.0375 \mathrm{~J}$
91.(b) $\mathrm{L}=2 \pi \mathrm{R} \Rightarrow \mathrm{R}=\frac{\mathrm{L}}{2 \pi}$
$\mathrm{M}=\mathrm{IA}=\mathrm{I} \times \pi \mathrm{R}^{2}=\frac{\mathrm{IL}^{2}}{4 \pi}$
92.(c) $\tan \phi=\frac{X_{\mathrm{L}}}{\mathrm{R}}=\frac{2 \pi \mathrm{fL}}{\mathrm{R}}$
$\phi=\tan ^{-1}\left(\frac{2 \pi \times 50 \times 0.21}{12}\right)=80^{\circ}$
93.(b) $\mathrm{x}=2.5 \beta$
$=2.5 \frac{\mathrm{D} \lambda}{\mathrm{d}}$
$=\frac{2.5 \times 1 \times 6.5 \times 10^{-7}}{10^{-3}}=1.63 \times 10^{-3} \mathrm{~m}=1.63 \mathrm{~mm}$

$$
=2.5 \frac{\lambda}{\mathrm{~d}}=1.63 \mathrm{~mm}
$$

94.(c) N.P. $=50 \mathrm{~cm}$
$u=25 \mathrm{~cm}, \mathrm{v}=-50 \mathrm{~cm}$
$\mathrm{f}=\frac{\mathrm{uv}}{\mathrm{u}+\mathrm{v}}=\frac{25(-50)}{25-50}=50 \mathrm{~cm}$
95.(c) $\quad \mathrm{V}_{2}-\mathrm{V}_{1}=\frac{\mathrm{hc}}{\mathrm{c}}\left(\frac{1}{\lambda_{2}}-\frac{1}{\lambda_{1}}\right)$

$$
\text { or, } \begin{aligned}
\mathrm{V}_{2}= & \mathrm{V}_{1}+\frac{\mathrm{hc}}{\mathrm{c}}\left(\frac{1}{\lambda_{2}}-\frac{1}{\lambda_{1}}\right) \\
= & 0.18+\frac{6.62 \times 10^{-34} \times 3 \times 10^{8}}{1.6 \times 10^{-19}} \\
& \left(\frac{1}{180 \times 10^{-9}} \frac{1}{550 \times 10^{-9}}\right) \\
= & 4.8 \mathrm{~V}
\end{aligned}
$$

96.(c) $\frac{\mathrm{U}}{\mathrm{Pb}}=\frac{4}{3}$
$\mathrm{m}_{\mathrm{u}}=4 \mathrm{x}, \mathrm{m}_{\mathrm{pb}}=3 \mathrm{x}$
206 gm is formed from 238 gm of U
3 xg of Pb is formed from $\left(\frac{238}{206} \times 3 \mathrm{x}\right) \mathrm{g}$ of U

$$
=3.466 \mathrm{x} \mathrm{gm}
$$

$\mathrm{m}_{0}=4 \mathrm{x}+3.466 \mathrm{x}=7.466 \mathrm{x}$
$\frac{\mathrm{m}}{\mathrm{m}_{0}}=\left(\frac{1}{2}\right)^{\frac{\mathrm{t}}{\mathrm{T}_{1 / 2}}}$
or, $\frac{4}{7.45}=\left(\frac{1}{2}\right)^{\frac{t}{T_{1 / 2}}}$

$$
\underset{\substack{\mathrm{t}} \mathrm{~T}_{1 / 2} \times \frac{\ln \left(\frac{4}{7.45}\right)}{98 .(\mathrm{c})} \times \underset{\ln ^{0.5}}{99 .(\mathrm{c})}}{\operatorname{lc}}=4 \times 10^{9} \mathrm{yrs}
$$

