ACME ENGINEERING COLLEGE Sitapaila, Kathmandu Tel: 01-5670924, 5670925, 5382962 2079-4-21 (Set – A) Hints & Solution					
	Section – I	,	$i^{n}(1 + i + i^{2} + i^{3})$		
(a)	$A^{-1}(A^2 - A + I) = A^{-1}0 = 0$		$=i^{n}(1+i-1-i)=0$		
	or, $A - I + A^{-1} = 0$	14.(b)	$\cos^{-1}x = \frac{\pi}{2} - \cos^{-1}y = \sin^{-1}y$		
1.)	$A^{-1} = I - A$		-		
(b)			$\cos^{-1}x = \cos^{-1}\sqrt{1 - y^2}$ or, $x^2 + y^2 = 1$		
		15.(c)	${}^{8}c_{2} - {}^{3}c_{2} + 1 = 26$		
		16.(c)	Put $x = \sin\theta$		
	$\left(1+\frac{1}{n}\right)$		$y = \sin^{-1}(\sin 3\theta) = 3 \sin^{-1}x$		
(b)	$\lim_{n \to \infty} \frac{n(n+1)}{2n^2} = \lim_{n \to \infty} \frac{\left(1 + \frac{1}{n}\right)}{2}$		$\frac{dy}{dx} = \frac{3}{\sqrt{1-x^2}}$		
	$=\frac{1}{2}$		•		
	2	17.(d)	$=\int x^9 dx = \frac{x^{10}}{10} + c$		
(c)	$t_3 = 4 = a + 2d$	18.(c)			
	$S_5 = \frac{5}{2} [2a + 4d]$		(0, 6)		
	=5(a+2d)		(3, 3)		
	= 5(a + 2d) $= 20$		(0, 0) $y = 0$ $(6, 0)$		
(d)	$y^2 = x ^2 = x^2$		$\mathbf{x} + \mathbf{y} = 6$		
	$2y\frac{dy}{dx} = 2x$		Circumcentre – mid point of hypotaneous		
	dy x		$\left(\frac{0+6}{2}, \frac{6+0}{2}\right) = (3, 3)$		
	$\frac{\mathrm{d}y}{\mathrm{d}x} = \frac{x}{ x }$	19.(b)	$(2^{2} - 2^{2})^{2}$ 5 - x > 0		
(a)	$x^2 = -9 \Rightarrow x = \pm 3i \rightarrow \text{Imaginary}$	()	x < 5		
(d)	$(1 + x)^n = {}^nc_0 + {}^nc_1x + {}^nc_2x^2 + \dots + {}^nc_nx^n$ Put x = 4;		$x \in (-\infty, 5)$		
	$5^{n} = {}^{n}c_{0} + 4 \cdot {}^{n}c_{1} + 4^{2} \cdot {}^{n}c_{2} + \dots + 4^{n} \cdot {}^{n}c_{3}$	20.(a)	$R = f(k) = 6k^2 - k - 2 = 0$		
(d)	Centre; $(-g, -f) = (-3, 3)$		$k = -\frac{1}{2}, \frac{2}{3}$		
	2x - y + k passes through (-3, 3)	21.(d)	HXO ₃ ⁻		
	or, $-2 \times 3 - 3 + k = 0$ k = 9		$\mathbf{x} + 1 - 2 \times 3 = -1$		
(d)	$ \mathbf{k} = 1$	22.(b)	x = +4 Structure		
(u)		22.(0)			
	$ \mathbf{k} = \frac{1}{ \vec{a} }$		N - O - N		
	$\therefore k = \frac{1}{2}$		0′ `0		
	$\therefore \mathbf{k} = \frac{1}{\pm \vec{a} }$	23.(c)	At. No. = 24, element chromium 4^{th} period, d block, VI B group.		
.(b)	$\tan^2\theta + \frac{1}{\tan^2\theta} = 2$	24.(c)			
.(0)	$\tan^2\theta$ 2	25.(a)	Which gives 1 mole of cation or anion.		
	$\tan^2\theta = 1 = \tan^2\frac{\pi}{4}$	26.(a) 27.(b)	Electron releasing group.		
	·	28.(d)	Composition Fe, Ni & Cr		
	$\theta = n\pi \pm \frac{\pi}{4}$	29.(a)	An acid salt (NaHCO ₃) can not exist with a bas		
.(a)	xy will be maximum	30.(a)	(NaOH) in a solution. Mg + 2HNO ₃ \rightarrow Mg(NO ₃) ₂ + H ₂		
	When $x = y$	31.(d)	$SO_2 + H_2S \rightarrow H_2O + S \downarrow ppt$ $x = at^2 - bt^3$		
.(a)	$\therefore x = y = 6$ Direction cosines are	32.(c)	$\mathbf{x} = \mathbf{a}\mathbf{t}^2 - \mathbf{b}\mathbf{t}^3$		
(u)			$v = \frac{dx}{dt} = 2at - 3bt^2$		
	$\frac{a}{\sqrt{a^2+b^2+c^2}}, \frac{b}{\sqrt{a^2+b^2+c^2}}, \frac{c}{\sqrt{a^2+b^2+c^2}}$				
			and $a = \frac{dv}{dt} = 2a - 6bt$		

ACME ENGINEERING COLLEGE Sitapaila, Kathmandu Tel: 01-5670924, 5670925, 5382962 2079-4-21 (Set – A) Hints & Solution					
	or, $0 = 2a - 6bt$ $t = \frac{2a}{6b} = \frac{a}{3b}$	48.(c)	$\frac{1}{\lambda_l} = R \left[\frac{1}{1} - \frac{1}{4} \right]$		
33.(d)	$\mathbf{F} = \frac{\mathbf{Y}\mathbf{A}l}{\mathbf{L}} = \mathbf{K}l$		$\lambda_l = \frac{4}{3R} \dots (1)$ For Balmer series		
	$K = \frac{YA}{L}$		$\frac{l}{\lambda_{\rm B}} = R \left(\frac{1}{2^2} - \frac{1}{3^2} \right)$		
34.(c)	In myopia, image is formed infront of retina.		$\lambda_{\rm B} = \frac{36}{5R} \dots (2)$		
35.(a)	$E_k = \frac{3}{2} k_B T$ at $T = OK$				
36.(a)	$\Rightarrow E_k = 0$ Velocity of sound is independent of change in pressure.		Now $\frac{\lambda_{\rm B}}{\lambda_{\rm C}} = \frac{36}{5\mathrm{R}} \times \frac{3\mathrm{R}}{4}$ $\lambda_{\rm B} = \frac{27}{5} \times 1215 \ \text{\AA} = 6561 \ \text{\AA}$		
37.(a)	When light passes through glass slab then its velocity decreases so wavelength decreases.	49.(d) 55.(b)	50.(c) 51.(c) 52.(a) 53.(b) 54.(b) 56.(b) 57.(c) 58.(d) 59.(c) 60.(a)		
38.(b)	$E = \frac{V}{d} = \frac{Q}{Cd}$		Section – II		
	On introducing dielectric slab capacitance	61.(d)	$e^{x} = e^{-x}$ $e^{2x} = 1 = e^{0}$		
39.(b)	increases so electric field intensity decreases. Stream of proton at as parallel conductor		$\therefore x = 0$		
	carrying current in same direction so they attract		and $y = e^0 = 1$		
40.(a)	each other. To emit x-ray energy difference between two	62.(b)	$\therefore n(A \cap B) = 1$ $x + 2x + 7x = 180$		
	energy level must lie in x-ray region.	02.(0)	or, $x = 18$		
41.(b)	$\frac{V_{out}}{V_{in}} = \frac{I_c R_c}{I_b R_b}$		$\overset{\mathrm{c}}{\bigtriangleup}$		
	or, $\frac{3}{0.01} = \beta \times \frac{R_c}{1000}$		126		
	$\Rightarrow R_c = 3000 \Omega = 3 K\Omega$ $R = \sqrt{(2p)^2 + 2.2p\sqrt{2} p\cos\theta + (\sqrt{2} p)^2}$				
42.(a)			A Angles are 18° , 36° , 126°		
	or, $(\sqrt{10}p)^2 = 4p^2 + 4\sqrt{2}p^2\cos\theta + 2p^2$		A B C		
	or, $\cos\theta = \frac{1}{\sqrt{2}} = \cos 45^\circ$		$\frac{\text{greatest side (c)}}{\text{least side (a)}} = \frac{2R \sin C}{2R \sin A}$		
	$\therefore \theta = 45^{\circ}$		$=\frac{\sin 126^\circ}{\sin 18^\circ}=2.61$		
43.(c)	$a = \frac{g \sin \theta}{1 + R^2 / R^2} = \frac{g \sin 30^\circ}{1 + 1} = \frac{g}{4}$		5111.6		
44.(c)	$m_T = m_0 \times m_e$	63.(b)	(Check option) $t_2 = {}^{n}c_1; t_3 = {}^{n}c_2; t_4 = {}^{n}c_3$		
45.(d)	$= 25 \times 6 = 150$ Sound can be identified by overtones.	(-)	(Coefficient)		
	$V_1 = V$ $r_1 = 10 \text{ cm}$		${}^{n}c_{2} = \frac{{}^{n}c_{1} + {}^{n}c_{3}}{2}$		
	$V_2 = ?$ $\frac{V_2}{V_1} = \frac{r_1}{r_2} = \frac{10}{25} = \frac{2}{5}$ $r_2 = 10 + 5 = 25 \text{ cm}$		Check with option.		
	· 1 · 12 · 20 · 0	64.(c)	For 2α , 2β roots		
	$V_2 = \frac{2V}{5}$		$f\left(\frac{x}{2}\right) = 0$		
47.(b)	$Bqv = \frac{mv^2}{r}$		or, $7\left(\frac{x}{2}\right)^2 - 4\left(\frac{x}{2}\right) + 3 = 0$		
	Bqr = mv (1)				
	Here $\frac{Bq}{2}r' = m \times 2v \dots (2)$	65.(d)	$7x^{2} - 8x + 12 = 0$ (-2\omega)^{6} + (-2\omega^{2})^{6} [:: 1 + \omega + \omega^{2} = 0]		
	Dividing (2) by (1)		or, $64\omega^6 + 64\omega^{12}$		
	$\frac{\mathbf{r'}}{2\mathbf{r}} = 2 \implies \mathbf{r'} = 4\mathbf{r}$		or, $64(\omega^3)^2 + 64(\omega^3)^4$ = 64 + 64 = 128		
	-	I	-04 + 04 = 128		

ACME ENGINEERING COLLEGE Sitapaila, Kathmandu Tel: 01-5670924, 5670925, 5382962 2079-4-21 (Set – A) Hints & Solution

ACME ENGINEERING COLLEGE Sitapaila, Kathmandu Tel: 01-5670924, 5670925, 5382962 2079-4-21 (Set – A) Hints & Solution				
	$\int_{-\infty}^{\pi/4} \left(\frac{1}{2} - \frac{1}{2} \right) dx$		$=\sin\theta.\cos\theta$	
66.(a)	$I_1 + I_2 = \int_{-\infty}^{\pi/4} (\sin^2 x + \cos^2 x) dx$		$\Delta = \frac{1}{2}\sin 2\theta$	
	$= [x]_{0}^{\pi/4} = \frac{\pi}{4}$		2	
	0.		Max. value of $\Delta = \frac{1}{2}$	
	$\therefore \mathbf{I}_1 = \frac{\pi}{4} - \mathbf{I}_2$		- π	
67 (a)	$c = \frac{a}{m}$	74.(c)	$\sin^{-1}y = \frac{\pi}{2} - \sin^{-1}x = \cos^{-1}x$	
07.(a)			$=\sin^{-1}\sqrt{1-x^2}$	
	or, $c = \frac{4}{2} = 2$		\therefore y = $\sqrt{1-x^2}$	
68.(a)	-		$\frac{\mathrm{dy}}{\mathrm{dx}} = \frac{1}{2\sqrt{1-x^2}} \times (-2x) = -\frac{x}{y}$	
	Z (0, 0, c)	75.(c)	$4x = 2\sqrt{1-x}$	
		75.(0)	(0, a)	
	\square		в	
	(0, b, 0) B $(a, 0, 0)$ X		O A (a, 0)	
	Y		Intercept: AB = $\sqrt{2}$ a	
	$\frac{a+0+0}{3} = \alpha \Longrightarrow a = 3\alpha$		and $A'B' = \sqrt{2}$ ar and so on.	
	Similarly $b = 3\beta$		$Sum = \sqrt{2} a + \sqrt{2} ar + \dots$	
	and $c = 3\gamma$		$=\sqrt{2} a (1 + r + r^2 +)$	
	$Eq^{n}: \frac{x}{3\alpha} + \frac{y}{3\beta} + \frac{z}{3\gamma} = 1$		$=\sqrt{2} a. \frac{1}{1-r}$	
<i>(</i>) ()	500 5p 51		$-\sqrt{2} = \sqrt{\frac{1}{2}} = 2\sqrt{2}$	
69.(c)	In x-axis; $y = 0$ So, $4x - x^2 - 3 = 0$		$=\sqrt{2} a \times \frac{1}{\left(1-\frac{1}{2}\right)} = 2\sqrt{2} a$	
	or, $x = 1, 3$			
	$\int_{-1}^{3} (4x - x^2 - 3) dx = \frac{4}{3}$	76.(a)	$Na_2SO_4 \longrightarrow 2Na^+ + SO_4^{}$ $H_2O \longrightarrow H^+ + OH^-$	
70()	$\int_{1}^{1} (1x + x - 5) dx = 3$		$\downarrow \qquad \downarrow$	
70.(a)	/		castrode anode	
	5		(H ₂) (O ₂)	
	30°		more tendency more tendency to get reduce to get oxidize	
		77.(b)	N wt of NaH ₂ PO ₄ & volume of NaOH	
	150*		$\frac{W}{E} = \frac{V \times N}{1000}$	
71.(a)	$\mathbf{a} + \mathbf{b} = 0$			
72.(a)	$\int \frac{1 - \sin x}{1 - \sin^2 x} dx$		$\frac{12}{60} = \frac{V \times 1}{1000} = 200 \text{ ml}$	
		78.(c)	For ppt ⁿ	
	$= \int \frac{1 - \sin x}{\cos^2 x} \mathrm{d}x$	70 (J)	$K_{ip} > K_{sp}$	
	$=\int (\sec^2 x - \sec x \tan x) dx$	79.(d)	$3BaCl_2 + 2Na_3PO_4 \rightarrow Ba_3(POH)_2 + 6NaCl$ 3 mole 2 mole	
	$= \int (\sec x - \sec x \tan x) dx$ $= (\tan x - \sec x) + c$		0.5 mole $\frac{2}{3} \times 0.5 = 0.33$ mole Na ₃ POH	
73.(c)	Perform $R_2 \rightarrow R_2 - R_1$		5	
~ /	$R_3 \rightarrow R_3 - R_1$		0.2 mole Na ₃ PO ₄ limiting Thus 2 mole Na ₃ PO ₄ gives 1 mole Ba ₃ (POH) ₂	
			0.2 mole Na ₃ PO ₄ gives 0.1 mole $Ba_3(POH)_2$	
	$\therefore \Delta = \begin{vmatrix} 1 & 1 & 1 \\ 0 & \sin\theta & 0 \\ 0 & 0 & \cos\theta \end{vmatrix}$	80.(c)	$CH_3 - C \equiv C - CH_3$ but-2-yne does not contain	
			Acidic Hydrogen.	

ACME ENGINEERING COLLEGE Sitapaila, Kathmandu Tel: 01-5670924, 5670925, 5382962 2079-4-21 (Set – A) Hints & Solution				
81.(b)	$Cu_2O + Cu_2S \rightarrow Cu + SO_2$	00 (a)	$\Delta U = \frac{C_1 C_2 (V_1 - V_2)^2}{2(C_1 + C_2)}$	
82.(d)	IF_7 1 + 7 = 8	90.(C)	$\Delta 0 = \frac{2(C_1 + C_2)}{2(C_1 + C_2)}$ = 0.0375 J	
83.(a)	$mv\cos\theta = -\frac{m}{2}v\cos\theta + \frac{m}{2}v'$	91.(b)	$= 0.0375 \text{ J}$ $L = 2\pi R \implies R = \frac{L}{2\pi}$	
	$\frac{3\text{mvcos}\theta}{2} = \frac{\text{mv'}}{2}$		$M = IA = I \times \pi R^2 = \frac{IL^2}{4\pi}$	
	$v' = 3v\cos\theta$	92 (c)	$\tan\phi = \frac{X_L}{R} = \frac{2\pi fL}{R}$	
84.(a)	$v = \sqrt{2gh}$	92.(0)		
	volme/sec = Av		$\phi = \tan^{-1}\left(\frac{2\pi \times 50 \times 0.21}{12}\right) = 80^{\circ}$	
	$= 10^{-4} \times \sqrt{2 \times 10 \times 5} \\= 10^{-3} \text{ m}^3/\text{sec}$	93.(b)	$x = 2.5\beta$	
85.(b)	The speed of child observed by stationary observer in platform is		$= 2.5 \frac{D\lambda}{d}$	
	v = (9 + 4.5) km/hr		$=\frac{2.5\times1\times6.5\times10^{-7}}{10^{-3}}=1.63\times10^{-3}\mathrm{m}=1.63\mathrm{mm}$	
	$=\frac{13.5 \times 1000}{3600}$		$= 2.5 \frac{\lambda}{d} = 1.63 \text{ mm}$	
86.(a)	= 3.75 m/s Dew point = $\frac{4.6 + 5.4}{2}$ = 5°C	94.(c)	N.P. = 50 cm	
80.(a)	- 2		u = 25 cm, v = -50 cm uv = 25 (-50) = -50 cm	
	$R.H. = \frac{SVP \text{ at dew point}}{SVP \text{ at room temperature}}$		$f = \frac{uv}{u+v} = \frac{25(-50)}{25-50} = 50 \text{ cm}$	
	$=\frac{6.8}{17.6} \times 100\% = 37\%$	95.(c)	$\mathbf{V}_2 - \mathbf{V}_1 = \frac{\mathbf{hc}}{\mathbf{c}} \left(\frac{1}{\lambda_2} - \frac{1}{\lambda_1} \right)$	
87.(c)	$1^{\text{st}} \operatorname{case} \eta = \left(1 - \frac{T_2}{T_1}\right) \times 100\%$		or, $V_2 = V_1 + \frac{hc}{c} \left(\frac{1}{\lambda_2} - \frac{1}{\lambda_1} \right)$	
	or, $\frac{40}{100} = 1 - \frac{T_2}{T_1}$		$= 0.18 + \frac{6.62 \times 10^{-34} \times 3 \times 10^8}{1.6 \times 10^{-19}}$	
	or, $\frac{T_2}{800} = 1 - \frac{2}{5} = \frac{3}{5}$		$\left(\frac{1}{180 \times 10^{-9}} \frac{1}{550 \times 10^{-9}}\right)$	
	$T_2 = 480 \text{ K}$		=4.8 V	
	2^{nd} case $\eta_2 = \left(1 - \frac{T_2'}{T_1}\right) \times 100\%$	96.(c)	$\frac{U}{Pb} = \frac{4}{3}$	
	$T_{2} = 400K$		$m_u = 4x, m_{pb} = 3x$ 206 gm is formed from 238 gm of U	
	$\therefore \text{ Temperature of sink should be decreased} = T_2 - T_2' = 80 \text{ K}$		3xg of Pb is formed from $\left(\frac{238}{206} \times 3x\right)$ g of U	
88.(d)	$I = \frac{P}{A} = \frac{200\pi}{4\pi \times 10^2} = 0.5 \text{ w/m}^2$		= 3.466 x gm $m_0 = 4x + 3.466 \text{x} = 7.466 \text{x}$	
	L = $10\log\left(\frac{I}{I_0}\right) = 10\log\left(\frac{0.5}{10^{-12}}\right) = 117 \text{ db}$		$\frac{\mathrm{m}}{\mathrm{m}_{0}} = \left(\frac{1}{2}\right)^{\frac{\mathrm{t}}{\mathrm{T}_{1/2}}}$	
89 (h)			° ()	
07.(0)	$\omega = \frac{\delta_{\rm B} - \delta_{\rm R}}{\frac{\delta_{\rm B} + \delta_{\rm R}}{2}} = \frac{2}{11}$		or, $\frac{4}{7.45} = \left(\frac{1}{2}\right)^{\overline{T}_{1/2}}$	
	$\omega' = \frac{\delta_{\rm B}' - \delta_{\rm R}'}{\frac{\delta_{\rm B}' + \delta_{\rm R}'}{2}} = \frac{2}{9}$		$t = T_{1/2} \times \frac{ln\left(\frac{4}{7.45}\right)}{ln 0.5} = 4 \times 10^9 \text{ yrs.}$	
	2	97.(a)	$h = \frac{1}{1/2} + h = \frac{1}{100} + \frac{1}{100$	
	$\frac{\omega}{\omega'} = \frac{2}{11} \times \frac{9}{2} = \frac{9}{11}$	· · · (•)		
		•		

....The End....