SAGARMATHA ENGINEERING COLLEGE Sanepa, Lalitpur Tel: 5427274, 5911274, 5911275

 2079-4-14 (Set - B) Hints \& Solution
Section -

1.(c) At highest point,
$\mathrm{P}^{\prime}=\operatorname{musin} \theta=\mathrm{Psin} \theta$

2.(d) $\mathrm{mg}-\mathrm{R}=-\mathrm{ma}$
$\mathrm{R}=\mathrm{mg}+\mathrm{ma}$
$=m(9+a)$
$=80(10+5)$
$=1200 \mathrm{~N}$
3.(c) $\quad \mathrm{V}_{\min }=\sqrt{l \mathrm{lg}}$ at top of vertical circle
or, $\omega_{\text {min }} l=\sqrt{l \mathrm{~g}}$
or, $2 \pi \mathrm{f}_{\text {min }}=\sqrt{\frac{\mathrm{g}}{l}}$
or, $\mathrm{f}_{\min }=\frac{1}{2 \pi} \sqrt{\frac{\mathrm{~g}}{l}}$
4.(b) $\quad P=\sqrt{2 \mathrm{mK} . \mathrm{E}}$.
$\Rightarrow \mathrm{P} \propto \sqrt{\mathrm{m}}$ for same K.E.
$\frac{P_{1}}{P_{2}}=\sqrt{\frac{m}{4 m}}=\frac{1}{2}$
5.(d) Breaking force $(\mathrm{F})=$ Breaking stress $(\mathrm{S}) \times$ Area (A)

For same material, $\mathrm{S}=\mathrm{constant}$
$\therefore \mathrm{F} \propto \mathrm{A} \propto \mathrm{R}^{2}$
Then, $\frac{F^{\prime}}{F}=\left(\frac{2 R}{R}\right)^{2}$
or, $\mathrm{F}^{\prime}=4 \mathrm{~F}$
6.(b) $I=M K^{2} ; K=$ radius of gyration
$\frac{\Delta \mathrm{I}}{\mathrm{I}}=\frac{2 \Delta \mathrm{~K}}{\mathrm{~K}}=2 \alpha \Delta \theta$
7.(b) When R.H $=100 \%$, the due point = room temperature
8.(b) For point source,
$\mathrm{I} \propto \frac{1}{\mathrm{r}^{2}}$
or, $\mathrm{A}^{2} \propto \frac{1}{\mathrm{r}^{2}} \quad\left(\because \mathrm{I} \propto \mathrm{A}^{2}\right)$
or, $A \propto \frac{1}{r}$
9.(a) $l_{2}-l_{1}=l_{3}-l_{2}$
or, $\quad l_{3}=2 l_{2}-l_{1}$
or, $\quad 1_{3}=2 \times 65-21.5$
or, $\quad 1_{3}=108.5 \mathrm{~cm}$
10.(d) The shift of letter due to refraction is
$\mathrm{s}=\mathrm{t}\left(1-\frac{1}{\mu}\right) ; \mathrm{t}=$ real depth, $\mu=$ refractive index
\because ' μ ' is less for red light, so least shifted letter is red.
11.(c) Deflection reduced to half means, current range increases by 2 times, then
$\mathrm{S}=\frac{\mathrm{G}}{\mathrm{n}-1} ; \mathrm{n}=\frac{\mathrm{I}}{\mathrm{I}_{\mathrm{g}}}$
or, $G=(n-1) S$

$$
\text { or, } G=(2-1) \times 40=40 \Omega
$$

12.(b) In thermocouple, the direction of thermo current is form metal occurring earlier in series to that occurring later through cold junction.
13.(b) Iron ring has high magnetic permeability.
15.(a)
$\lambda=\frac{\mathrm{h}}{\mathrm{p}}$
or, $p=\frac{h}{\lambda}$
or, $\mathrm{p}=\frac{6.62 \times 10^{-34}}{0.01 \times 10^{-10}}=6.62 \times 10^{-22} \mathrm{~kg} \mathrm{~m} / \mathrm{s}$
16.(d) $r_{n}=(0.53) \times n^{2} \AA$
or, $2.12 \AA=0.53 \mathrm{n}^{2} \AA$
or, $\mathrm{n}=\frac{2.12}{0.53}=2$
17.(a) Heat produced $=\frac{1}{2} \mathrm{CV}^{2}$

$$
=\frac{1}{2} \times 4 \times 10^{-6} \times 400^{2}=0.32 \mathrm{~J}
$$

$3 \mathrm{Fe}+\underset{+8}{+1 \times 8} \mathrm{H}_{2} \mathrm{O} \longrightarrow \underset{\mathrm{H}_{0}}{\mathrm{Fe}_{3} \mathrm{O}_{4}}+\underset{\circ}{\stackrel{\circ}{\mathrm{H}}}{ }_{2}$
Fe loose 8 electron \& Hydrogen gain 8 e.
20.(a)
$\mathrm{F}-\mathrm{O}-\mathrm{F}: \quad$ 2-bond pair
Elements Li Na K
SizeLi $<\mathrm{Na}<\mathrm{K}$
$\mathrm{IE}_{1} \quad \mathrm{Li}>\mathrm{Na}>\mathrm{K}$
21.(b) Pauli's exclusion principle states that two electron in the same orbital should have opposite spin.
$\mathrm{CH}_{3} \mathrm{COO}^{-} \quad \mathrm{Na}^{+}$

$\mathrm{CH}_{3} \mathrm{COOH}$
anionic hydrolysis
Double bond comes first in priority than chloro.
With the same anion, smaller the size of cation, higher is the lattice energy size $\mathrm{Na}^{+}<\mathrm{K}^{+}<\mathrm{Rb}^{+}<\mathrm{Cs}^{+}$ Hence, NaF has maximum lattice energy.
$\mathrm{Zn}+\mathrm{NaOH} \longrightarrow \mathrm{Na}_{2} \mathrm{ZnO}_{2}+\mathrm{H}_{2}$

$$
\begin{align*}
& \lim _{x \rightarrow 0^{+}} \frac{\sin x}{\sqrt{x}}=\lim _{x \rightarrow 0^{+}} \frac{\sin x}{x} \cdot \frac{x}{\sqrt{x}} \\
& =\left(\lim _{x \rightarrow 0^{+}} \frac{\sin x}{x}\right) \cdot\left(\lim _{x \rightarrow 0^{+}} \frac{x}{\sqrt{x}}\right) \\
& =1 . \lim _{x \rightarrow 0^{+}}(\sqrt{x}) \\
& =0 \\
& \lim _{x \rightarrow 3^{-}} \frac{|x-3|}{x-3}=\lim _{x \rightarrow 3^{-}} \frac{(x-3)}{(x-3)}=-1 \tag{d}\\
& \lim _{x \rightarrow 3^{+}} \frac{|x-3|}{(x-3)}=\lim _{x \rightarrow 3} \frac{(x-3)}{(x-3)}=1 \\
& \therefore \quad \lim _{x \rightarrow 3^{-}} \frac{|x-3|}{x-3} \neq \lim _{x \rightarrow 3^{+}} \frac{\mid x-3}{x-3}
\end{align*}
$$

So, limit doesnot exist
31.(b) Let f is even
$\mathrm{f}(-\mathrm{x})=\mathrm{f}(\mathrm{x})$
$f^{\prime}(-x) \cdot(-1)=f^{\prime}(x)$
$\Rightarrow \quad \mathrm{f}^{\prime}(-\mathrm{x})=-\mathrm{f}^{\prime}(\mathrm{x})$
$\therefore \quad \mathrm{f}^{\prime}$ is an odd function.

SAGARMATHA ENGINEERING COLLEGE Sanepa, Lalitpur Tel: 5427274, 5911274, 5911275

 2079-4-14 (Set - B) Hints \& Solution32.(d) $f(x)=x^{2}-2 x$
$f^{\prime}(x)=2 x-2$
For the increasing $f^{\prime}(x)>0$
$\Rightarrow \quad 2 \mathrm{x}-2>0$
or, $\quad \mathrm{x}-1>0$
or, $\mathrm{x}>1$
33.(b) $\int a^{f(x)} f^{\prime}(x) d x=\frac{a^{f(x)}}{\operatorname{loga}}+c$
$\therefore \quad \int a^{\sin x} \cdot \cos x d x=\frac{a^{\sin x}}{\log a}+c$
34.(d) The area of the ellipse $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1$ is $\pi a b$.

So, $\frac{x^{2}}{9}+\frac{y^{2}}{16}=1$ is $\pi \cdot 3 \cdot 4=12 \pi$ sq. unit
35.(b)

$$
\begin{aligned}
\left(\frac{i-1}{i+1}\right)^{n}= & \left(\frac{i-1}{i+1} \times \frac{i-1}{i-1}\right)^{n}=\left\{\frac{(i-1)^{2}}{-2}\right\}^{n} \\
= & \left(\frac{i^{2}-2 i+1}{-2}\right)^{n}=i^{n} \\
& \text { For } n=2
\end{aligned}
$$

$=-1$ (real number)
$\therefore \quad \mathrm{n}=2$
Since $A^{5}=I$
$\Rightarrow \quad \mathrm{A}^{-1} \cdot \mathrm{~A}^{5}=\mathrm{A}^{-1} \cdot \mathrm{I}$
$\Rightarrow \quad A^{4}=A^{-1}$
37.(b) Here, a, b, c are in H.P.

Then $\mathrm{b}=\frac{2 \mathrm{ac}}{\mathrm{a}+\mathrm{c}} \Rightarrow \mathrm{ab}+\mathrm{bc}=2 \mathrm{ac}$
Here, $(2 a-b)(2 c-b)=4 a c-2 a b-2 b c+b^{2}$

$$
\begin{aligned}
& =4 a c-2(a b+b c)+b^{2} \\
& =4 a c-2.2 a c+b^{2} \\
& =b^{2}
\end{aligned}
$$

$\therefore \quad b=\sqrt{(2 a-b)(2 c-b)}$
So, $2 \mathrm{a}-\mathrm{b}, \mathrm{b}, 2 \mathrm{c}-\mathrm{b}$ are in G.P.
38.(c) $\quad \mathrm{P}(\mathrm{n}, 4)=20 \mathrm{P}(\mathrm{n}, 2)$
$\frac{\mathrm{n}!}{(\mathrm{n}-4)!}=20 \frac{\mathrm{n}!}{(\mathrm{n}-2)!}$
or, $(n-2)!=(n-4)!.20$
or, $(n-2)(n-3)(n-4)!=(n-4)!.20$
$(\mathrm{n}-2)(\mathrm{n}-3)=1.20$
$\mathrm{n}^{2}-5 \mathrm{n}+6=20$
$\mathrm{n}^{2}-5 \mathrm{n}-14=0$
$(\mathrm{n}-7)(\mathrm{n}+2)=0$
$\therefore \quad \mathrm{n}=7$. ($\mathrm{n}=-2$ neglecting)
$=$ sum of coefficient of even terms in the expansion of $(1+x)^{8}$
$=2^{8-1}$
$=2^{7}$
$=128$
40.(a) If the roots of $a x^{2}+b x+c=0$ are in the ratio $m: n$, then $\mathrm{mn} \mathrm{b}^{2}=(\mathrm{m}+\mathrm{n})^{2} \mathrm{ac}$
$\Rightarrow \quad 3.4 \mathrm{~b}^{2}=(3+4)^{2} \mathrm{ac}$
$\Rightarrow \quad 12 \mathrm{~b}^{2}=49 \mathrm{ac}$
41.(c) Since, vectors (p, q) and $(5,1)$ are parallel if $(p, q)=$ $\lambda(5,1)$
$\Rightarrow \mathrm{p}=5 \lambda, \mathrm{q}=\lambda$
$\therefore \quad \mathrm{p}=5 \mathrm{q}$
42.(b) $\quad \vec{a} \cdot \vec{b}=(\vec{i}+2 \vec{j}+3 \vec{k}) \cdot(2 \vec{i}+3 \vec{j}+4 \vec{k})$

$$
=2+6+12
$$

$$
=20
$$

$$
|\overrightarrow{\mathrm{b}}|=|2 \overrightarrow{\mathrm{i}}+3 \overrightarrow{\mathrm{j}}+4 \overrightarrow{\mathrm{k}}|=\sqrt{29}
$$

$\therefore \quad$ Projection of \vec{a} on \vec{b}

$$
=\frac{\overrightarrow{\mathrm{a}} \cdot \overrightarrow{\mathrm{~b}}}{|\overrightarrow{\mathrm{~b}}|}=\frac{20}{\sqrt{29}}
$$

43.(b) For coincident lines,
$\mathrm{h}^{2}=\mathrm{ab} \Rightarrow 4^{2}=2 . \mathrm{k}$
$\Rightarrow \quad \mathrm{k}=8$
44.(a) Here, $x^{2}+y^{2}-2 a x-2 a y+a^{2}=0$

Center: $(-\mathrm{g},-\mathrm{f})=(\mathrm{a}, \mathrm{a})$
Radius $=\sqrt{g^{2}+f^{2}-c}=\sqrt{a^{2}+a^{2}-a^{2}}=a$
Hence, touches both axes
45.(a) Let the equation of ellipse be

$$
\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1
$$

Then it passes through $(0,1)$, then $\mathrm{b}^{2}=1$
Also, $2 \mathrm{a}=2(2 \mathrm{~b}) \Rightarrow \mathrm{a}=2 \mathrm{~b}$
$\therefore \quad$ Equation of ellipse is $\mathrm{x}^{2}+4 \mathrm{y}^{2}=4$
Any plane parallel to
$3 x-4 y+5 z=7$ is $3 x-4 y+5 z+k=0$
Which passes through ($3,4,5$)

$$
3.3-4.4+5.5+\mathrm{k}=0
$$

$$
\mathrm{k}=-18
$$

$\therefore \quad$ Required plane $\Rightarrow 3 x-4 y+5 z-18=0$
47.(a) $\frac{1}{\mathrm{ab}}+\frac{1}{\mathrm{bc}}+\frac{1}{\mathrm{ca}}=\frac{\mathrm{a}+\mathrm{b}+\mathrm{c}}{\mathrm{abc}}$

$$
\begin{aligned}
& =\frac{2 \mathrm{~s}}{4 \mathrm{R} \Delta}\left[\because \mathrm{R}=\frac{\mathrm{abc}}{\Delta}\right] \\
& =\frac{1}{2 \mathrm{R} \cdot \Delta \sqrt{\mathrm{~s}}} \\
& =\frac{1}{2 \mathrm{Rr}}\left[\because \mathrm{r}=\frac{\Delta}{\mathrm{s}}\right]
\end{aligned}
$$

48.(b) We have, $\sin ^{-1} x+\cos ^{-1} x=\frac{\pi}{2}$
$\therefore \quad \cos ^{-1} x=\frac{\pi}{2}-\frac{\pi}{5}=\frac{3 \pi}{10}$

49.(b)	$50 .(\mathrm{b})$	$51 .(\mathrm{a})$	$52 .(\mathrm{d})$	$53 .(\mathrm{c})$	$54 .(\mathrm{a})$
$55 .(\mathrm{c})$	$56 .(\mathrm{d})$	$57 .(\mathrm{b})$	$58 .(\mathrm{a})$	$59 .(\mathrm{d})$	$60 .(\mathrm{a})$

Section - II

61. (d) $\omega=\mathrm{a}-\mathrm{bt}$
$\therefore \alpha=\frac{\mathrm{d} \omega}{\mathrm{dt}}=-\mathrm{b}$ (uniform retardation)
At $\mathrm{t}=0 \mathrm{sec}, \omega=\omega_{0}=\mathrm{a}$
Then, $\omega^{2}=\omega_{0}^{2}+2 \alpha \theta$
or, $\quad \omega_{0}{ }^{2}=-2 \alpha \theta \quad(\because \omega=0$ as it comes to rest $)$
or, $\quad a^{2}=-2 \times-b \times \theta$
or, $\theta=\frac{\mathrm{a}^{2}}{2 \mathrm{~b}}$
62.(b) Velocity of efflux (v) $=\sqrt{2 \mathrm{gh}}=\sqrt{2 \times 10 \times 5}=10 \mathrm{~m} / \mathrm{s}$

Then, volume per second $(V)=A v=1 \times 10^{-4} \times 10$

$$
=10^{-3} \mathrm{~m}^{3} / \mathrm{s}
$$

63.(d) $y=3 \sin \omega t+4 \cos \omega t$

$$
\begin{array}{ll}
\mathrm{y}_{1} & \mathrm{y}_{2}
\end{array}
$$

Phase diff between y_{1} and $y_{2}(\phi)=\frac{\pi}{2}$
$\therefore \mathrm{A}=\sqrt{\mathrm{A}_{1}{ }^{2}+\mathrm{A}_{2}{ }^{2}+2 \mathrm{~A}_{1} \mathrm{~A}_{2} \cos \phi}$

$$
\begin{aligned}
\mathrm{A} & =\sqrt{\mathrm{A}_{1}{ }^{2}+\mathrm{A}_{2}{ }^{2}+2 \mathrm{~A}_{1} \mathrm{~A}_{2} \cos \phi} \\
& =\sqrt{3^{2}+4^{2}+2 \times 3 \times 4 \times \cos \frac{\pi}{2}}=5 \mathrm{~cm}
\end{aligned}
$$

SAGARMATHA ENGINEERING COLLEGE Sanepa, Lalitpur Tel: 5427274, 5911274, 5911275

 2079-4-14 (Set - B) Hints \& Solution64.(b)
$\mathrm{P}=\sigma \mathrm{AT}^{4}=\sigma \times 4 \pi \mathrm{R}^{2} \times \mathrm{T}^{4}=450 \mathrm{~W}$
When radius is halved and temperature is doubled

$$
\mathrm{P}^{\prime}=\sigma \times 4 \pi\left(\frac{\mathrm{R}}{2}\right)^{2} \times(2 \mathrm{~T})^{4}
$$

or, $\mathrm{P}^{\prime}=4 \sigma \times 4 \pi \mathrm{R}^{2} \times \mathrm{T}^{4}$
or, $\mathrm{P}^{\prime}=4 \mathrm{P}$
or, $\mathrm{P}^{\prime}=4 \times 450=1800 \mathrm{~W}$
65.(a)
$\mathrm{v}_{\text {sound }}=\sqrt{\frac{\gamma \mathrm{RT}}{\mathrm{M}}}$
$\mathrm{c}_{\mathrm{rms}}=\sqrt{\frac{3 \mathrm{RT}}{\mathrm{M}}}$
$\therefore \quad \frac{\mathrm{c}_{\text {rms }}}{\mathrm{v}_{\text {sound }}}=\sqrt{\frac{3}{\gamma}}$
66.(d)
or, $\quad c_{\mathrm{rms}}=440 \mathrm{~m} / \mathrm{s}$
$\mathrm{u}_{0}=\mathrm{u}_{\mathrm{s}}=\mathrm{v}^{\prime}$ (say)
Then, $f^{\prime}=\frac{v+u_{0}}{v-u_{s}} \times f$
or, $\quad 2 \mathrm{f}=\frac{\mathrm{v}+\mathrm{v}^{\prime}}{\mathrm{v}-\mathrm{v}^{\prime}} \times \mathrm{f} \quad\left(\because \mathrm{f}^{\prime}=2 \mathrm{f}\right)$
or, $2 \mathrm{v}-2 \mathrm{v}^{\prime}=\mathrm{v}+\mathrm{v}^{\prime}$
or, $\quad v=3 v^{\prime}$
or, $\quad \mathrm{v}^{\prime}=\frac{\mathrm{v}}{3}$
67.(b) $\quad \beta=\frac{\lambda \mathrm{D}}{\mathrm{d}}$ in air

Then, $\beta^{\prime}=\frac{\lambda^{\prime} \mathrm{D}}{\frac{\mathrm{d}}{2}} ; \lambda^{\prime}=$ wavelength in water
or, $\quad \beta^{\prime}=\frac{\lambda \mathrm{D}}{\mu \times \frac{\mathrm{d}}{2}} \quad\left(\because \lambda^{\prime}=\frac{\lambda}{\mu}\right)$
or, $\beta^{\prime}=\frac{\lambda D}{\frac{4}{3} \times \frac{\mathrm{d}}{2}}$
or, $\quad \beta^{\prime}=\frac{3}{2} \lambda \frac{\mathrm{D}}{\mathrm{d}}$
or, $\quad \beta^{\prime}=\frac{3}{2} \beta$
68.(a) $\mathrm{E}=\mathrm{B}_{\mathrm{H}} \nu l \sin 90^{\circ}=1 \times 10^{-5} \times 10 \times 30 \times 10^{-2}$
$=3 \times 10^{-5} \mathrm{~V}$
69.(c) $\mathrm{X}=\frac{1}{\omega \mathrm{c}}$

When capacitance and frequency is doubled, then
$\mathrm{X}^{\prime}=\frac{1}{(2 \omega)(2 \mathrm{c})}$
or, $\quad X^{\prime}=\frac{1}{4 \omega c}$
or, $\quad X^{\prime}=\frac{X}{4}$
70.(a) For zero tension,
$\mathrm{BI} l=\mathrm{mg}$
or, $\mathrm{I}=\frac{\mathrm{mg}}{\mathrm{B} l}$
or, $\quad \mathrm{I}=\frac{100 \times 10^{-3} \times 10}{0.2 \times 50 \times 10^{-2}}=10 \mathrm{~A}$
71.(a) $\lambda=\frac{\mathrm{h}}{\sqrt{2 \mathrm{mqV}}}$
for some V,
$\lambda \propto \frac{1}{\sqrt{\mathrm{mq}}}$
$\therefore \frac{\lambda_{\alpha}}{\lambda_{\mathrm{p}}}=\sqrt{\frac{\mathrm{m}_{\mathrm{p}} \mathrm{q}_{\mathrm{p}}}{\mathrm{m}_{\alpha} \mathrm{q}_{\alpha}}}=\sqrt{\frac{\mathrm{m}_{\mathrm{p}} \times \mathrm{e}}{4 \mathrm{~m}_{\mathrm{p}} \times 2 \mathrm{e}}}=\frac{1}{\sqrt{8}}$
72.(a) $\quad \mathrm{T}_{1 / 2}=5700 \mathrm{yrs}$
$\frac{N}{N_{0}}=\left(\frac{1}{2}\right)^{t / T_{1 / 2}}$
or, $\frac{5}{80}=\left(\frac{1}{2}\right)^{t / 5700}$
or, $\left(\frac{1}{2}\right)^{4}=\left(\frac{1}{2}\right)^{t / 5700}$
or, $\mathrm{t}=4 \times 5700=22800 \mathrm{yrs}$
73.(a) 10% of $\mathrm{P}=\frac{\mathrm{E}}{\mathrm{t}}$
or, $\frac{10}{100} \times \mathrm{P}=\frac{\mathrm{n}}{\mathrm{t}} \frac{\mathrm{hc}}{\lambda}$
or, $\frac{\mathrm{n}}{\mathrm{t}}=\frac{\mathrm{P}}{10} \times \frac{\lambda}{\mathrm{hc}}$
or, $\frac{\mathrm{n}}{\mathrm{t}}=\frac{100 \times 4000 \times 10^{-10}}{10 \times 6.62 \times 10^{-34} \times 3 \times 10^{8}}$
or, $\frac{\mathrm{n}}{\mathrm{t}}=2 \times 10^{19}$ photons $/ \mathrm{sec}$
74.(a) $\frac{1}{4 \pi \varepsilon_{0}} \frac{q}{r}-\frac{1}{4 \pi \varepsilon_{0}} \frac{q}{3 r}=V$
$\frac{2 q}{3 r \times 4 \pi \varepsilon_{0}}=V$
or, $\frac{\mathrm{q}}{4 \pi \varepsilon_{0} \mathrm{r}}=\frac{3 \mathrm{~V}}{2}$
Then electric field intensity at point P is

$$
\mathrm{E}=\frac{1}{4 \pi \varepsilon_{0}} \frac{\mathrm{q}}{(3 \mathrm{r})^{2}}
$$

or, $E=\frac{1 \quad q}{4 \pi \varepsilon_{0} r 9 r}$
or, $E=\frac{3 V}{2} \times \frac{1}{9 r} \quad$ or, $E=\frac{V}{6 r}$
75.(b) $\quad \mathrm{AsE}^{\circ}\left(\mathrm{Fe}^{+3} / \mathrm{Fe}^{+2}\right)$ is more
$\therefore \quad \mathrm{Fe}^{+3}$ will get reduced and Fe will get oxidized.
Thus, Fe^{+3} will decrease.
76.(a)
$\frac{\mathrm{W} \times 1000}{\mathrm{E}}+\mathrm{V}_{\mathrm{b}} \mathrm{N}_{\mathrm{b}}=\mathrm{V}_{\mathrm{a}} \mathrm{N}_{\mathrm{a}}$
$\frac{27 \times 1000}{12}+45 \times 0.5=75 \times \mathrm{N}_{\mathrm{a}}$
$\mathrm{NH}_{2} \mathrm{SO}_{4}=0.6$
$\mathrm{M}=\frac{0.6}{2}=0.3 \mathrm{M}$
77.(b) $\quad \begin{aligned} & \mathrm{S}=\sqrt[5]{\frac{\mathrm{K}_{\mathrm{sp}}}{108}}=1.96 \times 10^{-7} \mathrm{M} \\ & {\left[\mathrm{S}^{--}\right]=3 \times 1.96 \times 10^{-7}}\end{aligned}$
$\begin{aligned} {\left[\mathrm{S}^{--}\right]=} & 3 \times 1.96 \times 10^{-7} \\ & =5.91 \times 10^{-7} \mathrm{M}\end{aligned}$
78.(b) $\quad 143.5 \mathrm{gm}$ of AgCl contains 108 gm Ag
2.87 g AgCl contains $\frac{108 \times 2.87}{143.5}$

$$
=2.16 \mathrm{gm} \mathrm{Ag}
$$

SAGARMATHA ENGINEERING COLLEGE Sanepa, Lalitpur Tel: 5427274, 5911274, 5911275

 2079-4-14 (Set - B) Hints \& Solution
79.(b)

$\mathrm{R}-\mathrm{CH}=\mathrm{CH}_{2}+\mathrm{B}_{2} \mathrm{H}_{6} \xrightarrow{\mathrm{HO}-\mathrm{OH}} \mathrm{R}-\mathrm{CH}_{2}-\mathrm{CH}_{2}-\mathrm{OH}+\mathrm{B}(\mathrm{OH})_{3}$
80.(c) Sublimation does not occur in blast furnace during smelting of iron.
81.(d)
82.(c) Here, $4 \cos ^{2} \theta=1$

$$
2 \cos ^{2} \theta=\frac{1}{2}
$$

$\Rightarrow \quad 2 \cos ^{2} \theta-1=\frac{1}{2}-1$
$\Rightarrow \quad \cos 2 \theta=-\frac{1}{2}=\cos \left(\frac{2 \pi}{3}\right)$
$\therefore \quad 2 \theta=2 \mathrm{n} \pi \pm \frac{2 \pi}{3}$
$\Rightarrow \quad \theta=\mathrm{n} \pi \pm \frac{\pi}{3}$
83.(c) $\cos ^{-1} x-\sin ^{-1} x \geq 0$
$\Rightarrow \quad \cos ^{-1} x \geq \sin ^{-1} x$
$\Rightarrow \quad \frac{\pi}{2} \geq 2 \sin ^{-1} x$
$\Rightarrow \quad \frac{\pi}{4} \geq \sin ^{-1} \mathrm{x}$
But $-\frac{\pi}{2} \leq \sin ^{-1} \mathrm{x}$
$\therefore \quad-\frac{\pi}{2} \leq \sin ^{-1} x \leq \frac{\pi}{4}$

$$
-1 \leq x \leq \frac{1}{\sqrt{2}} \Rightarrow x \in\left[-1, \frac{1}{\sqrt{2}}\right]
$$

84.(d) $\sum_{n=2}^{\infty} \frac{1}{n!}=\frac{1}{2!}+\frac{1}{3!}+\frac{1}{4!}+\ldots .$.

$$
=\left(1+\frac{1}{1!}+\frac{1}{2!}+\frac{1}{3!}+\ldots . .\right)-2
$$

$$
\begin{aligned}
& =\sum_{n=2} \frac{1}{n!}-2 \\
& =e-2
\end{aligned}
$$

85.(b) $\int_{0}^{1} \frac{\mathrm{dx}}{\sqrt{1+\mathrm{x}}-\sqrt{\mathrm{x}}}=\int_{0}^{1}(\sqrt{1+\mathrm{x}}+\sqrt{\mathrm{x}}) \mathrm{dx}$

$$
\begin{aligned}
& =\left[\frac{(1+x)^{3 / 2}}{\frac{3}{2}}+\frac{x^{3 / 2}}{\frac{3}{2}}\right]_{0}^{1} \\
& =\frac{2}{3}[2 \sqrt{2}+1-1]=\frac{4 \sqrt{2}}{3}
\end{aligned}
$$

86.(c) Since -2 and 3 are roots of $f(x)$,

So, $\mathrm{f}(-2)=(-2)^{2}+\mathrm{p}(-2)+\mathrm{q}=0 \Rightarrow \mathrm{q}-2 \mathrm{p}=-4$
$\mathrm{f}(3)=3^{2}+\mathrm{p}(3)+\mathrm{q}=0 \Rightarrow \mathrm{q}+3 \mathrm{p}=-9$

$$
\begin{array}{ll}
\therefore & 5 p=-5 \\
& \\
\therefore & p=-1, q=-6 \\
\therefore & p=-7
\end{array}
$$

87.(d) $\quad(A \cap B)^{c}=A^{c} \cup B^{c}\left[D e^{\prime}\right.$ morgan law]
88.(b) Orthocenter of the right angled triangle is the point of intersection of perpendicular side i.e. The vertex which is right angle.
89.(a) The number of circular permulation of different thing taking r at a time
$=\frac{\mathrm{p}(\mathrm{n}, \mathrm{r})}{\mathrm{r}}$ (When clockwise and anticlock wise order are treated as different)

$$
=\frac{\mathrm{p}(7,4)}{4}=210
$$

90.(d) $\frac{d}{d x} \sin x^{2}=\frac{d}{d x^{2}} \sin x^{2} \cdot \frac{\mathrm{dx}^{2}}{d x}=2 x \cos x^{2}$
91.(d) $\tan \theta=\frac{\mathrm{y}}{\mathrm{x}}=\frac{-1}{1}=-1$
$\therefore \quad \theta=-\tan ^{-1}(1)=-\frac{\pi}{4}$
92.(b) $|x+3|<4$
or, $\quad-4<x+3<4$
or, $-7<x<1$
The roots of $\mathrm{x}^{2}+\mathrm{x}+1=0$ are ω and ω^{2}
$\therefore \quad \alpha^{2}+\beta^{2}=\omega^{2}+\left(\omega^{2}\right)^{2}=\omega^{2}+\omega^{4}$
$=\omega^{2}+\omega=-1$
Gradient = slope
$\therefore \quad$ Slope of x-axis is 0
$\cos ^{-1}(-\mathrm{x})=\pi-\cos ^{-1}(\mathrm{x})$
$\therefore \quad \cos ^{-1}\left(-\frac{\sqrt{2}}{2}\right)=\pi-\cos ^{-1}\left(\frac{\sqrt{2}}{2}\right)$
$=\pi-\cos ^{-1}\left(\frac{1}{\sqrt{2}}\right)$
$=\pi-\frac{\pi}{4}$
$=\frac{3 \pi}{4}$
$A=\left[\begin{array}{lll}2 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 2\end{array}\right]=2\left[\begin{array}{lll}1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1\end{array}\right]=2 I$
$\therefore \quad \mathrm{A}^{5}=(2 \mathrm{I})^{5}$
$\mathrm{A}^{5}=32 \mathrm{I}$
$=16.2 \mathrm{I}$
$\mathrm{A}^{5}=16 \mathrm{~A}$

$$
\begin{equation*}
98 .(\mathrm{b}) \tag{b}
\end{equation*}
$$

...The End...

