SAGARMATHA ENGINEERING COLLEGE Sanepa, Lalitpur Tel: 5427274, 5911274, 5911275				
2079-4-14 (Set – B) Hints & Solution				
	Section – I	13.(b)	Iron ring has high magnetic permeability.	
1.(c)	At highest point,	14.(d)		
	$P' = musin\theta = Psin\theta$	15.(a)	$\lambda = \frac{h}{p}$	
			or, $p = \frac{h}{\lambda}$	
2.(d)	mg - R = -ma R		or, $p = \frac{6.62 \times 10^{-34}}{0.01 \times 10^{-10}} = 6.62 \times 10^{-22} \text{ kg m/s}$	
	R = mg + ma $= m(9 + a)$ $= 80(10 + 5)$ $= 1200 N$ $4 (retardation)$ $4 motion$	16.(d)	$r_n = (0.53) \times n^2 \text{ Å}$ or, 2.12 Å = 0.53 n ² Å 2.12	
3.(c)	$V_{min} = \sqrt{lg}$ at top of vertical circle		or, $n = \frac{2.12}{0.53} = 2$	
. ,	or, $\omega_{\min} l = \sqrt{lg}$	17.(a)	Heat produced = $\frac{1}{2}$ CV ²	
	$V_{\rm min} = V_l$		$=\frac{1}{2} \times 4 \times 10^{-6} \times 400^{2} = 0.32 \text{ J}$	
4 (1-)	or, $f_{\min} = \frac{1}{2\pi} \sqrt{\frac{g}{l}}$	18.(d)	$3Fe + \overset{+1\times 8}{4H_2O} \longrightarrow Fe_3O_4 + \overset{\circ}{4H_2}$	
4.(0)	$P = \sqrt{2 \text{IIIK.E.}}$ $\Rightarrow P \propto \sqrt{m}$ for some K F		Fe loose 8 electron & Hydrogen gain 8 e.	
	$P_1 \sqrt{m} 1$	19.(b)	$\ddot{F} = \ddot{O} = \ddot{F}$: 2-bond pair 8 lone pair	
	$\therefore \frac{1}{P_2} = \sqrt{\frac{1}{4m}} = \frac{1}{2}$	20.(a)	Elements Li Na K	
5.(d)	Breaking force(F) = Breaking stress (S) \times Area (A)		SizeLi $<$ Na $<$ K	
	$\therefore F \propto A \propto R^2$	21.(b)	Pauli's exclusion principle states that two electron in	
	Then $\frac{F'}{F} = \left(\frac{2R}{2}\right)^2$		the same orbital should have opposite spin.	
	$\frac{1}{R} = \frac{1}{R}$	22.(c)	CH ₃ COO ⁻ Na ⁺	
	or, $F = 4F$		H^+ OH^-	
6.(D)	$I = MK^2$; $K = radius of gyration$		↓ ↓ CH-COOH	
	$\frac{\Delta I}{I} = \frac{2\Delta K}{K} = 2 \alpha \Delta \theta$		anionic hydrolysis	
7.(b)	When $R.H = 100\%$, the due point = room temperature	23.(a)	Double bond comes first in priority than chloro.	
8.(b)	For point source,	24.(b) 25.(c)	With the same anion, smaller the size of cation, higher	
	$I \propto \frac{1}{r^2}$		is the lattice energy size $Na^+ < K^+ < Rb^+ < Cs^+$	
	or, $A^2 \propto \frac{1}{n^2}$ ($\because I \propto A^2$)	26.(a)	Hence, NaF has maximum lattice energy. $Zn + NaOH \longrightarrow Na_2ZnO_2 + H_2$	
	1	27.(d)		
	or, $A \propto \frac{1}{r}$	28.(c)	lim siny lim siny y	
9.(a)	$l_2 - l_1 = l_3 - l_2$ or $l_2 = 2l_2 - l_1$	29.(a)	$x \to 0^+ \frac{\sqrt{x}}{\sqrt{x}} = x \to 0^+ \frac{\sqrt{x}}{x} \cdot \frac{\sqrt{x}}{\sqrt{x}}$	
	or, $l_3 = 2 \times 65 - 21.5$		$= \left(\lim_{x \to \infty} \frac{\sin x}{x} \right) \left(\lim_{x \to \infty} \frac{x}{x} \right)$	
10 (d)	or, $l_3 = 108.5$ cm The shift of letter due to refraction is		$\left(\mathbf{x} \to 0^+ \ \mathbf{x} \ \right)^+ \left(\mathbf{x} \to 0^+ \sqrt{\mathbf{x}}\right)$	
10.(u)	$s = t \left(1 - \frac{1}{\mu} \right)$; t = real depth, μ = refractive index		$= 1. \lim_{x \to 0^+} (\sqrt{x})$	
	''' is less for red light so least shifted letter is red	20 (d)	$\lim_{x \to 3} \frac{ x-3 }{ x-3 } = 1$	
11.(c)	Deflection reduced to half means, current range	30.(u)	$x \rightarrow 3^{-} x - 3^{-} x \rightarrow 3^{-} (x - 3)^{-1}$	
	increases by 2 times, then		$\lim_{x \to 3^+} \frac{ x-3 }{(x-3)} = \lim_{x \to 3} \frac{(x-3)}{(x-3)} = 1$	
	$S = \frac{G}{n-1}$; $n = \frac{I}{L}$		$\therefore \qquad \lim_{x \to 2^+} \frac{ x-3 }{ x-3 } \neq \lim_{x \to 2^+} \frac{ x-3 }{ x-3 }$	
	or $G = (n-1)S$		$x \rightarrow 3$ $x-3$ $x \rightarrow 3$ $x-3$ So, limit doesnot exist	
	or, $G = (2 - 1) \times 40 = 40 \Omega$	31.(b)	Let f is even	
12.(b)	In thermocouple, the direction of thermo current is		t(-x) = f(x) $f'(-x) \cdot (-1) = f'(x)$	
. /	form metal occurring earlier in series to that occurring		$\Rightarrow f'(-x) = -f'(x)$	
	iater inrough cold junction.	I	\therefore f' is an odd function.	

SAGARMATHA ENGINEERING COLLEGE Sanepa, Lalitpur Tel: 5427274, 5911274, 5911275 2079-4-14 (Set - B) Hints & Solution				
32.(d)	$f(x) = x^2 - 2x$) mints	$\ \vec{b}\ = 2\vec{i} + 3\vec{i} + 4\vec{b} - \sqrt{20}$	
	f'(x) = 2x - 2		$ \mathbf{b} = 21 + 3\mathbf{j} + 4\mathbf{k} = \sqrt{29}$	
	For the increasing $f'(x) > 0$ $\Rightarrow 2x - 2 > 0$		\therefore Projection of a on b	
	or, $x - 1 \ge 0$		$=\frac{a.b}{a.b}=\frac{20}{\sqrt{20}}$	
	or, $x > 1$		b V ²⁹	
33.(b)	$\int a^{(ix)} f'(x) dx = \frac{a}{\log a} + c$	43.(b)	For coincident lines, $h^2 = ab \Rightarrow 4^2 = 2.k$	
	$\therefore \int a^{\sin x} \cdot \cos x dx = \frac{a}{\log a} + c$	44 (a)	$\Rightarrow k = 8$ Here $x^2 + y^2 - 2ax - 2ay + a^2 = 0$	
34 (d)	The area of the ellipse $\frac{x^2}{x^2} + \frac{y^2}{x^2} = 1$ is πab	1 n.(u)	Center: $(-g, -f) = (a, a)$	
34.(u)	$a^2 + b^2 = 1$ is have		Radius = $\sqrt{g^2 + f^2 - c} = \sqrt{a^2 + a^2 - a^2} = a$	
	So, $\frac{x}{9} + \frac{y}{16} = 1$ is $\pi . 3.4 = 12\pi$ sq. unit	45 (a)	Hence, touches both axes	
25.43	$(i-1)^n$ $(i-1)^n$ $((i-1)^2)^n$	43.(a)	x^2 , y^2	
35.(b)	$\left(\frac{1}{i+1}\right) = \left(\frac{1}{i+1} \times \frac{1}{i-1}\right) = \left\{\frac{1}{-2}\right\}$		$\frac{1}{a^2} + \frac{1}{b^2} = 1$	
	$=\left(\frac{i^2-2i+1}{2}\right)^n = i^n$		Then it passes through $(0, 1)$, then $b^2 = 1$	
	$\begin{pmatrix} -2 \end{pmatrix}$		Also, $2a - 2(20) \Rightarrow a - 20$ \therefore Equation of ellipse is $x^2 + 4y^2 = 4$	
	For $n = 2$ = -1 (real number)	46.(a)	Any plane parallel to	
	\therefore n = 2		3x - 4y + 5z = 7 is $3x - 4y + 5z + k = 0Which passes through (3, 4, 5)$	
36.(c)	Since $A^5 = I$		3.3 - 4.4 + 5.5 + k = 0	
	$\Rightarrow A \cdot A = A \cdot I$ $\Rightarrow A^4 = A^{-1}$		k = -18	
37.(b)	Here, a, b, c are in H.P.		$\therefore \text{Required plane} \Rightarrow 3x - 4y + 5z - 18 = 0$	
	Then $b = \frac{2ac}{a+c} \Rightarrow ab + bc = 2ac$	47.(a)	$\frac{1}{ab} + \frac{1}{bc} + \frac{1}{ca} = \frac{a}{abc}$	
	Here, $(2a - b)(2c - b) = 4ac - 2ab - 2bc + b^2$		$=\frac{2s}{4RA}$ $\left[\because R = \frac{abc}{A}\right]$	
	$= 4ac - 2(ab + bc) + b^2$ = $4ac - 22ac + b^2$			
	= 4ac = 2.2ac + b = b^2		$=\frac{1}{2R.\Delta\sqrt{s}}$	
	$\therefore b = \sqrt{(2a-b)(2c-b)}$		$-\frac{1}{\Delta}$	
38(c)	So, $2a - b$, b , $2c - b$ are in G.P. P(n 4) = 20 P(n 2)		$\frac{1}{2}$ Rr $\begin{bmatrix} \cdot & 1 \\ \cdot & 1 \end{bmatrix}$ s	
50.(0)	$\frac{n!}{n!} = 20 \frac{n!}{n!}$	48.(b)	We have, $\sin^{-1}x + \cos^{-1}x = \frac{\pi}{2}$	
	(n-4)! = 20 (n-2)!		$\pi \pi 3\pi$	
	or, $(n-2)! = (n-4)! \cdot 20$ or $(n-2)(n-3)(n-4)! = (n-4)! \cdot 20$		$\therefore \cos^{-1}x = \frac{1}{2} - \frac{1}{5} = \frac{1}{10}$	
	(n-2)(n-3) = 1.20	49.(b)	50.(b) $51.(a)$ $52.(d)$ $53.(c)$ $54.(a)56.(d)$ $57.(b)$ $58.(a)$ $59.(d)$ $60.(a)$	
	$n^2 - 5n + 6 = 20$ $n^2 - 5n - 14 = 0$	55.(0)		
	(n-7)(n+2) = 0	61 (d)	$\omega = a - bt$	
	\therefore n = 7. (n = -2 neglecting)		$d\omega = d\omega$ h (uniform retordation)	
39.(c)	${}^{\circ}C_1 + {}^{\circ}C_3 + {}^{\circ}C_5 + {}^{\circ}C_7$ = sum of coefficient of even terms in the expansion of		dt = -b (uniform retardation)	
	sum of event event event event event in the expansion of $(1 + x)^8$		At t = 0 sec, $\omega = \omega_0 = a$ Then $\omega^2 = \omega_0^2 + 2\alpha\theta$	
	$=2^{8-1}$		or, $\omega_0^2 = -2\alpha\theta$ (:: $\omega = 0$ as it comes to rest)	
	= 2 = 128		or, $a^2 = -2 \times -b \times \theta$	
40.(a)	If the roots of $ax^2 + bx + c = 0$ are in the ratio m : n,		or, $\theta = \frac{a^2}{2b}$	
	then mn b ² = $(m + n)^2$ ac $\Rightarrow 3.4 h^2 = (3 + 4)^2$ ac	62 (b)	Velocity of efflux (v) = $\sqrt{2gh} = \sqrt{2 \times 10 \times 5} = 10 \text{ m/s}$	
	$\Rightarrow 12b^2 = 49 \text{ ac}$	02.(0)	Then, volume per second (V) = $Av = 1 \times 10^{-4} \times 10^{-4}$	
41.(c)	Since, vectors (p, q) and $(5, 1)$ are parallel if $(p, q) =$	(2 (1)	$= 10^{-3} \text{ m}^3/\text{s}$	
	$\lambda(5, 1)$	63.(d)	$y = 3 \sin \omega t + 4 \cos \omega t$	
			Phase diff between y, and y, (4) $-\frac{\pi}{2}$	
42 (b)	$\vec{a} \vec{b} = (\vec{i} + 2\vec{i} + 3\vec{k}) (2\vec{i} + 3\vec{i} + 4\vec{k})$		Thase diff between y_1 and $y_2(\psi) = 2$	
τ <u>2</u> .(0)	= 2 + 6 + 12		$\therefore \mathbf{A} = \sqrt{\mathbf{A}_1^2 + \mathbf{A}_2^2 + 2\mathbf{A}_1\mathbf{A}_2\mathbf{\cos\phi}}$	
	= 20		$=\sqrt{3^2+4^2+2\times3\times4\times\cos^2{\pi}}=5 \text{ cm}$	
		I	v 2	

SAGARMATHA ENGINEERING COLLEGE Sanepa, Lalitpur Tel: 5427274, 5911274, 5911275 2079-4-14 (Set - B) Hints & Solution				
64 (b)	$P = \sigma A T^4 = \sigma \times 4\pi R^2 \times T^4 = 450 W$	 	for some V	
01.(0)	When radius is halved and temperature is doubled		$\lambda \propto \frac{1}{1}$	
	$P' = \sigma \times 4\pi \left(\frac{R}{2}\right)^2 \times (2T)^4$		\sqrt{mq}	
	or, P' = $4\sigma \times 4\pi R^2 \times T^4$		$\therefore \frac{\lambda_{\alpha}}{\lambda_{\mu}} = \sqrt{\frac{m_{p}q_{p}}{m_{q}q}} = \sqrt{\frac{m_{p}\times e}{4m_{p}\times 2e}} = \frac{1}{\sqrt{2}}$	
	or, $P' = 4P$	72.(a)	$T_{1/2} = 5700 \text{ yrs}$	
	or, $P = 4 \times 430 = 1800 \text{ w}$		$\frac{N}{t} - (1)^{t/T_{1/2}}$	
65.(a)	$v_{sound} = \sqrt{\frac{1}{M}}$		$N_0 = \begin{pmatrix} 2 \end{pmatrix}$	
	$c_{\rm rms} = \sqrt{\frac{3RT}{M}}$		or, $\frac{5}{80} = \left(\frac{1}{2}\right)^{\frac{1}{5}}$	
	$\therefore \frac{c_{\text{rms}}}{1} = \sqrt{\frac{3}{2}}$		or, $\left(\frac{1}{2}\right)^4 = \left(\frac{1}{2}\right)^{t/5700}$	
	$V_{\text{sound}} = \sqrt{\frac{\gamma}{3}}$		(2) (2) (2) (2) or $t = 4 \times 5700 = 22800$ yrs	
	or, $c_{\rm rms} = \sqrt{\frac{3}{1.4} \times 300}$		$01, c = 1 \times 5700 = 22000 \text{ yrs}$	
66.(d)	or, $c_{rms} = 440$ m/s $u_0 = u_s = v'$ (say)	73.(a)	10% of P = $\frac{E}{t}$	
	Then, $\mathbf{f} = \frac{\mathbf{v} + \mathbf{u}_0}{\mathbf{v} - \mathbf{u}_0} \times \mathbf{f}$		or, $\frac{10}{100} \times P = \frac{n}{t} \frac{hc}{\lambda}$	
	or, $2\mathbf{f} = \frac{\mathbf{v} + \mathbf{v}'}{\mathbf{v} - \mathbf{v}'} \times \mathbf{f}$ (\because $\mathbf{f}' = 2\mathbf{f}$)		or, $\frac{P}{t} = \frac{P}{10} \times \frac{\lambda}{hc}$	
	or, $2v - 2v' = v + v'$		or $\frac{n}{n} = \frac{100 \times 4000 \times 10^{-10}}{100 \times 10^{-10}}$	
	or, $v = 3v$ or, $v' = \frac{V}{3}$		or, t $10 \times 6.62 \times 10^{-34} \times 3 \times 10^{8}$ or $\frac{n}{2} = 2 \times 10^{19}$ photons/sec	
67 (b)	$\beta = \frac{\lambda D}{\lambda D}$ in air			
07.(0)	d man ^y D	74.(a)	$\overline{4\pi\varepsilon_0}$ \vec{r} $-\overline{4\pi\varepsilon_0}$ $\overline{3r} = V$	
	Then, $\beta' = \frac{\lambda D}{\frac{d}{2}}$; $\lambda' =$ wavelength in water		$\frac{2q}{3r \times 4\pi\varepsilon_0} = V$	
	or $\beta' = \frac{\lambda D}{\lambda}$ $(\cdots \lambda' = \frac{\lambda}{\lambda})$		or, $\frac{q}{4\pi\epsilon_0 r} = \frac{3V}{2}$	
	$\mu \times \frac{d}{2}$ ($\mu \mu$)		Then electric field intensity at point P is	
	$ar = \frac{R}{\Delta D}$		$E = \frac{1}{4\pi\epsilon_0} \frac{q}{(3r)^2}$	
	or, $p = \frac{4}{3} \frac{d}{2}$		$r = F = \frac{1}{q}$	
	3 2 3 D		$4\pi\epsilon_0 r 9 r$	
	or, $\beta' = \frac{1}{2}\lambda_{\overline{d}}$		or, $E = \frac{3v}{2} \times \frac{1}{9r}$ or, $E = \frac{v}{6r}$	
	or, $\beta' = \frac{3}{2}\beta$	75.(b)	AsE°(F e^{+3} /F e^{+2}) is more	
68.(a)	$E = B_H v l sin 90^\circ = 1 \times 10^{-5} \times 10 \times 30 \times 10^{-2}$		\therefore Fe ⁺³ will get reduced and Fe will get oxidized. Thus, Fe ⁺³ will decrease.	
	$= 3 \times 10^{-5} \text{ V}$	76.(a)	$Mg + NaOH = H_2SO_4$	
69.(c)	$X = \frac{1}{\omega c}$		$\frac{W \times 1000}{E} + V_b N_b = V_a N_a$	
	When capacitance and frequency is doubled, then		$\frac{27 \times 1000}{1000} + 45 \times 0.5 = 75 \times N_{\odot}$	
	$X' = \frac{1}{(2\omega)(2c)}$		12 NH ₂ SO ₄ = 0.6	
	or. $X' = \frac{1}{1}$		$M = \frac{0.6}{0.6} = 0.3 M$	
	$4\omega c$			
	or, $X' = \frac{1}{4}$	77.(b)	$S = \sqrt[5]{\frac{K_{sp}}{108}} = 1.96 \times 10^{-7} M$	
70.(a)	For zero tension, BIl = mg		$[S^{-1}] = 3 \times 1.96 \times 10^{-7}$	
	or, $I = \frac{mg}{p_I}$	78.(b)	$= 5.91 \times 10^{-7}$ M 143.5 gm of AgCl contains 108 gm Ag	
	$100 \times 10^{-3} \times 10$		2.87g AgCl contains $\frac{108 \times 2.87}{1425}$	
	or, $1 = \frac{1}{0.2 \times 50 \times 10^{-2}} = 10$ A	1	= 2.16 gm Ag	
71.(a)	$\lambda = \frac{h}{\sqrt{2mqV}}$		2.10 6.1178	
3				

SAGARMATHA ENGINEERING COLLEGE Sanepa, Lalitpur Tel: 5427274, 5911274, 5911275 2079-4-14 (Set - B) Hints & Solution				
79.(b) R - CH = 80.(c) 81.(d) 82.(c)	$= CH_2 + B_2H_6 \xrightarrow{HO - OH} R - CH_2 - CH_2 - OH + B(OH)_3$ Sublimation does not occur in blast furnace during smelting of iron. Here, $4\cos^2\theta = 1$ $2\cos^2\theta = \frac{1}{2}$ $\Rightarrow 2\cos^2\theta - 1 = \frac{1}{2} - 1$ $\Rightarrow \cos^2\theta = -\frac{1}{2} = \cos\left(\frac{2\pi}{3}\right)$ $\therefore 2\theta = 2n\pi \pm \frac{2\pi}{3}$ $\Rightarrow \theta = n\pi \pm \frac{\pi}{3}$ $\cos^{-1}x - \sin^{-1}x \ge 0$ $\Rightarrow \cos^{-1}x \ge \sin^{-1}x$ $\Rightarrow \frac{\pi}{4} \ge \sin^{-1}x$ But $-\frac{\pi}{2} \le \sin^{-1}x \le \frac{\pi}{4}$	87.(d) 88.(b) 89.(a) 90.(d) 91.(d) 92.(b) 93.(d) 94.(a)	$\begin{array}{llllllllllllllllllllllllllllllllllll$	
84.(d)	$-1 \le x \le \frac{1}{\sqrt{2}} \implies x \in \left[-1, \frac{1}{\sqrt{2}}\right]$ $\sum_{n=2}^{\infty} \frac{1}{n!} = \frac{1}{2!} + \frac{1}{3!} + \frac{1}{4!} + \dots$ $= \left(1 + \frac{1}{1!} + \frac{1}{2!} + \frac{1}{3!} + \dots\right) - 2$ $= \sum \frac{1}{2} \frac{1}{n!} - 2$	95.(b)	$\cos^{-1}(-x) = \pi - \cos^{-1}(x)$ $\therefore \cos^{-1}\left(-\frac{\sqrt{2}}{2}\right) = \pi - \cos^{-1}\left(\frac{\sqrt{2}}{2}\right)$ $= \pi - \cos^{-1}\left(\frac{1}{\sqrt{2}}\right)$ $= \pi - \frac{\pi}{4}$ $= \frac{3\pi}{4}$	
85.(b)	$\int_{0}^{1} \frac{dx}{\sqrt{1+x} - \sqrt{x}} = \int_{0}^{1} (\sqrt{1+x} + \sqrt{x}) dx$ $= \left[\frac{(1+x)^{3/2}}{\frac{3}{2}} + \frac{x^{3/2}}{\frac{3}{2}}\right]_{0}^{1}$ $\frac{2}{2} i2 \sqrt{2} + 1 - 11 - \frac{4\sqrt{2}}{2}$	96.(d)	$A = \begin{bmatrix} 2 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 2 \end{bmatrix} = 2 \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} = 2I$ $\therefore A^{5} = (2I)^{5}$ $A^{5} = 32I$ $= 16.2I$ $A^{5} = 16 A$	
86.(c)	$= \frac{1}{3} [2\sqrt{2} + 1 - 1] = \frac{1}{3}$ Since -2 and 3 are roots of f(x), So, f(-2) = (-2) ² + p(-2) + q = 0 \Rightarrow q - 2p = -4 f(3) = 3 ² + p(3) + q = 0 \Rightarrow q + 3p = -9	97.(c)	98.(b) 99.(b) 100.(d)	

...The End...