SAGAKMATHA ENGINEERING COLLEGE Sanepa, Lalitpur Tel: 5427274, 5911274, 5911275 2079-4-14 (Set – A) Hints & Solution				
	Section – I $2 \times 40 \times 60$	14(c)	$\frac{I_{\text{max}}}{I_{\text{max}}} = \left(\frac{a_1 + a_2}{a_2 - a_2}\right)^2$	
1.(b)	Average Speed = $\frac{x}{\frac{x}{2 \times 40} + \frac{x}{2 \times 60}} = \frac{2 \times 40 \times 60}{40 + 60}$		$\operatorname{or}_{\min} \left(\begin{array}{c} a_1 + a_2 \\ a_1 - a_2 \end{array} \right)^2$	
2.(c)	= 48 km/hr In circular path speed is constant so KE is same		or, $3a_1 - 3a_2 = a_1 + a_2$ or, $2a_1 = 4a_2$	
3.(c)	Moment of inertia of disc about axis on plane & passing through centre is $I_{CM} = \frac{1}{2} MR^2$		or, $\frac{a_1}{a_2} = 2 : 1$	
	So, $I = I_{CM} + MR^2$	15.(a)	$m = \frac{1}{n} = \frac{v}{u}$	
	$=\frac{1}{4}MR^{2} + MR^{2} = \frac{3}{4}MR^{2}$		or, $v = \frac{u}{n}$	
4.(b)	$g = \frac{GM}{R^2}$		Now, $-\frac{1}{f} = \frac{1}{u} + \frac{1}{v} = \frac{1}{u} - \frac{n}{u}$	
	Again, $g' = \frac{GW}{(\frac{R}{2})^2} = 4\frac{GW}{R^2} = 4g$		or, $-\frac{1}{f} = \frac{1-n}{u} = -\frac{(n-1)}{u}$	
5.(b)	During adiabatic expansion temperature and pressure fall	16.(b)	or, $u = (n - 1)f$ $hf = \phi + KE$ L = L - L = 00, $1 = 20m A$	
6.(d)	$ms_1(32 - 20) = ms_2(40 - 32)$ or, $12s_1 = 8s_2$	17.(a)	$\beta_{c} = \frac{I_{c}}{I_{c}} = \frac{89 \times 10^{-3}}{1 \times 10^{-3}} = 89$	
	or, $\frac{s_1}{s_2} = \frac{2}{3}$	18.(d)	$8 \overset{\circ}{\text{al}} + 3Fe_3O_4 \longrightarrow 4Al_2O_3 + 9Fe$	
7.(a)	$a_0 = A\omega^2$, $v_0 = A\omega$		Al loose 24 & Fe gain 24 electron	
	or, $v_0 = \sqrt{A}$ or, $v_0 = \sqrt{A}$	19 (d)	\ddot{O} : \parallel 4-bond pair $\ddot{O} = N \Rightarrow \ddot{O}$: 9 langesting	
	or, $A = \frac{v_0^2}{a_0}$	20.(d)	$A = K^{+} = D = O + C = O = D = O^{}$	
8.(a)	$f = \frac{v}{\lambda} = \frac{4v}{\lambda'}$		$A = K \qquad B = Ca \qquad C = C1 \qquad D = S$ e 18 18 18 18	
9.(a)	or, $\lambda' = 4\lambda$ $V_1 = V_2$		p 19 20 17 16 \downarrow electrons	
	or, $\frac{Q_1}{4\pi\varepsilon_0 r_1} = \frac{Q_2}{4\pi\varepsilon_0 r_2}$		are less effectively attracted by the nucleus so	
10 (-)	or, $\frac{Q_1}{Q_2} = r_1 : r_2$	21.(d)	large size. Thus low ionization energy. Electron in same energy orbital filled singly to	
10.(a)	$Q = Cv_1$ on inserting dielectric C increases so Q also increases P' = (1.25)/2	22.(c)	have maximum spin multiplicity. a, b and d are salt of strong acid & strong base	
11.(c)	$\frac{R}{R} = \left(\frac{1.23i}{l}\right)^2 = 1.5625$	23.(d)	does not hydrolyze.	
	% increase = $\left(\frac{R}{R} - 1\right) \times 100\%$	24.(d)	neopentane $CH_3 = CH_3$ has only	
	$= (1.3023 - 1) \times 100\%$		CH3	
12.(c) 13.(b)	act as ideal voltmeter M = ml	25 (a)	monochloro derivative.	
	$f_{or \ L \ shape}$ Fach part $M' = \frac{M}{M}$	23.(a)	and thus KI has more ionic nature & more	
	$M = 2 \sqrt{\left(\frac{M}{2}\right)^2 + \left(\frac{M}{2}\right)^2} = \frac{M}{2} \sqrt{2} = \frac{M}{2}$	26.(c)	$Ag_2S + KCN \longrightarrow 2Na[Ag(CN)_2] + Na_2S$	
	$W_{R} = \bigvee (2) + (2) - 2 = \sqrt{2}$	27.(d)		

SAGARMATHA ENGINEERING COLLEGE Sanepa, Lalitpur Tel: 5427274, 5911274, 5911275 2079-4-14 (Set – A) Hints & Solution			
28.(b) 29.(b) 30.(c)	$A - B = \{x : x \in A \text{ and } x \notin B\} = A \cap B^{c}$ $A \wedge B = (A \cup B) - (A \cap B) = \{1, 3, 6\}$	42.(c)	$= -1.i^{68}.w^{69}.(i)$ = -1.(\omega^3)^{23}.i = -i The multiplicative inverse of 7 + 24i is
31.(b)	e^x is defined for all x. ∴ Its domain = $(-\infty, \infty)$	(1)	$\frac{1}{7+24i} = \frac{1}{7+24i} \times \frac{7-24i}{7-24i} = \frac{7-24i}{625}$ $\lim_{x \to \infty} (4x)^{3x} (\lim_{x \to \infty} (4x)^{x})^{3}$
32.(b)	$f(-1) = \frac{1}{ -1 } = \frac{1}{1} = -2$	43.(d)	$x \to \infty \begin{pmatrix} 1 + \frac{1}{x} \end{pmatrix} = \begin{cases} x \to \infty \begin{pmatrix} 1 + \frac{1}{x} \end{pmatrix} \end{cases}$
55.(u)	$\Rightarrow \mathbf{x} > \mathbf{x}$ $\Rightarrow \mathbf{x} > \mathbf{x}$ $\Rightarrow \mathbf{x} < \mathbf{x} $ This is true if $\mathbf{x} < 0$ $\Rightarrow \mathbf{D} = (-\infty, 0)$	44.(b)	$\lim_{n \to \infty} \left[\left(\frac{1}{2} - \frac{1}{3} \right) + \left(\frac{1}{3} - \frac{1}{4} \right) + \dots + \left(\frac{1}{n} - \frac{1}{n+1} \right) \right]$
34.(c)	There are 9 parallel Horizontal lines and 9 parallel vertical lines. To form rectangle we take two lines from each set. So total no of		$= \lim_{n \to \infty} \left(\frac{1}{2} - \frac{1}{n+1} \right) = \frac{1}{2} - \frac{1}{\infty} = \frac{1}{2}$
35.(c)	rectangles ${}^{9}c_{2} \times {}^{9}c_{2} = 1296$. Total number of arrangement of letters of	45.(a)	$f'(x) = \frac{1}{2+x} \qquad \qquad$
	'BANANA' with out any restriction $=\frac{6!}{2! 3!} = 60$. Total number of arrangement in which two N's	46.(c)	$\frac{d}{dx}(x^6 + 6^x) = 6x^5 + 6^x \log 6$
	come together $=\frac{5!}{3!}=20.$	47.(a)	$\frac{\mathrm{d}}{\mathrm{d}x} \mathbf{x} = \frac{ \mathbf{x} }{\mathrm{x}}$
	Req. no. of arrangements = $60 - 20 = 40$.		Integrating, $\int \frac{ \mathbf{x} }{d\mathbf{x}} d\mathbf{x} = \mathbf{x} + c$
36.(d)	$\sum_{r=0}^{\infty} C(10, r) 2^{10-r} 3^r = (2+3)^{10} = 5^{10}$	49 (-)	$\int_X dx x = 0$
37.(b) 38.(b)	Focal radius = focal distance. $(1-2x+3x^2) e^{-x}$	48.(a)	$\int a^{3x} dx = \int a^{3x} a^{3x} dx = a^{3} \int a^{3x} dx$ $= a^{3} \cdot \frac{a^{3x}}{3\log a} + c = \frac{a^{3x+3}}{3\log a} + c$
	$= (1 - 2x + 3x^{2}) \left(1 - \frac{x}{1!} + \frac{x}{2!} - \frac{x}{3!} + \frac{x}{4!} - \frac{x}{5!} \dots \right)$: Coefficient $x^{5} = -\frac{1}{2} - \frac{2}{3}$	49.(c) 55.(b)	50.(a) 51.(b) 52.(d) 53.(d) 54.(a) 56.(d) 57.(b) 58.(c) 59.(a) 60.(d)
	$= -\frac{71}{120}$	61.(b)	$h = \frac{1}{2} (g + a)t^2$
39.(c)	If $A = \begin{bmatrix} a & 0 & 0 \\ 0 & b & 0 \\ 0 & 0 & c \end{bmatrix}$ and $abc \neq 0$	62.(a)	or, $t = \sqrt{\frac{2\Pi}{g+a}} = \sqrt{\frac{2\times 3}{10+1.5}} = 0.72s$ $\Delta PE = w_f + KE$ or, $w_f = mgr - \frac{1}{2}my^2$
	Then $A^{-1} = \begin{bmatrix} \frac{1}{a} & 1 & 0\\ 0 & b & 1\\ 0 & 0 & c \end{bmatrix}$	63 (b)	$w_f = 2 \times 10 \times 1 - \frac{1}{2} \times 2 \times 4^2 = 4J$ (PE + KE) at surface = (PE + KE) at height
40.(c)	Here, $x + 2y + 2z = 1$ and $2x + 4y + 4z = 9$ are parallel So. No solution	05.(0)	$-\frac{GMm}{R} + \frac{1}{2}m\left(\frac{v_e}{2}\right)^2 = -\frac{GMm}{R+h} + 0$
41.(c)	Since $\omega = \frac{-1 + i\sqrt{3}}{2} \Rightarrow -i\omega = \frac{i + \sqrt{3}}{2} = z$		or, $\frac{1}{2}$ m × $\frac{1}{4}$ ×2gR = GMm $\left[\frac{1}{R} - \frac{1}{R+h}\right]$ mgR $\sim R^{R} + h - R^{T}$
	$\therefore -i\omega = z \Longrightarrow z^{69} = (-i\omega)^{69}$		or, $\frac{mgx}{4} = gR^2m\left[\frac{R+H-R}{R(R+h)}\right]$
	$= (-1)^{69} . (i\omega)^{68} . (i\omega)$		or, $h = \frac{R}{3}$

SAGARMATHA ENGINEERING COLLEGE Sanepa, Lalitpur Tel: 5427274, 5911274, 5911275 2079-4-14 (Set – A) Hints & Solution			
64.(c)	$\frac{1^{\text{st}} \text{ case}}{I = \frac{V}{R} = \frac{11}{11} = 1A}$		$\frac{\beta_{w}}{\beta_{a}} = \frac{\frac{D\lambda_{w}}{d}}{\frac{D\lambda_{a}}{d}} = \frac{\lambda_{w}}{\lambda_{a}} = \frac{1}{\mu_{w}}$
	$I = \frac{1}{R + r}$ or, 11 + r = 12 or, r = 1Ω	72.(b)	or, $\beta_w = \frac{\beta_a}{\mu_w} = \frac{0.4}{4} \times 3 = 0.3 \text{ mm}$ Near pt = 10 cm
	$\frac{2^{nd} case}{V = E - Ir}$		u = 30 cm, v = -10 cm f = $\frac{uv}{u + v} = \frac{30(-10)}{30 - 10} = -\frac{300}{20} = -15 cm$
	$= 12 - \frac{12}{R + r} \cdot r$ = $12 - \frac{12}{5 + 1} \times 1 = 10 \text{ V}$	73.(c)	$KE = \frac{hc}{\lambda} = -\phi$ $= \frac{6.62 \times 10^{-34} \times 3 \times 10^8}{321 \times 10^{-9}} - 1.75 \times 1.6 \times 10^{-19}$
65.(b)	$T_2 V_2^{\gamma - 1} = T_1 V_1^{\gamma - 1}$ or, $T_2 = T_1 \left(\frac{V}{\frac{V}{8}}\right)^{5/3 - 1}$		$= 3.2 \times 10^{-19} \text{ J}$ KE = eV _s KE = 3.2 × 10 ⁻¹⁹ 2W
	or, $T_2 = 290 (8)^{2/3}$ = 1160 K = 887°C	74.(b)	or, $V_s = \frac{1}{e} = \frac{1}{1.6 \times 10^{-19}} = 2V$ $\frac{m}{m_s} = \left(\frac{1}{2}\right)^{\frac{t}{T_{1/2}}}$
66.(b)	$f_t:$ $f_s = f_t + 5$ $l = 20 \text{ cm}$ $f_s' = f_t - 5$ $l' = 21 \text{ cm}$		or, $m = m_0 \left(\frac{1}{2}\right)^{\frac{t}{T_{1/2}}}$
	$\frac{\frac{l_s}{f_s'} = \frac{l}{l}}{or}, \frac{f_t + 5}{f_t - 5} = \frac{21}{20}$		$= 10.38 \left(\frac{1}{2}\right)^{\frac{19}{3.8}}$ $= 0.32g$
67.(b)	or, 20 $f_t + 100 = 21 f_t - 105$ or, $f_t = 205 Hz$ $C_1V_1 = (C_1 + C_2)V$	75.(b)	$2H_2O_2 \rightarrow 2H_2 + O_2$ 2 mole 1 mole
	or, $V = \frac{12 \times 10^{-6} \times 100}{12 \times 10^{-6} + 3 \times 10^{-6}}$ $= \frac{12 \times 100}{15} = 80 V$	7(4)	5 mole $\overline{2} \times 5$ = 2.5 mole
68.(c)	Lose in time in a day = $\frac{1}{2} \alpha \Delta \theta \times 1$ day	76.(b) 77.(c)	NHCI (mix) = $\frac{100}{100}$ = 0.01 N S _{SO4} = $\frac{K_{sp}}{S_{Ba^{++}}}$
	$= \frac{1}{2} \times 10^{-5} \times 2 \times 86400 \text{ s}$ = 0.864 s		$=\frac{1.5 \times 10^{-9}}{0.1}$ $= 1.5 \times 10^{-8}$
69.(b)	$\frac{P_2}{P_1} = \left(\frac{V_1}{V_1}\right)^2 = \left(\frac{200}{220}\right)^2 = 0.83$	78.(d)	moles of I $= \frac{254}{127} = 2$ moles of $\Omega = \frac{80}{127} = 5$
	$7_{0} \text{ decrease} = \left(1 - \frac{P_{1}}{P_{1}}\right) \times 100\%$ = $(1 - 0.83) \times 100\%$ = 17%	79.(d)	(I_2O_5)
70.(b)	$E = B_{v} Iv$ = B _H lv tanδ = 1.6 × 10 ⁻⁵ × 40 × $\frac{1000 \times 1000}{3600}$ × tan 71.6°		$H - C = C - H \xrightarrow{H_2O} H_2C = CH$
71.(a)	= 0.53 V $\beta_a = 0.4 \text{ mm}$	80.(c) 81.(d)	CH ₃ CHO acetaldehyde

SAGARMATHA ENGINEERING COLLEGE Sanepa, Lalitpur Tel: 5427274, 5911274, 5911275 2079-4-14 (Set – A) Hints & Solution				
82.(a)	$f(4) = \int_{0}^{x} x^{3} dx = \frac{4^{4}}{4} = 4^{3} = 64$		$\Rightarrow 3\sin^{-1}x = \frac{\pi}{2}$	
83.(c)	$-1 \le \sin x \le 1$ \therefore Min value of $\sin x = -1$		$\Rightarrow \sin^{-1}x = \frac{\pi}{6}$	
84.(b)	Here, given curves $y = \sqrt{x} \Rightarrow y^2 = x$ $x = \sqrt{y} \Rightarrow x^2 = y$ Area common to these curve	91.(c)	$\therefore x = \sin\left(\frac{\pi}{6}\right) = \frac{1}{2}$	
95 (a)	$=\frac{\text{Coeff. of } x \times \text{coeff. of } y}{3} = \frac{1}{3}$	92.(b)	Distance = $\left \frac{\overline{2}^{+1}}{\sqrt{9 + 16 + 144}} \right = \frac{3}{2\sqrt{169}} = \frac{3}{26}$ unit	
85.(a)	Put $y = 0$, $2x + 0 = 6$ x = 3	93.(b)	$\tan 2\theta \tan \theta = 1$ $\Rightarrow \tan 2\theta = \cot \theta$	
86.(d)	Bisector of $\angle XOY$ is $y = x$ The equation of required line is		$\Rightarrow \tan 2\theta = \tan\left(\frac{\pi}{2} - \theta\right)$	
87.(a)	$y = 1.x - 2 [\therefore y = mx + c]$ $\Rightarrow x - y - 2 = 0$ Here, $S_n = 3n^2 + 5n$		$2\theta = n\pi + \left(\frac{\pi}{2} - \theta\right)$	
	But $t_n = S_n - S_{n-1}$ $164 = 3n^2 + 5n - [3(n-1)^2 + 5(n-1)]$ $\Rightarrow 164 = 3n^2 + 5n - [3n^2 - 6n + 3 + 5n - 5]$		$\Rightarrow 3\theta = \left(n + \frac{1}{2}\right)\pi$ $\therefore \theta = \left(n + \frac{1}{2}\right)\frac{\pi}{3}$	
	$\Rightarrow 164 = 6n + 2$ $\Rightarrow n = 27$	94.(c)	Eccentricity = $\sqrt{1 + \frac{a^2}{a^2}} = \sqrt{1+1} = \sqrt{2}$	
88.(a)	Calculate: $r = \frac{15 \times 4 - 39}{4 + 3} = \frac{21}{7} = 3$ Coefficient of $x^{39} = C(15, 3)$	95.(a)	$\mathbf{k}\hat{\mathbf{a}} = \vec{\mathbf{a}} \Rightarrow \mathbf{k} = \vec{\frac{\mathbf{a}}{\mathbf{a}}} = \vec{\frac{\mathbf{a}}{\mathbf{a}}} = \vec{\mathbf{a}} $	
89.(c)	We know, $\cos B = \frac{a^2 + c^2 - b^2}{2ac} = \frac{9 + 25 - 16}{2.3.5} = \frac{3}{5}$	96.(d)	a Projection of \vec{b} on $\vec{a} = \frac{\vec{b} \cdot \vec{a}}{ \vec{a} }$	
	$\therefore \sin B = \sqrt{1 - \left(\frac{3}{5}\right)^2} = \sqrt{\frac{16}{25}} = \frac{4}{5}$		$=\frac{10-3+2}{\sqrt{2^2+1^2+2^2}}$ $=\frac{9}{2}=2$	
90.(b)	$\therefore \sin 2B = 2\sin B \cos B = 2 \cdot \frac{\pi}{5} \cdot \frac{\pi}{5} = \frac{\pi}{25}$ $4\sin^{-1}x + \cos^{-1}x = \pi$	97.(a)	$-\sqrt{9}-3$ 98.(c) 99.(d) 100.(c)	
	$\Rightarrow 4\sin^{-1}x + \frac{\pi}{2} - \sin^{-1}x = \pi$			

.

-

...The End...