SAGARMATHA ENGINEERING COLLEGE Sanepa, Lalitpur Tel: 5427274, 5911274, 5911275

 2079-4-14 (Set - A) Hints \& Solution
Section - 1

1.(b) Average Speed $=\frac{\mathrm{x}}{\frac{\mathrm{x}}{2 \times 40}+\frac{\mathrm{x}}{2 \times 60}}=\frac{2 \times 40 \times 60}{40+60}$
$=48 \mathrm{~km} / \mathrm{hr}$
2.(c) In circular path speed is constant so KE is same
3.(c) Moment of inertia of disc about axis on plane \& passing through centre is $\mathrm{I}_{\mathrm{CM}}=\frac{1}{4} \mathrm{MR}^{2}$

$$
\begin{aligned}
& \text { So, } \mathrm{I}=\mathrm{I}_{\mathrm{CM}}+\mathrm{MR}^{2} \\
& =\frac{1}{4} \mathrm{MR}^{2}+\mathrm{MR}^{2}=\frac{5}{4} \mathrm{MR}^{2}
\end{aligned}
$$

4.(b) $\mathrm{g}=\frac{\mathrm{GM}}{\mathrm{R}^{2}}$

Again, $\mathrm{g}^{\prime}=\frac{\mathrm{GM}}{\left(\frac{\mathrm{R}}{2}\right)^{2}}=4 \frac{\mathrm{GM}}{\mathrm{R}^{2}}=4 \mathrm{~g}$
5.(b) During adiabatic expansion temperature and pressure fall.
6.(d) $\quad \mathrm{ms}_{1}(32-20)=\mathrm{ms}_{2}(40-32)$
or, $12 \mathrm{~s}_{1}=8 \mathrm{~s}_{2}$
or, $\frac{\mathrm{s}_{1}}{\mathrm{~s}_{2}}=\frac{2}{3}$
7.(a) $\mathrm{a}_{0}=\mathrm{A} \omega^{2}, \mathrm{v}_{0}=\mathrm{A} \omega$
or $w=\sqrt{\frac{a_{0}}{A}}$ or, $v_{0}=A \sqrt{\frac{a_{0}}{A}}$
or, $\mathrm{v}_{0}=\sqrt{\mathrm{Aa}_{0}}$
or, $A=\frac{v_{0}{ }^{2}}{a_{0}}$
8.(a) $\mathrm{f}=\frac{\mathrm{v}}{\lambda}=\frac{4 \mathrm{v}}{\lambda^{\prime}}$
or, $\lambda^{\prime}=4 \lambda$
9.(a) $\mathrm{V}_{1}=\mathrm{V}_{2}$
or, $\frac{\mathrm{Q}_{1}}{4 \pi \varepsilon_{0} \mathrm{r}_{1}}=\frac{\mathrm{Q}_{2}}{4 \pi \varepsilon_{0} \mathrm{r}_{2}}$
or, $\frac{\mathrm{Q}_{1}}{\mathrm{Q}_{2}}=\mathrm{r}_{1}: \mathrm{r}_{2}$
10.(a) $\mathrm{Q}=\mathrm{CV}_{1}$ on inserting dielectric C increases so Q also increases
11.(c) $\frac{\mathrm{R}^{\prime}}{\mathrm{R}}=\left(\frac{1.25 l}{l}\right)^{2}=1.5625$
$\%$ increase $=\left(\frac{R^{\prime}}{R}-1\right) \times 100 \%$
$=(1.5625-1) \times 100 \%$
$=56.25 \%$
12.(c) act as ideal voltmeter
13.(b) $\mathrm{M}=\mathrm{m} l$
for L shape
Each part $\mathrm{M}^{\prime}=\frac{\mathrm{M}}{2}$
$\mathrm{M}_{\mathrm{R}}=\sqrt{\left(\frac{\mathrm{M}}{2}\right)^{2}+\left(\frac{\mathrm{M}}{2}\right)^{2}}=\frac{\mathrm{M}}{2} \sqrt{2}=\frac{\mathrm{M}}{\sqrt{2}}$

14(c) $\frac{\mathrm{I}_{\text {max }}}{\mathrm{I}_{\text {min }}}=\left(\frac{\mathrm{a}_{1}+\mathrm{a}_{2}}{\mathrm{a}_{1}-\mathrm{a}_{2}}\right)^{2}$
or, $\frac{9}{1}=\left(\frac{a_{1}+a_{2}}{a_{1}-a_{2}}\right)^{2}$
or, $3 a_{1}-3 a_{2}=a_{1}+a_{2}$
or, $2 a_{1}=4 a_{2}$
or, $\frac{a_{1}}{a_{2}}=2: 1$
15.(a) $\mathrm{m}=\frac{1}{\mathrm{n}}=\frac{\mathrm{v}}{\mathrm{u}}$
or, $\mathrm{v}=\frac{\mathrm{u}}{\mathrm{n}}$
Now, $-\frac{1}{\mathrm{f}}=\frac{1}{\mathrm{u}}+\frac{1}{\mathrm{v}}=\frac{1}{\mathrm{u}}-\frac{\mathrm{n}}{\mathrm{u}}$
or, $-\frac{1}{\mathrm{f}}=\frac{1-\mathrm{n}}{\mathrm{u}}=-\frac{(\mathrm{n}-1)}{\mathrm{u}}$
or, $u=(n-1) f$
16.(b) $\mathrm{hf}=\phi+\mathrm{KE}$
17.(a) $\mathrm{I}_{\mathrm{c}}=\mathrm{I}_{\mathrm{e}}-\mathrm{I}_{\mathrm{b}}=90-1=89 \mathrm{~mA}$
$\beta=\frac{\mathrm{I}_{\mathrm{c}}}{\mathrm{I}_{\mathrm{b}}}=\frac{89 \times 10^{-3}}{1 \times 10^{-3}}=89$
18.(d) $\quad \stackrel{\circ}{\mathrm{A} \mathrm{Al}^{\circ}}+3 \mathrm{Fe}_{3} \mathrm{O}_{4} \longrightarrow \underset{+24}{4 \mathrm{Al}_{2} \mathrm{O}_{3}}+9 \mathrm{Fe}$

Al loose $24 \& \mathrm{Fe}$ gain 24 electron
20.(d)

$\mathrm{A}=\mathrm{K}^{+}$	$\mathrm{B}=\mathrm{Ca}^{++}$	$\mathrm{C}=\mathrm{Cl}^{-}$	$\mathrm{D}=\mathrm{S}^{--}$	
e	18	18	18	18
p	19	20	17	16
				\downarrow electrons

are less effectively attracted by the nucleus so large size. Thus low ionization energy.
21.(d) Electron in same energy orbital filled singly to have maximum spin multiplicity.
22.(c) a, b and d are salt of strong acid \& strong base does not hydrolyze.
23.(d)
24.(d)

one degree carbon and hence gives only monochloro derivative.
25.(a) Larger cation develops less polarization in anion and thus KI has more ionic nature \& more soluble.
26.(c) $\quad \mathrm{Ag}_{2} \mathrm{~S}+\mathrm{KCN} \longrightarrow 2 \mathrm{Na}\left[\mathrm{Ag}(\mathrm{CN})_{2}\right]+\mathrm{Na}_{2} \mathrm{~S}$

SAGARMATHA ENGINEERING COLLEGE Sanepa, Lalitpur Tel: 5427274, 5911274, 5911275

 2079-4-14 (Set - A) Hints \& Solution28.(b)
29.(b) $\mathrm{A}-\mathrm{B}=\{\mathrm{x}: \mathrm{x} \in \mathrm{A}$ and $\mathrm{x} \notin \mathrm{B}\}=\mathrm{A} \cap \mathrm{B}^{\mathrm{c}}$
30.(c) $\mathrm{A} \triangle \mathrm{B}=(\mathrm{A} \cup \mathrm{B})-(\mathrm{A} \cap \mathrm{B})=\{1,3,6\}$
31.(b) e^{x} is defined for all x.
\therefore Its domain $=(-\infty, \infty)$
32.(b) $\mathrm{f}(-1)=\frac{-1-|-1|}{|-1|}=\frac{-1-1}{1}=-2$
33.(d) For domain, $|x|-x>0$
$\Rightarrow|x|>x$
$\Rightarrow \mathrm{x}<|\mathrm{x}|$
This is true if $\mathrm{x}<0$
$\therefore \quad \mathrm{D}_{\mathrm{f}}=(-\infty, 0)$
34.(c) There are 9 parallel Horizontal lines and 9 parallel vertical lines. To form rectangle we take two lines from each set. So, total no. of rectangles ${ }^{9} \mathrm{c}_{2} \times{ }^{9} \mathrm{c}_{2}=1296$.
35.(c) Total number of arrangement of letters of 'BANANA' with out any restriction $=\frac{6!}{2!3!}=60$.
Total number of arrangment in which two N's come together $=\frac{5!}{3!}=20$.
Req. no. of arrangments $=60-20=40$.
36.(d) $\sum_{\mathrm{r}=0}^{10} \mathrm{C}(10, \mathrm{r}) 2^{10-\mathrm{r}} 3^{\mathrm{r}}=(2+3)^{10}=5^{10}$
37.(b) Focal radius $=$ focal distance.
38.(b) $\left(1-2 x+3 x^{2}\right) e^{-x}$
$=\left(1-2 x+3 x^{2}\right)\left(1-\frac{x}{1!}+\frac{x^{2}}{2!}-\frac{x^{3}}{3!}+\frac{x^{4}}{4!}-\frac{x^{5}}{5!} \cdots ..\right)$
$\therefore \quad$ Coefficient $\mathrm{x}^{5}=-\frac{1}{5!}-\frac{2}{4!}-\frac{3}{3!}$

$$
=-\frac{71}{120}
$$

39.(c) If $\mathrm{A}=\left[\begin{array}{lll}\mathrm{a} & 0 & 0 \\ 0 & \mathrm{~b} & 0 \\ 0 & 0 & \mathrm{c}\end{array}\right]$ and $\mathrm{abc} \neq 0$

Then $\mathrm{A}^{-1}=\left[\begin{array}{ccc}\frac{1}{\mathrm{a}} & 0 & 0 \\ 0 & \frac{1}{\mathrm{~b}} & 0 \\ 0 & 0 & \frac{1}{\mathrm{c}}\end{array}\right]$
40.(c) Here, $x+2 y+2 z=1$
and $2 x+4 y+4 z=9$ are parallel
So, No solution
41.(c) Since $\omega=\frac{-1+i \sqrt{3}}{2} \Rightarrow-i \omega=\frac{i+\sqrt{3}}{2}=z$

$$
\begin{aligned}
\therefore \quad-i \omega=z \Rightarrow z^{69}= & (-i \omega)^{69} \\
& =(-i)^{69} \cdot \omega^{68} \cdot\left(i \omega^{69}\right) \\
& =(-1)^{69} \cdot(i \omega)^{68} \cdot(i \omega)
\end{aligned}
$$

$$
\begin{aligned}
& =-1 . i^{68} \cdot w^{69} \cdot(\mathrm{i}) \\
& =-1 .\left(\omega^{3}\right)^{32} \cdot \mathrm{i}=-\mathrm{i}
\end{aligned}
$$

42.(c) The multiplicative inverse of $7+24 \mathrm{i}$ is
$\frac{1}{7+24 \mathrm{i}}=\frac{1}{7+24 \mathrm{i}} \times \frac{7-24 \mathrm{i}}{7-24 \mathrm{i}}=\frac{7-24 \mathrm{i}}{625}$
43.(d) $\lim _{x \rightarrow \infty}\left(1+\frac{4}{x}\right)^{3 x}=\left\{\lim _{x \rightarrow \infty}\left(1+\frac{4}{x}\right)^{x}\right\}^{3}$

$$
=\left(\mathrm{e}^{4}\right)^{3}=\mathrm{e}^{12}
$$

44.(b)
$\lim _{n \rightarrow \infty}$
$\left[\left(\frac{1}{2}-\frac{1}{3}\right)+\left(\frac{1}{3}-\frac{1}{4}\right)+\ldots+\left(\frac{1}{\mathrm{n}}-\frac{1}{\mathrm{n}+1}\right)\right]$
$=\lim _{\mathrm{n} \rightarrow \infty}\left(\frac{1}{2}-\frac{1}{\mathrm{n}+1}\right)=\frac{1}{2}-\frac{1}{\infty}=\frac{1}{2}$
45.(a) $\quad \mathrm{f}^{\prime}(\mathrm{x})=\frac{|2+\mathrm{x}|}{2+\mathrm{x}} \quad\left[\because \frac{\mathrm{d}}{\mathrm{dx}}|\mathrm{x}|=\frac{|\mathrm{x}|}{\mathrm{x}}\right]$
$\therefore \quad \mathrm{f}^{\prime}(-3)=\frac{|2-3|}{2-3}=\frac{1}{-1}=-1$
46.(c) $\frac{d}{d x}\left(x^{6}+6^{x}\right)=6 x^{5}+6^{x} \log 6$
47.(a) $\frac{d}{d x}|x|=\frac{|x|}{x}$

Integrating,
$\int \frac{|x|}{x} d x=|x|+c$
48.(a) $\int a^{3 x+3} d x=\int a^{3 x} . a^{3} d x=a^{3} \int a^{3 x} d x$

61.(b) $\mathrm{h}=\frac{1}{2}(\mathrm{~g}+\mathrm{a}) \mathrm{t}^{2}$
or, $\mathrm{t}=\sqrt{\frac{2 \mathrm{~h}}{\mathrm{~g}+\mathrm{a}}}=\sqrt{\frac{2 \times 3}{10+1.5}}=0.72 \mathrm{~s}$
62.(a) $\quad \Delta \mathrm{PE}=\mathrm{w}_{\mathrm{f}}+\mathrm{KE}$
or, $\mathrm{w}_{\mathrm{f}}=\mathrm{mgr}-\frac{1}{2} \mathrm{mv}^{2}$

$$
\mathrm{w}_{\mathrm{f}}=2 \times 10 \times 1-\frac{1}{2} \times 2 \times 4^{2}=4 \mathrm{~J}
$$

63.(b) $(\mathrm{PE}+\mathrm{KE})$ at surface $=(\mathrm{PE}+\mathrm{KE})$ at height

$$
-\frac{\mathrm{GMm}}{\mathrm{R}}+\frac{1}{2} \mathrm{~m}\left(\frac{\mathrm{~V}_{\mathrm{e}}}{2}\right)^{2}=-\frac{\mathrm{GMm}}{\mathrm{R}+\mathrm{h}}+0
$$

or, $\frac{1}{2} \mathrm{~m} \times \frac{1}{4} \times 2 \mathrm{gR}=\mathrm{GMm}\left[\frac{1}{\mathrm{R}}-\frac{1}{\mathrm{R}+\mathrm{h}}\right]$
or, $\frac{\mathrm{mgR}}{4}=g R^{2} m\left[\frac{\mathrm{R}+\mathrm{h}-\mathrm{R}}{\mathrm{R}(\mathrm{R}+\mathrm{h})}\right]$
or, $\mathrm{R}+\mathrm{h}=4 \mathrm{~h}$
or, $h=\frac{R}{3}$

SAGARMATHA ENGINEERING COLLEGE Sanepa, Lalitpur Tel: 5427274, 5911274, 5911275
64.(c) $\quad \mathbf{1 t}^{\text {st }}$ case
$\mathrm{I}=\frac{\mathrm{V}}{\mathrm{R}}=\frac{11}{11}=1 \mathrm{~A}$
$I=\frac{E}{R+r}$
or, $11+\mathrm{r}=12$
or, $r=1 \Omega$
$\frac{\mathbf{2}^{\text {nd }} \text { case }}{V=E-I r}$
$=12-\frac{\mathrm{E}}{\mathrm{R}+\mathrm{r}} . \mathrm{r}$
$=12-\frac{12}{5+1} \times 1=10 \mathrm{~V}$
65.(b) $\mathrm{T}_{2} \mathrm{~V}_{2}^{\gamma-1}=\mathrm{T}_{1} \mathrm{~V}_{1}^{\gamma-1}$
or, $\mathrm{T}_{2}=\mathrm{T}_{1}\left(\frac{\mathrm{~V}}{\mathrm{~V}}\right)^{5 / 3-1}$
or, $\mathrm{T}_{2}=290(8)^{2 / 3}$

$$
\begin{aligned}
& =1160 \mathrm{~K} \\
& =887^{\circ} \mathrm{C}
\end{aligned}
$$

66.(b) f_{t} :
$\mathrm{f}_{\mathrm{s}}=\mathrm{f}_{\mathrm{t}}+5 \quad l=20 \mathrm{~cm}$
$\mathrm{f}_{\mathrm{s}}^{\prime}=\mathrm{f}_{\mathrm{t}}-5 \quad l^{\prime}=21 \mathrm{~cm}$
$\frac{\mathrm{f}_{\mathrm{s}}}{\mathrm{f}_{\mathrm{s}}^{\prime}}=\frac{l^{\prime}}{l}$
or, $\frac{f_{t}+5}{f_{t}-5}=\frac{21}{20}$
or, $20 f_{t}+100=21 f_{t}-105$
or, $f_{t}=205 \mathrm{~Hz}$
67.(b) $\quad \mathrm{C}_{1} \mathrm{~V}_{1}=\left(\mathrm{C}_{1}+\mathrm{C}_{2}\right) \mathrm{V}$
or, $\mathrm{V}=\frac{12 \times 10^{-6} \times 100}{12 \times 10^{-6}+3 \times 10^{-6}}$

$$
=\frac{12 \times 100}{15}=80 \mathrm{~V}
$$

68.(c) Lose in time in a day
$=\frac{1}{2} \alpha \Delta \theta \times 1$ day
$=\frac{1}{2} \times 10^{-5} \times 2 \times 86400 \mathrm{~s}$
$=0.864 \mathrm{~s}$
69.(b) $\frac{\mathrm{P}_{2}}{\mathrm{P}_{1}}=\left(\frac{\mathrm{V}_{1}}{\mathrm{~V}_{1}}\right)^{2}=\left(\frac{200}{220}\right)^{2}=0.83$

$$
\begin{aligned}
\% \text { decrease } & =\left(1-\frac{P_{2}}{P_{1}}\right) \times 100 \% \\
& =(1-0.83) \times 100 \% \\
& =17 \%
\end{aligned}
$$

70.(b) $\mathrm{E}=\mathrm{B}_{\mathrm{v}} / \mathrm{lv}$
$=\mathrm{B}_{\mathrm{H}} l \mathrm{v} \tan \delta$
$=1.6 \times 10^{-5} \times 40 \times \frac{1000 \times 1000}{3600} \times \tan 71.6^{\circ}$
$=0.53 \mathrm{~V}$
71.(a) $\beta_{a}=0.4 \mathrm{~mm}$
$\frac{\beta_{w}}{\beta_{\mathrm{a}}}=\frac{\frac{\mathrm{D} \lambda_{\mathrm{w}}}{\mathrm{d}}}{\frac{\mathrm{D} \lambda_{\mathrm{a}}}{\mathrm{d}}}=\frac{\lambda_{\mathrm{w}}}{\lambda_{\mathrm{a}}}=\frac{1}{\mu_{\mathrm{w}}}$
or, $\quad \beta_{\mathrm{w}}=\frac{\beta_{\mathrm{a}}}{\mu_{\mathrm{w}}}=\frac{0.4}{4} \times 3=0.3 \mathrm{~mm}$
72.(b) $\mathrm{Near} \mathrm{pt}=10 \mathrm{~cm}$
$u=30 \mathrm{~cm}, \mathrm{v}=-10 \mathrm{~cm}$
$f=\frac{u v}{u+v}=\frac{30(-10)}{30-10}=-\frac{300}{20}=-15 \mathrm{~cm}$
73.(c) $\mathrm{KE}=\frac{\mathrm{hc}}{\lambda}=-\phi$

$$
\begin{aligned}
= & \frac{6.62 \times 10^{-34} \times 3 \times 10^{8}}{331 \times 10^{-9}}-1.75 \times 1.6 \times 10^{-19} \\
& =3.2 \times 10^{-19} \mathrm{~J} \\
\mathrm{KE} & =\mathrm{eV}_{\mathrm{s}}
\end{aligned}
$$

or, $V_{s}=\frac{\mathrm{KE}}{\mathrm{e}}=\frac{3.2 \times 10^{-19}}{1.6 \times 10^{-19}}=2 \mathrm{~V}$
74.(b) $\frac{\mathrm{m}}{\mathrm{m}_{0}}=\left(\frac{1}{2}\right)^{\frac{\mathrm{t}}{\mathrm{T}_{1 / 2}}}$
or, $m=m_{0}\left(\frac{1}{2}\right)^{\frac{t}{T_{1 / 2}}}$

$$
\begin{aligned}
& =10.38\left(\frac{1}{2}\right)^{\frac{19}{3.8}} \\
& =0.32 \mathrm{~g}
\end{aligned}
$$

75.(b) $2 \mathrm{H}_{2} \mathrm{O}_{2} \rightarrow 2 \mathrm{H}_{2}+\mathrm{O}_{2}$

2 mole 1 mole
5 mole $\frac{1}{2} \times 5$

$$
=2.5 \text { mole }
$$

76.(b) $\mathrm{NHCl}(\operatorname{mix})=\frac{10 \times 0.1}{100}=0.01 \mathrm{~N}$
77.(c) $\quad \mathrm{S}_{\mathrm{SO}_{4}--}=\frac{\mathrm{K}_{\mathrm{sp}}}{\mathrm{S}_{\mathrm{Ba}^{++}}}$

$$
\begin{aligned}
& =\frac{1.5 \times 10^{-9}}{0.1} \\
& =1.5 \times 10^{-8}
\end{aligned}
$$

78.(d) moles of $\mathrm{I}=\frac{254}{127}=2$
moles of $\mathrm{O}=\frac{80}{16}=5$
$\left(\mathrm{I}_{2} \mathrm{O}_{5}\right)$
79.(d)

80.(c)
81.(d)

SAGARMATHA ENGINEERING COLLEGE Sanepa, Lalitpur Tel: 5427274, 5911274, 5911275

 2079-4-14 (Set - A) Hints \& Solution82.(a) $f(4)=\int_{0}^{x} x^{3} d x=\frac{4^{4}}{4}=4^{3}=64$
83.(c) $\quad-1 \leq \sin x \leq 1$
$\therefore \quad$ Min value of $\sin x=-1$
84.(b) Here, given curves $y=\sqrt{x} \Rightarrow y^{2}=x$

$$
x=\sqrt{y} \Rightarrow x^{2}=y
$$

Area common to these curve

$$
=\frac{\text { Coeff. of } x \times \text { coeff. of } y}{3}=\frac{1}{3}
$$

85.(a) For x-intercept

Put $y=0,2 x+0=6$

$$
x=3
$$

86.(d) Bisector of $\angle \mathrm{XOY}$ is $\mathrm{y}=\mathrm{x}$

The equation of required line is

$$
\mathrm{y}=1 \cdot \mathrm{x}-2 \quad[\therefore \mathrm{y}=\mathrm{mx}+\mathrm{c}]
$$

$\Rightarrow \quad x-y-2=0$
87.(a) Here, $\mathrm{S}_{\mathrm{n}}=3 \mathrm{n}^{2}+5 \mathrm{n}$

But $\mathrm{t}_{\mathrm{n}}=\mathrm{S}_{\mathrm{n}}-\mathrm{S}_{\mathrm{n}-1}$

$$
164=3 n^{2}+5 n-\left[3(n-1)^{2}+5(n-1)\right]
$$

$\Rightarrow 164=3 n^{2}+5 n-\left[3 n^{2}-6 n+3+5 n-5\right]$
$\Rightarrow \quad 164=6 n+2$
$\Rightarrow \mathrm{n}=27$
88.(a) Calculate: $\mathrm{r}=\frac{15 \times 4-39}{4+3}=\frac{21}{7}=3$

Coefficient of $\mathrm{x}^{39}=\mathrm{C}(15,3)$

$$
=455
$$

89.(c) We know,
$\cos \mathrm{B}=\frac{\mathrm{a}^{2}+\mathrm{c}^{2}-\mathrm{b}^{2}}{2 \mathrm{ac}}=\frac{9+25-16}{2.3 .5}=\frac{3}{5}$
$\therefore \quad \sin \mathrm{B}=\sqrt{1-\left(\frac{3}{5}\right)^{2}}=\sqrt{\frac{16}{25}}=\frac{4}{5}$
$\therefore \quad \sin 2 \mathrm{~B}=2 \sin \mathrm{~B} \cos \mathrm{~B}=2 \cdot \frac{3}{5} \cdot \frac{4}{5}=\frac{24}{25}$
90.(b) $4 \sin ^{-1} x+\cos ^{-1} x=\pi$
$\Rightarrow 4 \sin ^{-1} x+\frac{\pi}{2}-\sin ^{-1} x=\pi$

$$
\begin{align*}
& \Rightarrow \quad 3 \sin ^{-1} x=\frac{\pi}{2} \\
& \Rightarrow \quad \sin ^{-1} x=\frac{\pi}{6} \\
& \therefore \quad x=\sin \left(\frac{\pi}{6}\right)=\frac{1}{2} \tag{c}
\end{align*}
$$

92.(b) Distance $=\left|\frac{\frac{1}{2}+1}{\sqrt{9+16+144}}\right|=\frac{3}{2 \sqrt{169}}=\frac{3}{26}$ unit
93.(b) $\tan 2 \theta \tan \theta=1$
$\Rightarrow \tan 2 \theta=\cot \theta$
$\Rightarrow \tan 2 \theta=\tan \left(\frac{\pi}{2}-\theta\right)$
$2 \theta=\mathrm{n} \pi+\left(\frac{\pi}{2}-\theta\right)$
$\Rightarrow \quad 3 \theta=\left(\mathrm{n}+\frac{1}{2}\right) \pi$
$\therefore \quad \theta=\left(\mathrm{n}+\frac{1}{2}\right) \frac{\pi}{3}$
94.(c) Eccentricity $=\sqrt{1+\frac{\mathrm{a}^{2}}{\mathrm{a}^{2}}}=\sqrt{1+1}=\sqrt{2}$
95.(a) $\mathrm{ka}=\overrightarrow{\mathrm{a}} \Rightarrow \mathrm{k}=\frac{\overrightarrow{\mathrm{a}}}{\hat{\mathrm{a}}}=\frac{\overrightarrow{\mathrm{a}}}{\stackrel{\vec{a}}{a}}=|\overrightarrow{\mathrm{a}}|$
96.(d) Projection of \vec{b} on $\vec{a}=\frac{\vec{b} \cdot \vec{a}}{|\vec{a}|}$

$$
\begin{aligned}
& =\frac{10-3+2}{\sqrt{2^{2}+1^{2}+2^{2}}} \\
& =\frac{9}{\sqrt{9}}=3
\end{aligned}
$$

$$
\text { 97.(a) 98.(c) } \quad 99 .(\mathrm{d}) \quad 100 .(\mathrm{c})
$$

...The End...

