PEA Association Pvt. Ltd. Thapathali, Kathmandu, Tel: 4245730, 4257187

2079-02-21 Hints \& Solution

Section - I

1. (b) $\vec{v}=(u+a t) \hat{i}+(u+a t) \hat{j}$

$$
\begin{aligned}
& =(2+0.3 \times 10) \hat{i}+(3+0.2 \times 10) \hat{j} \\
& =5 \hat{i}+5 \hat{j}
\end{aligned}
$$

$\therefore \quad$ Velocity $|\overrightarrow{\mathrm{v}}|=\sqrt{5^{2}+5^{2}}=5 \sqrt{2} \mathrm{~m} / \mathrm{s}$
2. (a) $\mathrm{h}=\mathrm{h}_{2}-\mathrm{h}_{1}=\frac{1}{2} \mathrm{~g}(3)^{2}-\frac{1}{2} \mathrm{~g}(2)^{2}$

$$
=5(9-4)=25
$$

3. (c) $a b=(a+c) v$
or, $\quad v=\frac{a b}{a+c}$
4. (a) Work done per unit volume
$\left(\frac{E}{V}\right)=\frac{1}{2}$ stress \times strain

$$
=\frac{1}{2} \times Y_{x} \operatorname{strain} \times \text { strain }
$$

$$
=\frac{\mathrm{YS}^{2}}{2}
$$

5. (b)
6. (b) During expansion work done will be maximum in isobaric process.
7. (b) $\mathrm{T}=2 \pi \sqrt{\frac{\mathrm{~m}}{\mathrm{~K}}}$
if sprig is cut in n pieces then spring constant become.
$\mathrm{K}^{\prime}=\mathrm{nK}$ so
Time period $\left(T^{\prime}\right)=2 \pi \sqrt{\frac{\mathrm{~m}}{\mathrm{~K}^{\prime}}}$

$$
=2 \pi \sqrt{\frac{\mathrm{~m}}{\mathrm{nK}}}=\frac{\mathrm{T}}{\sqrt{\mathrm{n}}}
$$

8. (b) $3 \mathrm{f}_{0}^{\mathrm{c}}=4 \mathrm{f}_{0}{ }^{0}$
or, $\quad 3 \times \frac{\mathrm{v}}{4 l_{\mathrm{c}}}=4 \times \frac{\mathrm{v}}{2 l_{0}}$
or, $\quad \frac{l_{\text {c }}}{l_{0}}=\frac{3}{8}$
9. (a) $\sigma_{1}=\sigma_{2}$
or, $\quad \frac{\mathrm{Q}-\mathrm{Q}^{\prime}}{4 \pi \mathrm{R}^{2}}=\frac{\mathrm{Q}^{\prime}}{4 \pi(2 \mathrm{R})^{2}}$
or, $\quad Q-Q^{\prime}=\frac{Q^{\prime}}{4}$
or, $\quad \mathrm{Q}^{\prime}=\frac{4 \mathrm{Q}}{5}$
10. (b)

or, $\mathrm{E}_{0}=\mathrm{E}_{\mathrm{A}}$
or, $\frac{8 \mathrm{Q}}{4 \pi \varepsilon_{0} \mathrm{x}^{2}}=\frac{2 \mathrm{Q}}{4 \pi \varepsilon_{0}(\mathrm{x}-\mathrm{L})^{2}}$
or, $4(x-L)^{2}=x^{2}$
or, $\quad 2(\mathrm{x}-\mathrm{L})=\mathrm{x}$
or, $\quad \mathrm{x}=2 \mathrm{~L}$
11. (c) $\frac{\mathrm{R}^{\prime}}{\mathrm{R}}=\left(\frac{1+\frac{l^{2}}{10}}{l}\right)=1.21$
$\therefore \quad \mathrm{R}^{\prime}=12.1 \Omega$
12. (a)

$\mathrm{V}_{\mathrm{PQ}}=2 \mathrm{~V}$
Pd across 500Ω resistor is
$\mathrm{V}=12-2=10 \mathrm{~V}$
$\therefore \quad \mathrm{I}=\frac{\mathrm{V}}{\mathrm{R}}=\frac{10}{500}=\frac{1}{50} \mathrm{~A}$
$\therefore \quad \mathrm{V}_{\mathrm{PQ}}=\mathrm{IR}_{\mathrm{PQ}}$
or, $\mathrm{R}_{\mathrm{PQ}}=\frac{\frac{2}{\frac{1}{50}}=100 \Omega, ~(1)}{}=1$
13. (a) $\tan \theta=\frac{\mathrm{V}}{\mathrm{H}} \ldots$... (i)

Again $\tan \theta^{\prime} \frac{V}{H \cos x}=\frac{\tan \theta}{\cos x}$
$\therefore \quad \frac{\tan \theta^{\prime}}{\tan \theta}=\frac{1}{\cos x}$
14. (d)
15. (b) Vertical displacement
$=\mathrm{d}-\frac{\mathrm{d}}{\mu}=\frac{(\mu-1) \mathrm{d}}{\mu}$
16. (d) $\frac{\lambda_{\mathrm{p}}}{\lambda_{\alpha}}=\frac{\mathrm{p}_{\alpha}}{\mathrm{p}_{\mathrm{p}}}=\frac{\sqrt{2 \mathrm{~m}_{\alpha} \mathrm{Q}_{\alpha} \mathrm{V}}}{\sqrt{2 \mathrm{~m}_{\mathrm{p}} \mathrm{Q}_{\mathrm{p}} \mathrm{V}}}$

$$
=\sqrt{\frac{4 \mathrm{~m} \times 2 \mathrm{eV}}{\mathrm{meV}}}=2 \sqrt{2}: 1
$$

17. (a) Voltage gain $=\frac{V_{\text {out }}}{V_{\text {in }}}=\frac{\mathrm{I}_{\mathrm{c}} \mathrm{R}_{\text {out }}}{\mathrm{I}_{\mathrm{b}} \mathrm{R}_{\text {in }}}=\beta \frac{\mathrm{R}_{\text {out }}}{\mathrm{R}_{\text {in }}}$
$\therefore \beta=\frac{\Delta \mathrm{I}_{\mathrm{c}}}{\Delta \mathrm{b}}=\frac{2 \times 10^{-3}}{40 \times 10^{-6}}=\frac{2000}{40}=50$
\therefore Voltage gain $=50 \times \frac{4000}{100}=2000$
18. (d) It obeys Huckel's rule i.e.: It contains $(4 n+2)$ delocalized π electrons eg. 10 electrons.
19. (a) It is known a enyne compound. Its IUPAC format is Alk-en-yne. Numbering s done by he lowest sum rule.

$$
\underset{5}{\mathrm{C}} \mathrm{H}_{3}-\underset{4}{\mathrm{C}} \mathrm{H}=\underset{3}{\mathrm{CH}}-\underset{2}{\mathrm{C}} \equiv \underset{1}{\mathrm{C}} \mathrm{H}
$$

PEA Association Pvt. Ltd. Thapathali, Kathmandu, Tel: 4245730, 4257187 2079-02-21 Hints \& Solution

20. (c) $\mathrm{Ca}\left(\mathrm{HCO}_{3}\right)_{2}+\mathrm{Ca}(\mathrm{OH})_{2} \longrightarrow 2 \mathrm{CaCO}_{3} \downarrow+2 \mathrm{H}_{2} \mathrm{O}$

By Clark's process
21. (b)
$2 \mathrm{HgO} \xrightarrow{\Delta} 2 \mathrm{Hg}+\mathrm{O}_{2}$
22. (d)
23. (b)
24. (b)

\longrightarrow used as antiknock agen in petrol
25. (c)
26. (a)
27. (b) $\mathrm{CaCO}_{3} \xrightarrow{\Delta} \mathrm{CaO}+\mathrm{CO}_{2}$
$100 \mathrm{~g} 56 \mathrm{~g} \quad 22.4 \mathrm{~L}$
$10 \mathrm{~g} \quad \frac{22.4}{100} \times 10=2.24 \mathrm{~L}$
28. (d)
29. (a)
$\operatorname{cosec}\left(\sin ^{-1} \frac{2 x}{1+x^{2}}\right)=\operatorname{cosec}\left(\operatorname{cosec}^{-1} \frac{1+x^{2}}{2 x}\right)$
$=\frac{1+\mathrm{x}^{2}}{2 \mathrm{x}}$
30. (c) Expansion is valid for:
$|4 \mathrm{x}|<1$
$|\mathrm{x}|<\frac{1}{4}$
31. (d) Number of permutation with repetition $=5^{5}$
32. (a) $\mathrm{S}_{\text {even }}-\mathrm{S}_{\text {odd }}=\mathrm{n}(\mathrm{n}+1)-\mathrm{n}^{2}=\mathrm{n}, \therefore \mathrm{n}=5$
33. (a) Equating the corresponding coefficients:
$2 x=4$
$\mathrm{x}=2$
34. (d) It is obvious.
35. (b) Putting $x=2$
$2^{3}+4 \mathrm{k}-2-30=0$
$\mathrm{k}=6$
36. (b) It is obvious.
37. (b) It is obvious
38. (b) It is obvious
39. (d) $\tan \theta=\frac{1}{\tan 2 \theta}=\cot 2 \theta$
$\tan \theta=\tan \left(\frac{\pi}{2}-2 \theta\right)$
$\theta=\mathrm{n} \pi+\left(\frac{\pi}{2}-2 \theta\right)$
$3 \theta=\left(n+\frac{1}{2}\right) \pi$
$\theta=(2 n+1) \frac{\pi}{6}$
40. (c) $y=\tan |x|$
$\frac{d y}{d x}=\sec ^{2}|x| \cdot \frac{x}{|x|}$
41. (a) Dividing by $\cos ^{2} x$, we get
$=\int \frac{\sqrt{\tan x}}{\tan x} \sec ^{2} x d x$
$=\int \frac{\sec ^{2} x}{\sqrt{\tan x}} d x=2 \sqrt{\tan x}+c$
42. (a) Coincident lines:
$b^{2}-4 a c=0$
$4^{2}-4.5 \quad \mathrm{~K}=0 \quad \mathrm{k}=\frac{4}{5}$
43. (d) Obvious
44. (b) $\Delta=80$
$2 \mathrm{~s}=8 \Rightarrow \mathrm{~s}=4$
$\mathrm{r}=\frac{\Delta}{\mathrm{s}}=20$
45. (d) Centre $(\mathrm{h}, \mathrm{k})=(4,3)$
46. (a) Obvious
47. (b) $\mathrm{f}^{\prime}(\mathrm{x})=-3<0$ (decreasing)
48. (d) Obvious
49.(a) 50.(b) 51.(b) 52.(b) 53.(a) 54. (c)
55.(b) 56.(b) 57.(a) 58.(a) 59.(c) 60.(b)

Section - II

61. (d)
$\mathrm{t}=\frac{l}{\text { Ve. of parrot relativetotrain }}$

$$
=\frac{150}{10+5}=10 \mathrm{~s}
$$

62. (a) $\sqrt{\mathrm{h}_{1} \mathrm{~h}_{2}}=\sqrt{\frac{\mathrm{u}^{2} \sin ^{2} \theta}{2 \mathrm{~g}} \times \frac{\mathrm{u}^{2} \sin ^{2}\left(90^{\circ}-\theta\right)}{2 \mathrm{~g}}}$

$$
=\frac{\mathrm{u}^{2} \sin \theta \cdot \cos \theta}{2 \mathrm{~g}}
$$

$$
=\frac{\mathrm{u}^{2} \sin 2 \theta}{4 \mathrm{~g}}=\frac{\mathrm{R}}{4}
$$

$\therefore \quad \mathrm{R}=4 \sqrt{\mathrm{~h}_{1} \mathrm{~h}_{2}}$
63. (d) $\mathrm{W}=2 l \mathrm{~T}$
or, $\mathrm{T}=\frac{1.5 \times 10^{-2}}{2 \times 0.3}=0.025 \mathrm{~N} / \mathrm{m}$
64. (b) $t=\frac{\rho L_{f}}{2 K \theta}\left(x_{2}{ }^{2}-x_{1}{ }^{2}\right)$

$$
=\frac{0.92 \times 80\left(10^{2}-5^{2}\right)}{2 \times 0.004 \times 10}
$$

$$
=69000 \mathrm{~s}=19.2 \mathrm{hrs}
$$

65. (b) Heat lost $=$ Heat gained
or, $(200+20)(\theta-20)=440(92-\theta)$
or, $220(\theta-20)=440(92-\theta$
or, $\quad \theta-20=184-2 \theta$
or, $\theta=\frac{204}{3}=68^{\circ} \mathrm{C}$
66. (c)

Now $\frac{\mathrm{f}_{\mathrm{s}}}{\mathrm{f}_{\mathrm{s}}{ }^{\prime}}=\frac{l^{\prime}}{l}$

PEA Association Pvt. Ltd. Thapathali, Kathmandu, Tel: 4245730, 4257187 2079-02-21 Hints \& Solution
or, $\frac{\mathrm{f}_{\mathrm{t}}+5}{\mathrm{f}_{\mathrm{t}}-5}=\frac{1.05}{1}$
or, $f_{t}+5=1.05 f_{t}-5.25$
or, $0.05 \mathrm{f}_{\mathrm{t}}=10.25$
or, $f_{t}=\frac{10.25}{0.05}=205 \mathrm{~Hz}$
67. (a) $\mathrm{C}=\mathrm{C}^{\prime}$
or, $\frac{\varepsilon_{0} A}{d}=\frac{\varepsilon_{0} A}{d-t\left(1-\frac{1}{\varepsilon r}\right)+3.5 \times 10^{-5}}$
or, $\quad d=d-4 \times 10^{-5}\left(1-\frac{1}{\varepsilon r}\right)+3.5 \times 10^{-5}$
or, $4 \times 10^{-5}\left(1-\frac{1}{\text { cr }}\right)=3.5 \times 10^{-5}$
or, $\quad 0.5=\frac{4}{\varepsilon_{\mathrm{r}}}$
or, $\varepsilon_{\mathrm{r}}=8$
68. (d) Total resistance remain same then
$(\Delta \mathrm{R})_{1}+(\Delta \mathrm{R})_{2}=0$
or, $\mathrm{R}_{1} \alpha \Delta \theta-\mathrm{R}_{2} \beta \Delta \theta=0$
or, $\mathrm{R}_{1} \alpha=\mathrm{R}_{2} \beta$
or, $\frac{\mathrm{R}_{1}}{\mathrm{R}_{2}}=\frac{\beta}{\alpha}$
69. (c) $\frac{\mathrm{B}_{\mathrm{c}}}{\mathrm{B}_{\mathrm{a}}}=\frac{\frac{-\mu_{0} \mathrm{I}}{2 \mathrm{R}}}{\frac{\mu_{0} \mathrm{IR}^{2}}{2\left(\mathrm{x}^{2}+\mathrm{R}^{2}\right)^{3 / 2}}}$

$$
=\frac{\left(\mathrm{x}^{2}+\mathrm{R}^{2}\right)^{3 / 2}}{\mathrm{R}^{3}}=\frac{\left(4^{2}+3^{2}\right)^{3 / 2}}{3^{3}}=\frac{5^{3}}{3^{3}}
$$

$\therefore \mathrm{B}_{\mathrm{c}}=\frac{125}{27} \times 54=250 \mu \mathrm{~T}$
70. (a) $I=I_{0}\left(1-e^{-R t / L}\right)$
or, $\frac{I_{0}}{2}=I_{0}\left(1-\mathrm{e}^{-\mathrm{Rt} / \mathrm{L}}\right)$
or, $\frac{1}{2}=1-\mathrm{e}^{-\mathrm{Rt} / \mathrm{L}}$
or, $\quad \mathrm{e}^{-\mathrm{Rt} / \mathrm{L}}=\frac{1}{2}$
or, $\quad e^{\frac{\mathrm{Rt}}{\mathrm{L}}}=2$
or, $\frac{\mathrm{Rt}}{\mathrm{L}}=\ln 2$
or, $\mathrm{t}=\ln 2 \times \frac{\mathrm{L}}{\mathrm{R}}=\ln 2 \times \frac{300 \times 10^{-3}}{2}=0.1 \mathrm{~s}$
71. (c)

For lens, $v=\frac{f u}{u-f}=\frac{20 \times 30}{30-20}=60 \mathrm{~cm}$
$\mathrm{r}=10 \mathrm{~cm}$
$\mathrm{d}=\mathrm{v}-\mathrm{r}=60-10=50 \mathrm{~cm}$
72. (d) $\frac{\mathrm{dx}}{\mathrm{D}}=(2 \mathrm{n}+1) \frac{\lambda_{1}}{2}=(2 \mathrm{~m}+1) \frac{\lambda_{2}}{2}$
or, $(2 \mathrm{n}+1) 400=(2 \mathrm{~m}+1) 560$
or, $10 n+5=14 m+7$
or, $10 \mathrm{n}-14 \mathrm{~m}=7-5$
If $\mathrm{n}=3, \mathrm{~m}=2$ then result agree
Again $\mathrm{n}=10 \& \mathrm{~m}=7$ then again result agree so
$\Delta y=y^{\prime \prime}-y^{\prime}$

$$
\begin{aligned}
& =\left(\frac{2 \times 10+1}{2}\right) \beta-\left(\frac{2 \times 3+1}{2}\right) \beta \\
& =(10.5-3.5) \beta=7 \beta \\
& =7 \times \frac{\mathrm{D} \lambda_{1}}{\mathrm{~d}}=\frac{7 \times 1 \times 400 \times 10^{-9}}{0.1 \times 10^{-3}} \\
& =0.028 \mathrm{~m}=28 \mathrm{~mm}
\end{aligned}
$$

73. (b) Force $(\mathrm{F})=$ Rate of change in momentum
$=\frac{1.6 \times \text { momentum }}{\mathrm{t}}$
$=1.6 \times \frac{\mathrm{nh}}{\mathrm{t} \lambda}$
$=1.6 \frac{\text { Power }}{\mathrm{C}}\left[\because \mathrm{P}=\frac{\mathrm{nhc}}{\mathrm{t} \lambda}\right]$
$=\frac{1.6 \times 60}{3 \times 10^{8}}=3.2 \times 10^{-7} \mathrm{~N}$
74. (b) When $\left(\frac{2}{3}\right)^{\mathrm{rd}}$ of sample decayed then
$\frac{1}{3}=\left(\frac{1}{2}\right)^{\frac{t_{1}}{T_{1 / 2}}}$
or, $\ln \left(\frac{1}{3}\right)=\frac{\mathrm{t}_{1}}{\mathrm{~T}_{1 / 2}} \ln \left(\frac{1}{2}\right)$
or, $\mathrm{t}_{1}=\mathrm{T}_{1 / 2}\left\{\frac{\ln \left(\frac{1}{3}\right)}{\ln \left(\frac{1}{2}\right)}\right\}$

$$
=50 \times \frac{\ln \frac{1}{3}}{\ln \frac{1}{2}}=79.2 \text { days. }
$$

When $\left(\frac{1}{3}\right)^{\text {rd }}$ of sample decayed then
$\frac{2}{3}=\left(\frac{1}{2}\right)^{\mathrm{t}_{2} / \mathrm{T}_{1 / 2}}$
or, $\quad \ln \left(\frac{2}{3}\right)=\frac{\mathrm{t}_{2}}{\mathrm{~T}_{1 / 2}} \ln \left(\frac{1}{2}\right)$
or, $\quad \mathrm{t}_{2}=\mathrm{T}_{1 / 2} \frac{\ln \left(\frac{2}{3}\right)}{\ln \left(\frac{1}{2}\right)}=29.2$ days
$\therefore \quad \Delta \mathrm{T}=\mathrm{t}_{1}-\mathrm{t}_{2}=79.2-29.2=50$ days
75. (d) $\mathrm{Conc}^{\mathrm{n}} 2 \mathrm{HNO}_{3} \xrightarrow{\Delta} \mathrm{H}_{2} \mathrm{O}+2 \mathrm{NO}_{2}+$ [O]
$\mathrm{P}_{4}+10[\mathrm{O}] \longrightarrow 2 \mathrm{P}_{2} \mathrm{O}_{5}$
$\mathrm{P}_{2} \mathrm{O}_{5}+3 \mathrm{H}_{2} \mathrm{O} \longrightarrow 2 \mathrm{H}_{3} \mathrm{PO}_{4}$

PEA Association Pvt. Ltd. Thapathali, Kathmandu, Tel: 4245730, 4257187 2079-02-21 Hints \& Solution

76. (b)
77. (b) $\mathrm{X}=$ nitrobenzene and $\mathrm{Y}=3$-nitrochlorobenzene
78. (d) 6.023×10^{23} molecules of $\mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{6}=180 \mathrm{~g}$
6.023×10^{22} molecules of $\mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{6}$

$$
\begin{aligned}
& =\frac{180}{6.023 \times 10^{23}} \times 6.023 \times 10^{22} \\
& =18 \mathrm{~g}
\end{aligned}
$$

$\frac{\mathrm{W}}{\mathrm{m}}=\frac{\mathrm{M} \times \mathrm{V}_{\mathrm{m}}}{1000}$
$\frac{8}{180}=\frac{\mathrm{M} \times 500}{1000}$
$\mathrm{M}=0.2 \mathrm{M}$
79. (a)
80. (b)

$$
\begin{gathered}
\text { For } 1^{\text {st }} \text { oxide } \\
1 \\
50 \quad 50 \\
\mathrm{MO}
\end{gathered}
$$

$$
\text { For } 2^{\text {nd }} \text { oxide }
$$

$$
\begin{array}{lll}
60^{3} & 40^{2} & \rightarrow \text { Valency } \\
\mathrm{M} & \rightarrow \text { Element } \\
\mathrm{MO} & \rightarrow \text { Compond }
\end{array}
$$

81. (d)
82. (d) Integrating by parts:
$\left[\mathrm{xe}^{\mathrm{x}}-\int 1 . \mathrm{e}^{\mathrm{x}} \mathrm{dx}\right]_{0}^{1}=\left(\mathrm{xe}^{\mathrm{x}}-\mathrm{e}^{\mathrm{x}}\right)_{0}^{1}$

$$
=(1 . \mathrm{e}-\mathrm{e})-\left(0-\mathrm{e}^{0}\right)=1
$$

83. (a) $\frac{2 \operatorname{sinn} x \cos n x}{\cos ^{2} n x}=2 \operatorname{tann} x$
$\frac{d}{d x}(2 \operatorname{tannx})=2 n \sec ^{2} n x$
84. (b) $\mathrm{f}(\mathrm{x})+\mathrm{g}(\mathrm{x})=\mathrm{x}+\mathrm{x} \quad$ for $\mathrm{x}>0$
$\begin{array}{rlr} & =2 x \\ f(x)+g(x) & =x-x \quad \text { for } \mathrm{x}<0 \\ & =0 & \end{array}$
85. (b) Let α be the common root then
$\alpha^{2}+p \alpha+q=0$
$\alpha^{2}+q \alpha+p=0$
By cross-multiplication:
$\frac{\alpha^{2}}{p^{2}-q^{2}}=\frac{\alpha}{q-p}$
On solving, we get the result
86. (d) $\sum_{n=0}^{\infty} \frac{x^{2 n+1}}{(2 n+1)!}=\left(\frac{x}{1!}+\frac{x^{3}}{3!}+\frac{x^{5}}{5!}+\ldots . . \infty\right)$
$=\frac{e^{x}-e^{-x}}{2}=\sinh x$
87. (c) Total number of ways $=6$!

If the oldest player is to throw first, then the no. of ways $=5$!
No. of ways so that oldest player not to throw 1 st $=6!-5$!

$$
=600
$$

88. (b)
$\sin \frac{\pi}{6}=\sin \theta=\frac{|\vec{a} \times \vec{b}|}{|\vec{a}||\vec{b}|}$
$\frac{1}{2}=\frac{|\overrightarrow{\mathrm{a}} \times \overrightarrow{\mathrm{b}}|}{2.4}$
i.e. $|\vec{a} \times \vec{b}|=4 \quad(\vec{a} \times \vec{b})^{2}=16$
89. (d) Equation of the plane parallel to the given plane is: $x+3 y+4 z+K=0$
It passes through the point $(1,2,5)$
i.e. $\quad 1+3.2+4.5+\mathrm{K}=0$

$$
K=-27
$$

The required equation of the plane is:
$x+3 y+4 z-27=0$
90. (b) $x^{2}-8 x+16+y^{2}+4 y+4=16$
$(x-4)^{2}+(y+2)^{2}=4^{2}$
$\therefore \quad h=r$
Hence, it touches only y-axis
91. (d) We have: $c=\frac{a}{m}$
$1=\frac{1}{\mathrm{~m}}$
$\mathrm{m}=1$
92. (b) $A=2 \int_{0}\left(y_{1}-y_{2}\right) d x$
$=2 \int_{0}^{1}\left(x-x^{2}\right) d x=\frac{1}{3}$
93. (c) $\quad \sin \left(\cos ^{-1} x\right)$
$=\sin \left(\sin ^{-1} \sqrt{1-x^{2}}\right)$
$=\sqrt{1-\mathrm{x}^{2}}$
We get same result from the option (c)
94. (a) $\frac{d y}{d x}=6 x-12$

Tangent line is parallel to x -axis
i.e. $\frac{d y}{d x}=0$
$\mathrm{x}=2$
and $y=-6$
The point is $(2,-6)$
95. (a) $8 \mathrm{R}^{2}=4 \mathrm{R}^{2}\left(\sin ^{2} \mathrm{~A}+\sin ^{2} \mathrm{~B}+\sin ^{2} \mathrm{C}\right)$
$2=2+2 \cos \mathrm{~A} \cos \mathrm{~B} \cos \mathrm{C}$
$\cos \mathrm{A} \cos \mathrm{B} \cos \mathrm{C}=0$
Either, $\cos \mathrm{A}=0$

$$
\mathrm{A}=90^{\circ}
$$

96. (b) $\frac{\mathrm{a}}{\mathrm{r}} \times \mathrm{a} \times \mathrm{ar}=216 \quad$ i.e. $\mathrm{a}=6$
and $\frac{6}{r}+6+6 r=19$
On solving: $\mathrm{r}=\frac{3}{2}$
97. (a) 98.(b) 99. (c) 100. (c)
