PEA Association Pvt. Ltd. Thapathali, Kathmandu, Tel: 4245730, 4257187 2079-1-10 Hints & Solution

Section - I

We have, time of flight (T) = $\frac{2u\sin\theta}{2}$ 1.(a)

 $T \propto \sin\theta$

Since, $T_A < T_B$, A will fall earlier.

2.(c) Here, F acts as normal reaction Hence, $\mu F = w$ Therefore,

 $F = \frac{W}{\mu}$, since $\mu < 1$, hence F > W

The volume of water formed by melting ice is 3.(c)same as volume of water displaced by ice so level remain same.

4.(c)During boiling, temperature of water remains constant.

i.e. $\Delta\theta = 0$

So $S = \frac{dQ}{m\Delta\theta} = \infty$

Fraction = $\frac{\Delta U}{\Delta Q} = \frac{nC_v dT}{nC_p dT} = \frac{C_v}{C_p} = \frac{\frac{3}{2}R}{\frac{7}{2}R} = \frac{5}{7}$ 5.(d)

6.(b)On heating liquid, volume increases and density decreases. i.e. R.I. decreases.

7.(a)Due to the presence of test charge q_0 in front of positively charged ball, there would be redistribution of charge on ball and due to this electric field is decreased.

Thus, actual electric field will be greater than $\frac{F}{q_0}$

In non-uniform magnetic field a magnetic 8.(c)needle experience both force and torque due to unequal forces acting on it.

As 'n' increases, energy difference between 9.(a) adjacent energy levels decreases.

Frequency of A = $512 \pm 5 = 517$ or 50710.(c) When A is filed, its frequency increases. i.e. $f_A = 517$

 $\frac{KE_1}{KE_2} = \frac{\frac{p^2}{2m_1}}{\frac{p^2}{p^2}} = \frac{m_2}{m_1} = \frac{1}{4}$ 11.(c)

12.(c) The force is perpendicular to path so the speed remain constant i.e. KE remain constant.

A layer of air encloses whose conductivity is 13.(d) very less.

14.(b) After 1 slab = 0.9IAfter two slab = $0.9 \times 0.9I = 0.81I$

% reduce = $\left(\frac{I - 0.81 \text{ I}}{I}\right) \times 100\% = 19\%$

15.(d) Specific resistance depends on nature of matter.

16.(a) $\frac{v}{u} = \frac{1}{n}$

 $Now \frac{1}{f} = \frac{1}{u} + \frac{1}{v}$

 $\frac{\lambda_p}{\lambda_\alpha} = \frac{p_\alpha}{p_p} = \sqrt{\frac{2m_\alpha E_\alpha}{2m_p E_p}} = \sqrt{\frac{2\times 4m\times 2eV}{2m\times eV}}$

18.(b) For alkane no. of isomers = $2^{n-4} + 1$ Where, n = no. of carbon = $2^{6-4} + 1$

19.(a)

$$N = \begin{matrix} H & H \\ I & I \\ C - C - C - C - C = N \\ I & 2I & 3I & 4 \end{matrix}$$

Butane -1, 4 -dinitrile

20.(d)

6g Mg = Rs. 521.(c) $12g Mg = \frac{5}{6} \times 12 = 10$

12 Mg = 9 g Al

9g Al = Rs. 10

 $27g \text{ Al} = \frac{10}{9} \times 27 = 30$

∴ Rs. 30

22.(d) $N_2O_5 + H_2O \longrightarrow 2HNO_3$

23.(b)

24.(d)

25.(b) Na₂CO₃.10H₂O effloresces to form Na₂CO₃.H₂O loosing 9H₂O

Black mass of carbon is formed. 26.(a)

27.(d)

28.(b) $CH_3I \xrightarrow{HI/P} CH_4$

29.(c)

 $\frac{1}{abc}\begin{vmatrix} 1 & abc & a \\ 1 & abc & b \\ 1 & abc & c \end{vmatrix} \\
= \frac{1}{abc} \cdot abc \begin{vmatrix} 1 & 1 & a \\ 1 & 1 & b \\ 1 & 1 & c \end{vmatrix} = 0$

30.(d) |(3+4i)(x+iy)| = |1+i| $\sqrt{3^2+4^2}\sqrt{x^2+y^2} = \sqrt{1^2+1^2}$

Squaring: $x^2 + y^2 = \frac{2}{25}$

PEA Association Pvt. Ltd. Thapathali, Kathmandu, Tel: 4245730, 4257187 2079-1-10 Hints & Solution

31.(c)
$$\lim_{x \to 0} \frac{\sin^{-1} x}{2x} = \frac{1}{2} \lim_{x \to 0} \frac{\sin^{-1} x}{x} = \frac{1}{2}$$

32.(a)
$$S_n = 1 + 2 + 3t + n \frac{n(n+1)}{2}$$

$$S_m = \left[\frac{n(n+1)}{2}\right]^2 = S_n^2$$

33.(c)
$$\int_{-11}^{11} \sin^{11} x \, dx = 0$$

34.(a)
$$t = \frac{y}{4a}$$

Then $x = a \left(\frac{y}{4a}\right)^2$

$$y^2 = 16ax$$
 Parabola

- 35.(d) Obvious
- 36.(c) Obvious
- 37.(a) $xx_1 + yy_1 = a^2$ x + 2y = 5

38.(d) Length of latus rectum =
$$\frac{2b^2}{a}$$

= $\frac{2.(3)^2}{5} = \frac{18}{5}$ units

39.(b)
$$4a = 12$$

 $a = 3$
Focus = (0, a) = (0, 3)

- 40.(d) Obvious
- 41.(c) R = 2r = 2 × 4 = 8
- 42.(c) Obvious

43.(b)
$$\frac{\cot\theta.\cot\frac{\pi}{4} - 1}{\cot\frac{\pi}{4} + \cot\theta} \cdot \frac{\cot\frac{\pi}{4} \cdot \cot\theta + 1}{\cot\theta - \cot\frac{\pi}{4}}$$
$$\frac{\cot\theta - 1}{\cot\theta + 1} \cdot \frac{\cot\theta + 1}{\cot\theta - 1} = 1$$

44.(a)
$$\sin^{-1} x = \frac{\pi}{10}$$

$$\frac{\pi}{2} - (0)^{-1} x = \frac{\pi}{10}$$
 $\cos^{-1} x = \frac{2\pi}{5}$

45.(d)
$$A = \int_{0}^{\pi} y dx = \int_{0}^{\pi} \sin x dx = -[\cos x]_{0}^{\pi}$$

= 2 sq. units

47.(d) The plane
$$x = 0$$
 is yz-plane and $y = 0$ is zx-plane. Two planes meet in z-axis and they are also at rt. angle.

48.(a)
$$b^2 - 4ac = 36 - 4.19 = 0$$

Real and equal

Section – II

$$61.(c) \quad v = \left(\frac{\alpha\beta}{\alpha+\beta}\right)t = \frac{2\times4\times3}{2+4} = 4 \text{ m/s}$$

$$s = \frac{v^2(\alpha+\beta)}{2\alpha\beta} = \frac{4^2\times(2+4)}{2\times2\times4} = 6 \text{ m}$$

62.(a) Here,
$$v = \sqrt{5gR}$$

 $\sqrt{2gh} = \sqrt{5g\frac{d}{2}}$
 $h = \frac{5}{4}d = \frac{5}{4} \times 8 \text{ m} = 10 \text{ m}$

63.(d) P.A. =
$$2\pi r$$
. T

$$\rho gh.\pi r^2 = 2\pi r$$
. T

$$h = \frac{2T}{\rho gr} = \frac{4T}{\rho gd} = \frac{4T}{\rho gd}$$

$$= \frac{4 \times 75 \times 10^{-3}}{1000 \times 10 \times 0.1 \times 10^{-3}} = 0.3 \text{ m}$$

64.(b)
$$\Delta P.E. = \left\{ -\frac{GMm}{R+R} - \left(-\frac{GMm}{R} \right) \right\}$$
$$= \frac{GMm}{R} \left(1 - \frac{1}{2} \right) = \frac{gR^2.m}{R} \cdot \frac{1}{2} = \frac{mgR}{2}$$

65.(a)
$$\begin{aligned} PV_1 &= \frac{mR}{M} T \\ V_1 &= \frac{mRT}{PM} = \frac{10 \times 8.31 \times 383}{3 \times 10^5 \times 32} \\ &= 3.32 \times 10^{-3} \text{m}^3 \\ W &= PdV \\ &= 3 \times 10^5 (0.1 - 3.32 \times 10^{-3}) \\ &= 2.9 \times 10^4 \text{ J} \end{aligned}$$

66.(c) For convex lens
$$v = \frac{fu}{u - f} = \frac{20 \times 25}{25 - 20} = 100 \text{ cm}$$

Object and image coincide so image of convex lens must be at c of convex mirror so r = (100 -

$$f = \frac{r}{2} = \frac{60}{2} = 30 \text{ cm}$$

67.(a)
$$f = 5 \times \frac{1}{2l} \sqrt{\frac{9g}{m}} = 3 \frac{1}{2l} \sqrt{\frac{Mg}{m}}$$
or,
$$5\sqrt{9} = 3\sqrt{M}$$
or,
$$M = 25 \text{ kg}$$

PEA Association Pvt. Ltd. Thapathali, Kathmandu, Tel: 4245730, 4257187 2079-1-10 Hints & Solution

68.(d)
$$y = 5 \sin \left(\frac{t}{0.04} - \frac{x}{4} \right)$$

Then maximum velocity of particle will be

$$v_p = a\omega = 5 \times 10^{-2} \times \frac{1}{0.04} = 1.25 \text{ m/s}$$

$$\begin{array}{ll} 69.(c) & I = fcv = f'c'v \\ & or, \quad 100 \times 10^3 \times c = (100 \times 10^3 - 50) \ \epsilon_r c \\ & or, \quad \epsilon_r = \frac{100 \times 10^3}{100 \times 10^3 - 50} = 1.0005 = 1.001 \end{array}$$

Magnetic energy stored in inductor is $E = Energy density (U) \times volume (V)$

or,
$$\frac{1}{2} LI^2 = U \times V$$

or, $I = \sqrt{\frac{2UV}{L}} = \sqrt{\frac{2 \times 70 \times 0.02}{110 \times 10^{-3}}}$
= 5.05 A

71.(b)
$$M = \frac{\phi_c}{I_s} = \frac{N_c B_s A_c}{I_s} = \frac{N_c (\mu_0 n I_s) A_c}{I_s}$$
$$M = 100 \times 4\pi \times 10^{-7} \times 10 \times 100 \times \pi (0.01)^2$$

 $=40 \mu H$ 72.(b) For maximum power

$$R = r_t = 2\Omega$$

$$P = I^2 R = \left(\frac{2E}{2+2}\right)^2 \times 2$$

$$= \left(\frac{2 \times 2}{2+2}\right)^2 \times 2 = 2W$$

73.(c)
$$r \propto A^{1/3}$$

$$\frac{r_2}{r_1} = \left(\frac{A_2}{A_1}\right)^{1/3} = \left(\frac{206}{4}\right)^{1/3} = 3.72$$

$$r_2 = 3.72 \times 1.9 = 7 \text{ Fermi}$$
74.(b) Half life $(T_{1/2}) = 4 \text{ min}$

$$\frac{m}{m_0} = \left(\frac{1}{2}\right)^{\frac{t}{T_{1/2}}} \quad \text{or, } \frac{10}{80} = \left(\frac{1}{2}\right)^{\frac{t}{T_{1/2}}}$$
$$t = T_{1/2} \times 3 = 4 \times 3 = 12 \text{ min}$$

75.(c) Wt. of pure
$$CaC_2 = \frac{80}{100} \times 8 = 6.4 \text{ g}$$

 $CaC_2 + 2H_2O \longrightarrow C_2H_2 + Ca(OH)_2$
1 mole 1 mole
64g 22.4 L
6.4g $\frac{22.4}{6.4} \times 6.4 = 2.24 \text{ I}$

76.(b) EW of metal = $\frac{\text{wt. of metal}}{\text{wt. of oxygen}} \times 8$ $=\frac{65.22}{34.78}\times8=15$

Valency of metal

$$= \frac{2 \times V.D.}{EW \text{ of metal} + EW \text{ of Cl}}$$
$$= \frac{2 \times 75.75}{15 + 35.5} = 3$$

At. wt. of metal = $15 \times 3 = 45$

77.(a)
$$X_{H_2O_2} = \frac{nH_2O_2}{nH_2O_2 + nH_2O}$$

$$= \frac{\frac{20}{34}}{\frac{20}{34} + \frac{80}{18}} = \frac{9}{77} = 0.117$$

78.(d)
$$CaF_2 \longrightarrow Ca^{++} + 2F^-$$

 $K_{ip} \text{ of } CaF_2 = [Ca^{++}] [F^-]^2$
 $= 10^{-3} \times (10^{-3})^2$
 $= 10^{-9}$

 $K_{ip} > K_{sp}$ so ppt of CaF_2 occurs.

The gas formed is H₂S. It gives ppt with Zn⁺⁺ ion (present in group (II B) in alkaline medium

80.(c) Na =
$$\frac{V_b \times N_b}{V_a}$$
 = $\frac{32 \times 0.5}{25}$ = 0.64 N
 E_{acid} = $\frac{W \times 1000}{V \times N}$ = $\frac{7.2 \times 1000}{250 \times 0.64}$ = 45

 $\begin{array}{c} \text{Mol. wt.} = 2 \times E_{acid} = 2 \times 45 = 90 \\ \text{81.(d)} \quad \text{Ethene adds} \quad H_2O \quad \text{in presence of} \quad H_3PO_4 \quad \text{as} \end{array}$ crystal to give ethanol.

$$CH_2 = CH_2 + H_2O \xrightarrow{H_3PO_4} CH_3CH_2OH$$

crystal to give ethanol.

$$CH_{2} = CH_{2} + H_{2}O \xrightarrow{H_{3}PO_{4}} CH_{3}CH_{2}OH$$

$$82.(a) \quad I = \int \frac{(x^{4} + 1) - 1}{x(x^{4} + 1)} dx$$

$$= \int \frac{1}{x} dx - \int \frac{1}{x(x^{4} + 1)} dx$$

$$= \log_{e}x - f(x) - c + k$$

$$= \log_{e}x - f(x) + c_{1}$$

$$83.(d) \quad y = \tan^{-1}\left(\frac{2\sin x/2 \cos x/2}{2\cos^{2} x/2}\right)$$

83.(d)
$$y = \tan^{-1} \left(\frac{2\sin x/2 \cos x/2}{2\cos^2 x/2} \right)$$

= $\tan^{-1} \tan \frac{x}{2} = \frac{x}{2}$ $\frac{dy}{dx} = \frac{1}{2}$

84.(b) Put
$$\tan^{-1} x = \theta$$

 $\tan \theta = \frac{x}{1} = \frac{p}{b}$
 $h = \sqrt{1 + x^2}$
 $\cos 2\theta = \frac{1}{2} \Rightarrow 1 - 2\sin^2 \theta = \frac{1}{2}$
 $1 - 2\frac{x^2}{1 + x^2} = \frac{1}{2}$
 $x = \frac{1}{\sqrt{3}}$

$$x = \frac{1}{\sqrt{3}}$$

$$85.(b) \frac{\cos A}{a} + \frac{\cos B}{b} + \frac{\cos C}{c}$$

$$= \frac{b^2 + c^2 - a^2}{2abc} + \frac{c^2 + a^2 - b^2}{2abc} + \frac{a^2 + b^2 - c^2}{2abc}$$

$$= \frac{a^2 + b^2 + c^2}{2abc}$$

$$= \frac{a^2 + b^2 + c^2}{2abc}$$

86.(c) Putting z = 6 from option.

$$\left| \frac{6-4}{6-8} \right| = 1$$

$$1 = 1$$

PEA Association Pvt. Ltd. Thapathali, Kathmandu, Tel: 4245730, 4257187 2079-1-10 Hints & Solution

87.(d)
$$|x|^2 - 7|x| + 12 = 0$$

 $(|x| - 3) (|x| - 4) = 0$
 $|x| = 3, 4 \text{ (Both are +ve)}$
No. of real roots = 4

88.(a)
$$x = \frac{1}{1-a} \Rightarrow a = \frac{x-1}{x}$$
..... (i) $y = \frac{1}{1-b} \Rightarrow b = \frac{y-1}{y}$ (ii) We have: $1 + ab + a^2b^2 + \dots = \frac{1}{1-ab}$
$$= \frac{1}{1 - \frac{x-1}{x} \cdot \frac{y-1}{y}} = \frac{xy}{x+y-1}$$

89.(c)
$$y = f(x) = \frac{1}{\sqrt{x-1}}$$

 $(x-1) > 0 \text{ i.e. } x > 1$
Domain = $(1, \infty)$

90.(c)
$$\vec{a} + \vec{b} + \vec{c} = 0$$

 $\vec{a} + \vec{b} = -\vec{c}$ $\Rightarrow |\vec{a} + \vec{b}| = |-\vec{c}|$
Squaring $\vec{a} + \vec{b} = \vec{c}$ $\Rightarrow |\vec{a} + \vec{b}| = |-\vec{c}|$
 $\vec{b} = \vec{c}$
 $\vec{b} = \vec{c}$
 $\vec{c} = \vec{c}$

91.(c)
$$b = \frac{a}{1} - \frac{a^2}{2} + \frac{a^3}{3} - \frac{a^4}{4} + \dots \infty$$

$$b = \log_e(1 + a)$$

$$e^b = 1 + a$$

$$1 + a = 1 + \frac{b}{1!} + \frac{b^2}{2!} + \frac{b^3}{3!} + \dots \infty$$
92.(b)
$$T = S_1$$

$$yy_1 - 2a(x + x_1) = (-3)(-3) - 2.2(2 + 2)$$

 $-3y - 4(\alpha + 2) = -7$
 $\boxed{4x + 3y + 1 = 0}$

Altd: Only the option (b) is satisfied by the given point.

93.(d) Making homogeneous
$$x^2 + y^2 - 2y(x + y) + \lambda(x + y)^2 = 0$$

$$x^2(1 + \lambda) + y^2(-1 + \lambda) - 2xy = 0$$
 Two lines are perpendicular if $a + b = 0$
$$1 + \lambda - 1 + \lambda = 0$$

$$\lambda = 0$$

94.(b) By direct method
$$a = \frac{16ab}{3} = \frac{16 \times 1 \times 1}{3} = \frac{16}{4}$$

95.(c) Equation of ellipse
$$\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1 (a > b)$$

$$a = 5, ae = 3$$

$$\therefore e = \frac{3}{5}$$

$$\therefore 1 - \frac{b^2}{25} = \frac{9}{25}$$

$$\therefore b^2 = 16$$

$$\therefore \frac{x^2}{25} + \frac{y^2}{16} = 1$$
96.(a) Put $\sin x = t$ $\cos dx = dt$

$$\therefore \int a^t dt = \frac{a^t}{25} + c = \frac{a^{\sin x}}{25} + c$$

$$\therefore \int a^{t} dt = \frac{a^{t}}{\log a} + c = \frac{a^{\min x}}{\log a} + c$$
97.(c) 98.(c) 99.(c) 100.(a)

...The End...