PEA Association Pvt. Ltd. Thapathali, Kathmandu, Tel: 4245730, 4257187 2079-01-03 Hints & Solution						
1.(c)	Section - I		or, $\frac{1}{10} = \frac{1}{u} - \frac{1}{2u} = \frac{2-1}{2u}$			
2.(a)	$g' = g - \omega^2 R \cos^2 \lambda$ $\omega = 0, g' = g$		or, $u = \frac{10}{2} = 5 \text{ cm}$			
3.(d) 4 (d)	$\text{Ring} \rightarrow \text{MR}^2$	16.(d)	$Bqv = \frac{mv^2}{r}$ or, $P = Bqr$			
(u)	$\text{Disc} \rightarrow \frac{1}{2} \text{MR}^2$	17.(b)	Resistance is high then no current flows so act as capacitor			
	Spherical shell $\rightarrow \frac{2}{3}$ MR ²	18.(d)	Maximum oxidation number of element is equal to group number.			
	Sphere $\rightarrow \frac{2}{5}$ MR ²	19.(d)	H ₂ O			
5.(b)	$h = \frac{2T\cos\theta}{rog}$	I	H ₂ 0 Cu Cu S 0 H-bonding			
6.(c)	$\theta = 90^\circ, h = 0$ $d\Omega = du + d\omega$		H_2O			
	or, $\gamma du = du + P dv$ or, $du = \frac{PV}{\gamma - 1}$	20.(b)	$NaCl \rightarrow Na^+ + Cl^-$ $H_2O \Longrightarrow H^+ + OH^-$			
7.(a)	dQ = du + dw, Here $dw = 0 & dQ < 0$ means – ve so du is also negative i.e. internal energy decreased.		At cathode $2H^+ + 2e^- \rightarrow H_2$ At anode $2e^ Cl_2 \rightarrow H_2$ Remaining ions are Na ⁺ + OH ⁻ \Rightarrow Basic			
8.(a)	$\mathbf{v} \propto \mathbf{T}^{1/2}$ or, $\frac{\Delta \mathbf{v}}{\mathbf{v}} = \frac{1}{2} \frac{\Delta \mathbf{T}}{\mathbf{T}}$ or, $\Delta \mathbf{T} = \frac{1}{100} \times 2 \times 273 = 5.5^{\circ}\mathrm{C}$	21.(d) 22.(c)	n = 1 $C_1H_{2 \times 1 + 1}$ OH = CH ₃ OH methyl alcohol			
9.(b)	Here kx = $\frac{2\pi x}{3}$	23.(c)	HCO_3^- and OH^- -ion cann't exist together because they react as $HCO_3^- + OH^- \rightarrow CO_3^-$ $^- + H_2O$			
	or, $\frac{2\pi x}{\lambda} = \frac{2\pi x}{3}$ or, $\lambda = 3$ cm	24.(b)	Mg and Mn are only metals that gives H_2 gas with dilute HNO ₃			
	Distance between nodes $=\frac{\lambda}{2}=1.5$ cm	25.(b)	Zn ⁺⁺ ion lies in group IIIB metal ions and can give precipitate only in alkaline medium.			
10.(c)	$H = \frac{1}{2} cv^2 = \frac{1}{2} \times 2 \times 10^{-6} \times 100^2 = 0.01 J$	26.(c) 27 (b)	All metal nitrates are soluble in water. The structure of glyoxal is			
11.(d)	I = venA = v'e nA' or, v × πr^2 = v' π (2r) ² or, v' = $\frac{v}{4}$	_//(0)	$\begin{array}{c} 0 \\ \parallel \\ \parallel \\ H \\ - C \\ - C \\ - H \\ \parallel \\ \parallel \\ H \\ - C \\ - C \\ - H \\ \parallel \\$			
12.(b)	Potential gradient = $\frac{V_P}{l} = \frac{IR_P}{l}$	28.(c)	The reaction of sodium alkoxide with alkylhalide to give ether is called Williamson's			
	r = resistance per unit length If emf is tripled then current become three times so the potential gradient also become three times.	29.(d)	reaction. $y = \log_{x^{1/2}} x = \frac{1}{\frac{1}{2}} \log_{x} x$			
13.(d)	$L = 2\pi R \qquad R = \frac{L}{2\pi}$		y = 2.1 $\frac{dy}{dx} = 0$			
	$M = IA = I\pi R^2 = I\pi \left(\frac{2}{2\pi}\right) = \frac{12}{4\pi}$	30.(a)	1 + 1 + 1 = 3 1 + 1 + 3 = 5			
14.(b)	$\beta = \frac{DA}{d}$		1 + 3 + 5 = 9 3 + 5 + 9 = 17			
15.(b)	m = $-2 = \frac{v}{4}$ $v = -24$	31.(d)	$\lim_{x \to 0} \frac{a^{x}-1}{x} + \lim_{x \to 0} \frac{b^{x}-1}{x} + \lim_{x \to 0} \frac{c^{x}-1}{x}$			
	Now, $\frac{1}{f} = \frac{1}{n} + \frac{1}{N}$		$= \log a + \log b + \log c = \log(abc)$			
	. u v	32.(b)	$\int_{0}^{0} a^{2} dx - \int_{0}^{0} x^{2} dx$			

FEA Association Pvt. Ltd. Thapathali, Kathmandu, Tel: 4245730, 4257187 2079-01-03 Hints & Solution						
	$= a^{2}(x)_{0}^{a} = \left(\frac{x^{3}}{3}\right)_{0}^{a}$ $= a^{2}(a-0) - \left(\frac{a^{3}}{3} - 0\right) = \frac{2a^{3}}{3}$		Let other end be (x_1, y_1) So, $2 = \frac{x_1 + 3}{2}$, $3 = \frac{y_1 + 4}{2}$ \therefore $x_1 = 1$, $y_1 = 2$			
33.(b)	$2^{x} = e^{kx}$ $e^{\log 2^{x}} = e^{kx}$ $e^{x\log 2} = e^{kx}$ $k = \log 2$	48.(a)	Other end = (1, 2) $(\vec{a} \times \vec{b})^2 + (\vec{a} \cdot \vec{b})^2 = \vec{a} ^2 \vec{b} ^2$ or, 144 = 3 ² ($ \vec{b} ^2$) \therefore $ \vec{b} = 4$			
34.(d) 35.(a)	$O(A \times B) = mn$ n = 18	49.(a) 55.(d)	$\begin{array}{cccccccccccccccccccccccccccccccccccc$			
	For the greatest coeff. $r = \frac{n}{2} = \frac{18}{2} = 9$ Greatest coefficient = C(n, r) = C(18, 9)	61.(c)	Section – II $\vec{r} = (1 - \alpha t)t \vec{A} = (t - \alpha t^2) \vec{A}$			
36.(a)	Squaring and adding, we get $x^{2} + y = a^{2}$ (circle)		At time t_0 , $\vec{r} = 0$, $t_0 = \frac{1}{\alpha}$			
37.(a) 38.(d)	It is obvious. Length at major axis = $2a$ = $2 \times 5 = 10$	62.(a)	At $t = t_0$; $\vec{v} = -\vec{A}$ Retardation, $a = \mu g = 0.5 \times 10 = 5$ $v^2 = 2^2$			
39.(d)	$(\vec{i} + \vec{j} + \vec{k}) \cdot \frac{2\vec{i} + \vec{j} + \vec{k}}{\sqrt{6}} = \frac{2+1+1}{\sqrt{6}}$	63.(a)	Stopping distance, $S = \frac{V}{2a} = \frac{2}{2 \times 5} = 0.4 \text{ m}$ Common Normal			
40.(b)	$a = 2b \left(\frac{a^2 + b^2 - c^2}{2ab}\right)$ $c^2 = b^2$		vcos45° v ^l cosθ			
41.(b)	c = b A = 2ab = 24.3		$45^{\circ} \cdot \theta$ $45^{\circ} \cdot \theta$ 777777777777777777777777777777777777			
42.(c)	= 24 sq. units $\cos^2\theta + \sec^2\theta = (\cos\theta - \sec\theta)^2 + 2\cos\theta\sec\theta$ $= (\cos\theta - \sec\theta)^2 + 2 \ge 2$		$1 \Rightarrow \text{particle}$ $2 \Rightarrow \text{ground}$ $(v_2 = 0, v_2 = 0)$ $v_1' \sin \theta = v \sin 45^\circ = \frac{V}{V} \qquad (i)$			
43.(d)	Put $\cot^{-1}x = \theta$ $\cot\theta = \frac{x}{1} = \frac{b}{2}$		$e = \left(\frac{v_2 - v_1}{\sqrt{2}}\right) \text{ along common normal}$			
	$h = \sqrt{1 + x^2}$ Now, $\sin\theta = \frac{1}{\sqrt{1 + x^2}}$		$e = \frac{0 - v'\cos(\uparrow)}{v\cos 45^{\circ}(\downarrow)} = \frac{v'\cos\theta}{v\cos 45^{\circ}}$			
44.(d)	$a^{2} = 9, b^{2} = 16$ (b > a) $e = \sqrt{1 - \frac{a^{2}}{b^{2}}} = \frac{\sqrt{7}}{4}$		$\frac{1}{\sqrt{2}} \sqrt{2} \sqrt{2} \sqrt{2} = \frac{1}{\sqrt{2}} \sqrt{2}$ Solving (i) & (ii) we get $\sqrt{2} \sqrt{2} \sqrt{2} \sqrt{3}$			
45.(b)	Foci = $(0, \pm be) = (0, \pm \sqrt{7})$ 2x + 4y - 4z + 10 = 0 2x + 4y - 4z + 1 = 0	64.(a)	$\mathbf{v}' = \sqrt{\left(\frac{1}{2}\right)} + \left(\frac{1}{\sqrt{2}}\right) = \frac{\sqrt{3}}{2}\mathbf{v}$ $\mathbf{v} = \sqrt{\frac{\mathrm{GM}}{\mathrm{r}}} = \sqrt{\frac{\mathrm{GM}}{\mathrm{R}+\mathrm{R}}} = \sqrt{\frac{\mathrm{GM}}{2\mathrm{R}}}$			
46.(c)	Distance = $\left \frac{d_1 - d_2}{\sqrt{a^2 + b^2 + c^2}} \right = \frac{9}{6} = \frac{3}{2}$ (2 - k)x + (k - 3)y + 5k + 4 = 0	65 (c)	$\therefore KE = \frac{1}{2} \text{ mv}^2 = \frac{1}{2} \text{ m} \frac{\text{gR}^2}{2\text{R}} = \frac{1}{4} \text{ mgR}$ $d\omega = \text{Rdy}$			
	For horizontal line, slope = 0 i.e. $-\frac{2-k}{k-3} = 0$	05.(0)	$= 10^{5} (1671 - 1) \times 10^{-6}$ = 167 J = 40 cals			
47.(c)	$\therefore k = 2$ Centre = (2, 3)		= 540 - 40 = 500 cals			

DEA Accoriation D (T (1 m)

PEA Association Pvt. Ltd. Thapathali, Kathmandu, Tel: 4245730, 4257187 2079-01-03 Hints & Solution					
66.(a)	$Q = \int_{0}^{10} dQ = \int_{0}^{10} msd\theta$		Here $E_n = E_1 + E$ = -13.6 + 12.73 = -0.87 eV		
	$=\int_{0}^{10} \times 0.6\theta^2 d\theta$		Now, $E_n = -\frac{13.6}{n^2}$		
	$= 6 \left(\frac{\theta^3}{3}\right)^{10} = 2(10^3 - 0^3) = 2000 \text{ cal}$		or, $n = \sqrt{\frac{13.6}{0.87}} = 4$		
67.(a)	y = rsinœt	74.(d)	206g of Pb^{206} is formed from 238g		
	or, $\frac{1}{2} = r \sin \omega t$		$3xg \text{ of Pb}^{206} \text{ is formed from} = \frac{238}{206} \times 3x$		
	or, $\sin 30 = \sin \omega t$		= 3.47x Total mass (m.) = $4x + 3.47x$		
	or, $30 \times \frac{\pi}{180} = \frac{2\pi}{T}$. t		= 7.47x		
	or, $t = \frac{T}{12} = \frac{12}{12} = 1s$		m = 4x		
68.(b)	$C = C'$ $\varepsilon_0 A = \varepsilon_0 A$		Now $\frac{\mathrm{m}}{\mathrm{m}_0} = \left(\frac{1}{2}\right)^{\mathrm{T}_{1/2}}$		
	or, $-\frac{d}{d} = \frac{1}{d - t\left(1 - \frac{1}{\varepsilon_r}\right) + 3.5 \times 10^{-5}}$		or, $\frac{4}{7.47} = \left(\frac{1}{2}\right)^{\frac{1}{T_{1/2}}}$		
	or, $d = d - 4 \times 10^{-5} \left(1 - \frac{1}{\epsilon_r} \right) + 3.5 \times 10^{-5}$		$ln\left(\frac{4}{747}\right)$		
	or, $4 \times 10^{-5} \left(1 - \frac{1}{\varepsilon_r} \right) = 3.5 \times 10^{-5}$		or, $t = \frac{1}{\ln\left(\frac{1}{2}\right)} \times 4.5 \times 10^9$		
	or, $4 - \frac{4}{\varepsilon_r} = 3.5$		$= 4 \times 10^9$ years		
	or, $\frac{4}{\epsilon_r} = 0.5$ or, $\epsilon_r = \frac{4}{0.5} = 8$	75.(b)	80g of NH ₄ NO ₃ contains 6.023×10^{-7} no. of NO ₃		
69.(b)	$I = \frac{2E}{3+2r} = \frac{E}{2r}$		80g of NH ₄ NO ₃ contains $\frac{6.023 \times 10^{23} \times 8}{80}$		
	$3 + \frac{1}{2}$		$= 6.023 \times 10^{22}$		
	or, $\frac{2}{3+2r} = \frac{1}{2+\frac{r}{2}}$	7440	$[NH_4NO_3 = 14 + 4 + 14 + 48 = 80]$ Mass of metal oxide		
	3 + 2	76.(c)	Mass of metal chloride		
70 (b)	$\frac{V^2}{V} = mL$		$= \frac{\text{Ew of metal} + \text{Ew of O}}{\text{Ew of metal} + \text{Ew of Cl}}$		
70.(0)	$R = \frac{210^2}{210^2}$		$=\frac{3}{5}=\frac{E+8}{E+25.5}$		
	or, $m = \frac{1}{50 \times 80 \times 4200} = 2.6 \times 10^{-3} \text{ kg} = 2.6 \text{ g}$		5 = E + 55.5 5E + 40 = 3E + 106.5		
71.(a)	$B_a = \frac{1}{8} B_c$		2E = 66.5		
	or, $\frac{\mu_0 \text{NIR}^2}{2(\text{R}^2 + \text{x}^2)^{3/2}} = \frac{1}{8} \times \frac{\mu_0 \text{NI}}{2\text{R}}$	77.(c)	E = 33.25 pH = 2, H ⁺ = 10 ⁻² M		
	or, $8R^3 = (R^2 + x^2)^{3/2}$		Diluted 10 times = $\frac{10^{-2}}{10} = 10^{-3}$		
	or, $2R = (R^2 + x^2)^{1/2}$ or, $4R^2 = R^2 + x^2$		$pH = -log [10^{-3}] = 3$		
	or, $x^2 = 3R^2$	78.(c)	$\frac{\text{Volume of CO}_2 \text{ at STP}}{\text{From Learning SCO}_2 \text{ at STP}} = \frac{\text{V} \times \text{N}}{1000}$		
72 (1)	or, $x = \sqrt{3} R$		Eq. volume of CO_2 at STP 1000 224 100 × N 1		
/2.(b)	$x = 1.5 \beta = 1.5 \frac{d}{d}$		$\frac{11200}{11200} = \frac{1000}{1000} \therefore N = \frac{1}{5}$		
	$=\frac{1.3 \times 1 \times 0.3 \times 10^{-1}}{10^{-3}}$	79.(d)	Eq. wt. of acid = $\frac{\text{wt. of AI saft} \times 9}{\text{wt. of Al}} - 8$		
	$= 9.75 \times 10^{-4} \text{ m} = 0.975 \text{ mm}$ hc $6.62 \times 10^{-34} \times 3 \times 10^{8}$		$=\frac{21.3 \times 9}{2.7} - 8 = 63$		
73.(c)	$E = \frac{1}{\lambda} = \frac{1002}{975 \times 10^{-10}} = 12.73 \text{ eV}$		2.,		

PEA Association Pvt. Ltd. Thapathali, Kathmandu, Tel: 4245730, 4257187 2079-01-03 Hints & Solution

80.(c) The gas formed is
$$Cl_2$$
 and gives a mixture of MaCl and NaClO₃ with hot and cone. NaOH 4HCl + MnO₂ \rightarrow Cl₂ + MnCl₂ + 2H₂O
81.(b) The gas is acetylene which on catalytic hydration gives vinyl alcohol which rearranges forming acetaldehyde.
CaC₂ + H₂O \rightarrow C₂H₂ + Ca(OH)₂
HC = CH $\frac{dil. H_2SO_4}{HgSO_4} \rightarrow$ CH₂ = CH \rightarrow CH₃ - C - H acetaldehyde
82.(b) $\int_{0}^{\pi/2} e^{s}(\sin x + \cos x) dx = [e^{s}\sin x]_{0}$ acetaldehyde
82.(c) $\int_{0}^{\pi/2} e^{s}(\sin x + \cos x) dx = [e^{s}\sin x]_{0}$
 $= e^{e^{2}} \sin \frac{\pi}{2} - e^{0}\sin 0 = e^{e^{2}}$
83.(d) $f(x) = |\sin x|$
 $f(\frac{3\pi}{4}) = (\sin \frac{3\pi}{4}) = \frac{1}{\sqrt{2}}$
84.(a) Put cos⁻¹x = θ
 $\cos \theta = \frac{x}{1} = \frac{b}{h}$
 $P = \sqrt{1 - x^{2}} \operatorname{sincot}^{-1} \tan \theta = \operatorname{sincot}^{-1} \frac{\sqrt{1 - x^{2}}}{x}$
 $P = \sqrt{1 - x^{2}} \operatorname{sincot}^{-1} \tan \theta = \operatorname{sincot}^{-1} \frac{\sqrt{1 - x^{2}}}{x}$
 $P = \sqrt{1 - x^{2}} \operatorname{sincot}^{-1} \tan \theta = \operatorname{sincot}^{-1} \frac{\sqrt{1 - x^{2}}}{x}$
 $P = \sqrt{1 - x^{2}} \operatorname{sincot}^{-1} \tan \theta = \operatorname{sincot}^{-1} \frac{\sqrt{1 - x^{2}}}{x}$
 $P = \sqrt{1 - x^{2}} \operatorname{sincot}^{-1} \tan \theta = \operatorname{sincot}^{-1} \frac{\sqrt{1 - x^{2}}}{x}$
 $P = \sqrt{1 - x^{2}} \operatorname{sincot}^{-1} \tan \theta = \operatorname{sincot}^{-1} \frac{\sqrt{1 - x^{2}}}{x}$
 $P = \sqrt{1 - x^{2}} \operatorname{sincot}^{-1} \tan \theta = \operatorname{sincot}^{-1} \frac{\sqrt{1 - x^{2}}}{x}$
 $P = \sqrt{1 - x^{2}} \operatorname{sincot}^{-1} \tan \theta = \operatorname{sincot}^{-1} \frac{\sqrt{1 - x^{2}}}{x}$
 $P = \sqrt{1 - x^{2}} \operatorname{sincot}^{-1} \tan \theta = \operatorname{sincot}^{-1} \frac{\sqrt{1 - x^{2}}}{x}$
 $P = \sqrt{1 - x^{2}} \operatorname{sincot}^{-1} \tan \theta = \operatorname{sincot}^{-1} \frac{\sqrt{1 - x^{2}}}{x}$
 $P = \sqrt{1 - x^{2}} \operatorname{sincot}^{-1} \tan \theta = \operatorname{sincot}^{-1} \frac{\sqrt{1 - x^{2}}}{x}$
 $P = \sqrt{1 - x^{2}} \operatorname{sincot}^{-1} \tan \theta = \operatorname{sincot}^{-1} \frac{\sqrt{1 - x^{2}}}{x}$
 $P = \sqrt{1 - x^{2}} \operatorname{sincot}^{-1} \tan \theta = \operatorname{sincot}^{-1} \frac{\sqrt{1 - x^{2}}}{x}$
 $P = \sqrt{1 - x^{2}} \operatorname{sincot}^{-1} \tan \theta = \operatorname{sincot}^{-1} \frac{\sqrt{1 - x^{2}}}{x}$
 $P = \sqrt{1 - x^{2}} \operatorname{sincot}^{-1} \tan \theta = \operatorname{sincot}^{-1} \frac{\sqrt{1 - x^{2}}}{x}$
 $P = \sqrt{1 - x^{2}} \operatorname{sincot}^{-1} \operatorname{sincot}^{-1}$

From the graph
No solution
i.e.
$$(P \cap Q) = \phi$$

90.(c) Coplanar if: $\begin{vmatrix} a & 1 & 1 \\ 1 & b & 1 \\ 1 & 1 & c \end{vmatrix} = 0$
On expanding: $\boxed{abc + 2 = a + b + c}$
91.(d) $t_n = \frac{2 + 4 + 6 + \dots + n \text{ terms}}{n!}$
 $= \frac{n(n+1)}{n(n-1)!} = \frac{(n-1)+2}{(n-1)!}$
 $= \frac{1}{(n-1)!} + \frac{2}{(n-1)!}$
Putting $n = 1, 2, 3, \dots$ and adding
Sum $= e + 2e = 3e$
92.(c) An solving: $(2x + \lambda)^2 = 2x$
 $4x^2 + 2x (2\lambda - 1) + \lambda^2 =$
Does not intersect if
 $b^2 - 4ac < 0$
 $[2(2\lambda - 1)]^2 - 4.4 \lambda^2 < 0 \quad \lambda > \frac{1}{4}$
93.(a) $10 - \alpha > 0$ and $\alpha - 4 > 0 \implies \alpha < 4$
94.(d) Equation of tangent is $y = \frac{1}{t}x + at$
Slope of normal $= -t$
95.(a) $m_1 + m_2 = -\frac{2h}{b} = \frac{k}{3}$
 $m_1m_2 = \frac{a}{b} = -\frac{1}{3}$
By question, $\frac{k}{3} = 2\left(-\frac{1}{3}\right)$
 $\Rightarrow k = -2$
96.(d) D.C's are $\frac{2}{3}, \frac{1}{3}, -\frac{2}{3}$
 $\therefore r = 9$
Coordinates $= (lr, mr, nr)$
 $= \left(\frac{2}{3} \times 9, \frac{1}{3} \times 9, -\frac{2}{3} \times 9\right)$
 $= (6, 3, -6)$
or, OP = 9 is given by only (d).
97.(d) 98.(c) 99.(b) 100.(a)

...The End...