PEA Association Pvt. Ltd. Thapathali, Kathmandu, Tel: 4245730, 4257187 2079-01-03 Hints \& Solution

Section -

1.(c)
2.(a) $g^{\prime}=g-\omega^{2} R \cos ^{2} \lambda$
$\omega=0, g^{\prime}=g$
3.(d)
4.(d) \quad Ring $\rightarrow \mathrm{MR}^{2}$

Disc $\rightarrow \frac{1}{2} \mathrm{MR}^{2}$
Spherical shell $\rightarrow \frac{2}{3} \mathrm{MR}^{2}$
Sphere $\rightarrow \frac{2}{5}$ MR 2
5.(b) $\mathrm{h}=\frac{2 \mathrm{~T} \cos \theta}{\mathrm{r} \rho \mathrm{g}}$
$\theta=90^{\circ}, \mathrm{h}=0$
6.(c) $d Q=d u+d \omega$
or, $\quad \gamma \mathrm{du}=\mathrm{du}+\mathrm{Pdv}$
or, $\quad \mathrm{du}=\frac{\mathrm{PV}}{\gamma-1}$
7.(a) $d Q=d u+d w$, Here $d w=0 \& d Q<0$ means ve so du is also negative i.e. internal energy decreased.
8.(a) $\quad \mathrm{v} \propto \mathrm{T}^{1 / 2}$
or, $\frac{\Delta \mathrm{v}}{\mathrm{v}}=\frac{1}{2} \frac{\Delta \mathrm{~T}}{\mathrm{~T}}$ or, $\Delta \mathrm{T}=\frac{1}{100} \times 2 \times 273=5.5^{\circ} \mathrm{C}$
9.(b) Here $\mathrm{kx}=\frac{2 \pi \mathrm{x}}{3}$
or, $\frac{2 \pi \mathrm{x}}{\lambda}=\frac{2 \pi \mathrm{x}}{3} \quad$ or, $\lambda=3 \mathrm{~cm}$
Distance between nodes $=\frac{\lambda}{2}=1.5 \mathrm{~cm}$
$\mathrm{H}=\frac{1}{2} \mathrm{cv}^{2}=\frac{1}{2} \times 2 \times 10^{-6} \times 100^{2}=0.01 \mathrm{~J}$
11.(d) $\mathrm{I}=\mathrm{venA}=\mathrm{v}^{\prime} \mathrm{e} \mathrm{nA}^{\prime}$
or, $\mathrm{v} \times \pi \mathrm{r}^{2}=\mathrm{v}^{\prime} \pi(2 \mathrm{r})^{2} \quad$ or, $\mathrm{v}^{\prime}=\frac{\mathrm{v}}{4}$
12.(b) Potential gradient $=\frac{\mathrm{V}_{\mathrm{P}}}{l}=\frac{\mathrm{IR}_{\mathrm{P}}}{l}$
$r=$ resistance per unit length
If emf is tripled then current become three times so the potential gradient also become three times.
13.(d) $\mathrm{L}=2 \pi \mathrm{R}$

$$
\mathrm{R}=\frac{\mathrm{L}}{2 \pi}
$$

$\mathrm{M}=\mathrm{IA}=\mathrm{I} \pi \mathrm{R}^{2}=\mathrm{I} \pi\left(\frac{\mathrm{L}}{2 \pi}\right)^{2}=\frac{\mathrm{IL}^{2}}{4 \pi}$
14.(b) $\beta=\frac{\mathrm{D} \lambda}{\mathrm{d}}$
β increases if ' d ' decreases
15.(b)
$\mathrm{m}=-2=\frac{\mathrm{v}}{4} \quad \mathrm{v}=-24$
Now, $\frac{1}{\mathrm{f}}=\frac{1}{\mathrm{u}}+\frac{1}{\mathrm{~V}}$
or, $\frac{1}{10}=\frac{1}{\mathrm{u}}-\frac{1}{2 \mathrm{u}}=\frac{2-1}{2 \mathrm{u}}$
or, $u=\frac{10}{2}=5 \mathrm{~cm}$
16.(d) $\quad \mathrm{Bqv}=\frac{\mathrm{mv}^{2}}{\mathrm{r}} \quad$ or, $\mathrm{P}=\mathrm{Bqr}$
17.(b) Resistance is high then no current flows so act as capacitor.
18.(d) Maximum oxidation number of element is equal to group number.
19.(d)

20.(b) $\quad \mathrm{NaCl} \rightarrow \mathrm{Na}^{+}+\mathrm{Cl}^{-}$
$\mathrm{H}_{2} \mathrm{O} \rightleftharpoons \mathrm{H}^{+}+\mathrm{OH}^{-}$
At cathode $2 \mathrm{H}^{+}+2 \mathrm{e}^{-} \rightarrow \mathrm{H}_{2}$ Remaining ions are At anode $\left.2 \mathrm{e}^{-}-\mathrm{Cl}_{2} \rightarrow \mathrm{H}_{2}\right\} \mathrm{Na}^{+}+\mathrm{OH}^{-} \Rightarrow$ Basic
21.(d)
22.(c) $\mathrm{n}=1$
$\mathrm{C}_{1} \mathrm{H}_{2 \times 1+1} \mathrm{OH}=\mathrm{CH}_{3} \mathrm{OH}$ methyl alcohol
23.(c) HCO_{3}^{-}and OH^{-}-ion cann't exist together because they react as $\mathrm{HCO}_{3}^{-}+\mathrm{OH}^{-} \rightarrow \mathrm{CO}_{3}^{-}$ $+\mathrm{H}_{2} \mathrm{O}$
24.(b) Mg and Mn are only metals that gives H_{2} gas with dilute HNO_{3}
25.(b) Zn^{++}ion lies in group IIIB metal ions and can give precipitate only in alkaline medium.
26.(c) All metal nitrates are soluble in water.
27.(b) The structure of glyoxal is

28.(c) The reaction of sodium alkoxide with alkylhalide to give ether is called Williamson's reaction.
29.(d) $y=\log _{x^{1 / 2}} x=\frac{1}{\frac{1}{2}} \log _{x} x$
$y=2.1$
$\frac{d y}{d x}=0$
30.(a) $1+1+1=3$
$1+1+3=5$
$1+3+5=9$
$3+5+9=17$
31.(d) $\lim _{x \rightarrow 0} \frac{a^{x}-1}{x}+\lim _{x \rightarrow 0} \frac{b^{x}-1}{x}+\lim _{x \rightarrow 0} \frac{c^{x}-1}{x}$ $=\log a+\log b+\log c=\log (a b c)$
32.(b) $\quad \int_{0}^{a} a^{2} d x-\int_{0}^{a} x^{2} d x$

PEA Association Pvt. Ltd. Thapathali, Kathmandu, Tel: 4245730, 4257187

$=\mathrm{a}^{2}(\mathrm{x})_{0}{ }^{\mathrm{a}}=\left(\frac{\mathrm{x}^{3}}{3}\right)_{0}^{\mathrm{a}}$
$=\mathrm{a}^{2}(\mathrm{a}-0)-\left(\frac{\mathrm{a}^{3}}{3}-0\right)=\frac{2 \mathrm{a}^{3}}{3}$
33.(b) $2^{x}=e^{k x}$
$\mathrm{e}^{\log 2^{x}}=\mathrm{e}^{\mathrm{kx}}$
$\mathrm{e}^{\mathrm{x} \log 2}=\mathrm{e}^{\mathrm{kx}}$
$\mathrm{k}=\log _{\mathrm{e}} 2$
34.(d) $\quad \mathrm{O}(\mathrm{A} \times \mathrm{B})=\mathrm{mn}$
35.(a) $\mathrm{n}=18$

For the greatest coeff. $\mathrm{r}=\frac{\mathrm{n}}{2}=\frac{18}{2}=9$
Greatest coefficient $=\mathrm{C}(\mathrm{n}, \mathrm{r})=\mathrm{C}(18,9)$
36.(a) Squaring and adding, we get
$x^{2}+y=a^{2}$ (circle)
37.(a) It is obvious.
38.(d) Length at major axis $=2 \mathrm{a}$

$$
=2 \times 5=10
$$

39.(d)
$(\vec{i}+\vec{j}+\vec{k}) \cdot \frac{2 \vec{i}+\vec{j}+\vec{k}}{\sqrt{6}}=\frac{2+1+1}{\sqrt{6}}$
40.(b) $a=2 b\left(\frac{a^{2}+b^{2}-c^{2}}{2 a b}\right)$
$c^{2}=b^{2}$
$\mathrm{c}=\mathrm{b}$
41.(b) $\mathrm{A}=2 \mathrm{ab}$

$$
=24.3
$$

$$
=24 \text { sq. units }
$$

42.(c) $\cos ^{2} \theta+\sec ^{2} \theta=(\cos \theta-\sec \theta)^{2}+2 \cos \theta \sec \theta$ $=(\cos \theta-\sec \theta)^{2}+2 \geq 2$
43.(d) Put $\cot ^{-1} \mathrm{x}=\theta$
$\cot \theta=\frac{\mathrm{x}}{1}=\frac{\mathrm{b}}{\mathrm{p}}$
$\mathrm{h}=\sqrt{1+\mathrm{x}^{2}}$
Now, $\sin \theta=\frac{1}{\sqrt{1+\mathrm{x}^{2}}}$
44.(d) $a^{2}=9, b^{2}=16 \quad(b>a)$
$e=\sqrt{1-\frac{\mathrm{a}^{2}}{\mathrm{~b}^{2}}}=\frac{\sqrt{7}}{4}$
Foci $=(0, \pm$ be $)=(0, \pm \sqrt{7})$
45.(b) $2 x+4 y-4 z+10=0$
$2 x+4 y-4 z+1=0$
Distance $=\left|\frac{d_{1}-d_{2}}{\sqrt{\mathrm{a}^{2}+\mathrm{b}^{2}+\mathrm{c}^{2}}}\right|=\frac{9}{6}=\frac{3}{2}$
46.(c) $\quad(2-k) x+(k-3) y+5 k+4=0$

For horizontal line, slope $=0$
i.e. $-\frac{2-\mathrm{k}}{\mathrm{k}-3}=0$
$\therefore \quad \mathrm{k}=2$
47.(c) \quad Centre $=(2,3)$

Let other end be ($\mathrm{x}_{1}, \mathrm{y}_{1}$)
So, $2=\frac{x_{1}+3}{2}, 3=\frac{y_{1}+4}{2}$
$\therefore \quad \mathrm{x}_{1}=1, \mathrm{y}_{1}=2$
Other end $=(1,2)$
48.(a) $\quad(\vec{a} \times \vec{b})^{2}+(\vec{a} \cdot \vec{b})^{2}=|\vec{a}|^{2}|\vec{b}|^{2}$
or, $144=3^{2}\left(|\vec{b}|^{2}\right) \quad \therefore|\vec{b}|=4$
49.(a) $\quad 50 .(\mathrm{c}) \quad 51 .(\mathrm{d}) \quad 52 .(\mathrm{c}) \quad 53 .(\mathrm{d}) \quad 54 .(\mathrm{c})$
55.(d) $\quad 56$.(a) $\quad 57 .(\mathrm{a}) \quad 58 .(\mathrm{c}) \quad 59 .(\mathrm{d}) \quad 60 .(\mathrm{b})$

Section - II

61.(c) $\overrightarrow{\mathrm{r}}=(1-\alpha \mathrm{t}) \mathrm{t} \overrightarrow{\mathrm{A}}=\left(\mathrm{t}-\alpha \mathrm{t}^{2}\right) \overrightarrow{\mathrm{A}}$

At time $\mathrm{t}_{0}, \overrightarrow{\mathrm{r}}=0, \mathrm{t}_{0}=\frac{1}{\alpha}$
At $t=t_{0} ; \vec{v}=-\vec{A}$
62.(a) Retardation, $a=\mu g=0.5 \times 10=5$

Stopping distance, $S=\frac{\mathrm{v}^{2}}{2 \mathrm{a}}=\frac{2^{2}}{2 \times 5}=0.4 \mathrm{~m}$
63.(a)

$1 \Rightarrow$ particle
$2 \Rightarrow$ ground
($\mathrm{v}_{2}=0, \mathrm{v}_{2}=0$)
$\mathrm{v}^{\prime} \sin \theta=\mathrm{v} \sin 45^{\circ}=\frac{\mathrm{v}}{\sqrt{2}}$
$e=\left(\frac{v_{2}-v_{1}}{u_{1}-u_{2}}\right)$ along common normal
$\mathrm{e}=\frac{0-\mathrm{v}^{\prime} \cos (\uparrow)}{\mathrm{v} \cos 45^{\circ}(\downarrow)}=\frac{\mathrm{v}^{\prime} \cos \theta}{\mathrm{v} \cos 45^{\circ}}$
${ }^{\prime} \mathrm{v}^{\prime} \cos \theta=\mathrm{ev} \cos 45^{\circ}=\frac{1}{\sqrt{2}} \times \mathrm{v} \times \frac{1}{\sqrt{2}}=\frac{\mathrm{v}}{2} \ldots$
Solving (i) \& (ii) we get
$\mathrm{v}^{\prime}=\sqrt{\left(\frac{\mathrm{v}}{2}\right)^{2}+\left(\frac{\mathrm{v}}{\sqrt{2}}\right)^{2}}=\frac{\sqrt{3}}{2} \mathrm{v}$
64.(a)
$v=\sqrt{\frac{\mathrm{GM}}{\mathrm{r}}}=\sqrt{\frac{\mathrm{GM}}{\mathrm{R}+\mathrm{R}}}=\sqrt{\frac{\mathrm{GM}}{2 \mathrm{R}}}$
$\therefore \quad \mathrm{KE}=\frac{1}{2} \mathrm{mv}^{2}=\frac{1}{2} \mathrm{~m} \frac{\mathrm{gR}^{2}}{2 \mathrm{R}}=\frac{1}{4} \mathrm{mgR}$
65.(c) $\mathrm{d} \omega=\mathrm{Pdv}$

$$
\begin{aligned}
& =10^{5}(1671-1) \times 10^{-6} \\
& =167 \mathrm{~J}=40 \mathrm{cals}
\end{aligned}
$$

$\therefore \quad \mathrm{du}=\mathrm{dQ}-\mathrm{d} \omega$

$$
=540-40=500 \mathrm{cals}
$$

PEA Association Pvt. Ltd. Thapathali, Kathmandu, Tel: 4245730, 4257187

2079-01-03 Hints \& Solution
66.(a) $\mathrm{Q}=\int_{0}^{10} \mathrm{dQ}=\int_{0}^{10} \operatorname{msd} \theta$

$$
\begin{aligned}
& =\int_{0}^{10} \times 0.6 \theta^{2} \mathrm{~d} \theta \\
& =6\left(\frac{\theta^{3}}{3}\right)^{10}=2\left(10^{3}-0^{3}\right)=2000 \mathrm{cal}
\end{aligned}
$$

67.(a) $y=r \sin \omega t$
or, $\frac{\mathrm{r}}{2}=\mathrm{rsin} \omega \mathrm{t}$
or, $\sin 30=\sin \omega \mathrm{t}$
or, $30 \times \frac{\pi}{180}=\frac{2 \pi}{\mathrm{~T}} . \mathrm{t}$
or, $\mathrm{t}=\frac{\mathrm{T}}{12}=\frac{12}{12}=1 \mathrm{~s}$
68.(b) $\mathrm{C}=\mathrm{C}^{\prime}$
or, $\frac{\varepsilon_{0} \mathrm{~A}}{\mathrm{~d}}=\frac{\varepsilon_{0} \mathrm{~A}}{\mathrm{~d}-\mathrm{t}\left(1-\frac{1}{\varepsilon_{\mathrm{v}}}\right)+3.5 \times 10^{-5}}$
or, $\mathrm{d}=\mathrm{d}-4 \times 10^{-5}\left(1-\frac{1}{\varepsilon_{\mathrm{r}}}\right)+3.5 \times 10^{-5}$
or, $4 \times 10^{-5}\left(1-\frac{1}{\varepsilon_{r}}\right)=3.5 \times 10^{-5}$
or, $4-\frac{4}{\varepsilon_{\mathrm{r}}}=3.5$
or, $\frac{4}{\varepsilon_{\mathrm{r}}}=0.5 \quad$ or, $\varepsilon_{\mathrm{r}}=\frac{4}{0.5}=8$
69.(b) $I=\frac{2 E}{3+2 r}=\frac{E}{3+\frac{r}{2}}$
or, $\frac{2}{3+2 r}=\frac{1}{3+\frac{r}{2}}$
or, $6+\mathrm{r}=3+2 \mathrm{r} \quad$ or, $\mathrm{r}=3 \Omega$
70.(b) $\frac{\mathrm{V}^{2}}{\mathrm{R}}=\mathrm{mL}_{\mathrm{f}}$
or, $\mathrm{m}=\frac{210^{2}}{50 \times 80 \times 4200}=2.6 \times 10^{-3} \mathrm{~kg}=2.6 \mathrm{~g}$
71.(a) $\quad B_{a}=\frac{1}{8} B_{c}$
or, $\frac{\mu_{0} \mathrm{NIR}^{2}}{2\left(\mathrm{R}^{2}+\mathrm{x}^{2}\right)^{3 / 2}}=\frac{1}{8} \times \frac{\mu_{0} \mathrm{NI}}{2 \mathrm{R}}$
or, $8 R^{3}=\left(R^{2}+x^{2}\right)^{3 / 2}$
or, $2 \mathrm{R}=\left(\mathrm{R}^{2}+\mathrm{x}^{2}\right)^{1 / 2}$
or, $4 R^{2}=R^{2}+x^{2}$
or, $x^{2}=3 R^{2}$
or, $x=\sqrt{3} R$
72.(b) $\mathrm{x}=1.5 \beta=1.5 \frac{\mathrm{D} \lambda}{\mathrm{d}}$

$$
\begin{aligned}
& =\frac{1.5 \times 1 \times 6.5 \times 10^{-7}}{10^{-3}} \\
& =9.75 \times 10^{-4} \mathrm{~m}=0.975 \mathrm{~mm}
\end{aligned}
$$

73.(c) $\mathrm{E}=\frac{\mathrm{hc}}{\lambda}=\frac{6.62 \times 10^{-34} \times 3 \times 10^{8}}{975 \times 10^{-10}}=12.73 \mathrm{eV}$

Here $E_{n}=E_{1}+E$

$$
=-13.6+12.73=-0.87 \mathrm{eV}
$$

Now, $\mathrm{E}_{\mathrm{n}}=\frac{13.6}{\mathrm{n}^{2}}$
or, $\mathrm{n}=\sqrt{\frac{13.6}{0.87}}=4$
74.(d) 206 g of Pb^{206} is formed from 238 g

3 xg of Pb^{206} is formed from $=\frac{238}{206} \times 3 \mathrm{x}$

$$
=3.47 x
$$

Total mass $\left(\mathrm{m}_{0}\right)=4 \mathrm{x}+3.47 \mathrm{x}$

$$
=7.47 \mathrm{x}
$$

$$
\mathrm{m}=4 \mathrm{x}
$$

Now $\frac{m}{m_{0}}=\left(\frac{1}{2}\right)^{\overline{T_{1 / 2}}}$
or, $\frac{4}{7.47}=\left(\frac{1}{2}\right)^{\frac{\mathrm{t}}{\mathrm{T}_{1 / 2}}}$
or, $\mathrm{t}=\frac{\ln \left(\frac{4}{747}\right)}{\ln \left(\frac{1}{2}\right)} \times 4.5 \times 10^{9}$

$$
=4 \times 10^{9} \text { years }
$$

75.(b) 80 g of $\mathrm{NH}_{4} \mathrm{NO}_{3}$ contains 6.023×10^{23} no. of $\mathrm{NO}_{3}{ }^{-}$
80 g of $\mathrm{NH}_{4} \mathrm{NO}_{3}$ contains $\frac{6.023 \times 10^{23} \times 8}{80}$

$$
=6.023 \times 10^{22}
$$

$\left[\mathrm{NH}_{4} \mathrm{NO}_{3}=14+4+14+48=80\right]$
76.(c) $\frac{\text { Mass of metal oxide }}{\text { Mass of metal chloride }}$
$=\frac{\text { Ew of metal }+ \text { Ew of O }}{\text { Ew of metal }+ \text { Ew of Cl }}$
$=\frac{3}{5}=\frac{E+8}{E+35.5}$
$5 \mathrm{E}+40=3 \mathrm{E}+106.5$
$2 \mathrm{E}=66.5$
$\mathrm{E}=33.25$
77.(c) $\mathrm{pH}=2, \mathrm{H}^{+}=10^{-2} \mathrm{M}$

Diluted 10 times $=\frac{10^{-2}}{10}=10^{-3}$
$\mathrm{pH}=-\log \left[10^{-3}\right]=3$
78.(c) $\frac{\text { Volume of } \mathrm{CO}_{2} \text { at } \mathrm{STP}}{\text { Eq. volume of } \mathrm{CO}_{2} \text { at } \mathrm{STP}}=\frac{\mathrm{V} \times \mathrm{N}}{1000}$
$\frac{224}{11200}=\frac{100 \times \mathrm{N}}{1000} \quad \therefore \mathrm{~N}=\frac{1}{5}$
79.(d) Eq. wt. of acid $=\frac{\text { wt. of Al salt } \times 9}{\text { wt. of } \mathrm{Al}}-8$

$$
=\frac{21.3 \times 9}{2.7}-8=63
$$

PEA Association Pvt. Ltd. Thapathali, Kathmandu, Tel: 4245730, 4257187 2079-01-03 Hints \& Solution

80.(c) The gas formed is Cl_{2} and gives a mixture of NaCl and NaClO_{3} with hot and conc. NaOH
$4 \mathrm{HCl}+\mathrm{MnO}_{2} \rightarrow \mathrm{Cl}_{2}+\mathrm{MnCl}_{2}+2 \mathrm{H}_{2} \mathrm{O}$
$3 \mathrm{Cl}_{2}+6 \mathrm{NaOH} \rightarrow 5 \mathrm{NaCl}+\mathrm{NaClO}_{3}+3 \mathrm{H}_{2} \mathrm{O}$
81.(b) The gas is acetylene which on catalytic hydration gives vinyl alcohol which rearranges forming acetaldehyde.
$\mathrm{CaC}_{2}+\mathrm{H}_{2} \mathrm{O} \longrightarrow \mathrm{C}_{2} \mathrm{H}_{2}+\mathrm{Ca}(\mathrm{OH})_{2}$

82.(b)
$\int_{0}^{\pi / 2} e^{x}(\sin x+\cos x) d x=\left[e^{x} \sin x\right]_{0}^{\pi / 2}$
$=e^{\pi / 2} \cdot \sin \frac{\pi}{2}-e^{0} \sin 0=e^{\pi / 2}$
83.(d) $\quad f^{\prime}(x)=|\sin x|$
$f\left(\frac{3 \pi}{4}\right)=\left(\sin \frac{3 \pi}{4}\right)=\frac{1}{\sqrt{2}}$
84.(a) Put $\cos ^{-1} x=\theta$
$\cos \theta=\frac{\mathrm{x}}{1}=\frac{\mathrm{b}}{\mathrm{h}}$
$P=\sqrt{1-x^{2}} \operatorname{sincot}^{-1} \tan \theta=\operatorname{sincot}^{-1} \frac{\sqrt{1-x^{2}}}{x}$
Put $\cot ^{-1} \frac{\sqrt{1-x^{2}}}{x}=\beta$ and find $\sin \beta$
85.(b) $2 \mathrm{~s}=2 \mathrm{r}_{1} \quad \mathrm{~s}=\operatorname{stan} \frac{\mathrm{A}}{2}$
$\tan 45=\tan \frac{\mathrm{A}}{2} \quad \mathrm{~A}=90^{\circ}($ Rt. angled $\Delta)$
86.(a) $\frac{\alpha}{\beta}+\frac{\beta}{\alpha}+2$
$=\frac{\mathrm{w}}{\mathrm{w}^{2}}+\frac{\mathrm{w}^{2}}{\mathrm{w}}+2$
$=\frac{1}{\mathrm{w}}+\mathrm{w}+2=\left(\mathrm{w}^{2}+\mathrm{w}\right)+2=-1+2=1$
87.(b) $\quad 3 \alpha+4 \alpha=-\frac{q}{p}$
$\alpha=-\frac{q}{7 p}$ and $(3 \alpha .4 \alpha)=\frac{r}{p}$
$12\left(-\frac{q}{7 p}\right)^{2}=\frac{r}{p}$
$12 q^{2}=49 p r$
88.(a) $114+\frac{2}{8}+\frac{3}{16}+\frac{4}{32}+$ \qquad ∞

Let $\mathrm{p}=2$
Taking: $\mathrm{s}_{\infty}=\frac{1}{4}+\frac{2}{8}+\frac{3}{6}+$ \qquad .∞
Using: $\mathrm{s}_{\infty}=\frac{\mathrm{a}}{1-\mathrm{r}}+\frac{\mathrm{d} . \mathrm{r}}{(1-\mathrm{r})^{2}}$
We get, $s_{\infty}=1 \quad$ So, $p=2^{\prime}=2$
89.(a)

From the graph
No solution
i.e. $(P \cap Q)=\phi$
90.(c)

Coplanar if: $\left|\begin{array}{lll}\mathrm{a} & 1 & 1 \\ 1 & \mathrm{~b} & 1 \\ 1 & 1 & \mathrm{c}\end{array}\right|=0$
On expanding: $\mathrm{abc}+2=\mathrm{a}+\mathrm{b}+\mathrm{c}$
91.(d) $\mathrm{t}_{\mathrm{n}}=\frac{2+4+6+\ldots \ldots+\mathrm{n} \text { terms }}{\mathrm{n}!}$

$$
=\frac{\mathrm{n}(\mathrm{n}+1)}{\mathrm{n}(\mathrm{n}-1)!}=\frac{(\mathrm{n}-1)+2}{(\mathrm{n}-1)!}
$$

$$
=\frac{1}{(n-1)!}+\frac{2}{(n-1)!}
$$

Putting $\mathrm{n}=1,2,3 \ldots \ldots$ and adding
Sum $=\mathrm{e}+2 \mathrm{e}=3 \mathrm{e}$
92.(c) An solving: $(2 x+\lambda)^{2}=2 x$
$4 x^{2}+2 x(2 \lambda-1)+\lambda^{2}=$
Does not intersect if
$b^{2}-4 a c<0$
$[2(2 \lambda-1)]^{2}-4.4 \lambda^{2}<0 \quad \lambda>\frac{1}{4}$
93.(a) $10-\alpha>0$ and $\alpha-4>0 \Rightarrow \alpha<4$
94.(d) Equation of tangent is $y=\frac{1}{t} x+$ at

Slope of tangent $=\frac{1}{t}$
Slope of normal $=-t$
95.(a) $\mathrm{m}_{1}+\mathrm{m}_{2}=-\frac{2 \mathrm{~h}}{\mathrm{~b}}=\frac{\mathrm{k}}{3}$
$\mathrm{m}_{1} \mathrm{~m}_{2}=\frac{\mathrm{a}}{\mathrm{b}}=-\frac{1}{3}$
By question, $\frac{\mathrm{k}}{3}=2\left(-\frac{1}{3}\right)$
$\Rightarrow \mathrm{k}=-2$
96.(d) D.C's are $\frac{2}{3}, \frac{1}{3},-\frac{2}{3}$
$\therefore \quad r=9$
Coordinates $=(l \mathrm{r}, \mathrm{mr}, \mathrm{nr})$

$$
\begin{aligned}
& =\left(\frac{2}{3} \times 9, \frac{1}{3} \times 9,-\frac{2}{3} \times 9\right) \\
& =(6,3,-6)
\end{aligned}
$$

or, $O P=9$ is given by only (d).
97.(d)

