PEA Association Pvt. Ltd. Thapathali, Kathmandu, Tel: 4245730, 4257187 2078-9-24 (Set - II) Hints & Solution				
	Section – I	18.(d)		
1 (h)	$KE = \frac{1}{2}mv^2$	19.(a)		
1.(b)	$KE = \frac{1}{2} mv$	20.(c)		
	or, $\frac{\Delta KE}{KE} = \frac{1m}{m} + 2\frac{\Delta V}{V}$	21.(b)		
		22.(a)	$CO + Cl_2 \xrightarrow{hv} COCl_2$	
	$= 2\% + 2 \times 3\%$		Phosgene	
2	= 8%	23.(c)		
2.(c)	Body is in uniform speed in circular path so	24.(c)		
	velocity changes due to direction.	25.(b)		
3.(a)	$F = \frac{dp}{dt} = 2bt$	26.(c)		
	∴ F∝t	27.(d)		
4.(a)	t = upthrust	28.(a)		
ч.(a)		29.(d)	Plotting the graphs, we have	
	$6g = \frac{V}{3}\sigma_w g$		As the graphs intersect at a point $(0, 1)$.	
	18		So, $A \cap B \neq \phi$	
	or, $V = \frac{18}{\sigma_0} \dots (i)$	30.(a)	If $AB - AC \Rightarrow B = C$ then A must be	
	Again, $(m + 6)g = V\sigma_w g$		nonsingular as $A^{-1}AB = A^{-1}AC \Rightarrow B = C$	
		31.(a)	As α and β are the imaginary cube roots of unity	
5.(c)	or, $m = \frac{18}{\sigma_w} \cdot \sigma_w - 6 = 12 \text{ kg}$		so, we may put $\alpha = \omega$, $\beta = \omega^2$. Then $\frac{\alpha}{\beta} + \frac{\beta}{\alpha} + 1 =$	
	Ob A Ob A Ob A		$\frac{\omega}{\omega^2} + 1 = \frac{\omega^4}{\omega^2} + \frac{\omega^2}{\omega} + 1 = \omega^2 + \omega + 1 = 0$	
6.(a)	$S = \frac{dQ}{md\theta}$, for isothermal process $d\theta = 0$, $S = \infty$		$\omega^2 + 1 - \omega^2 + \omega + 1 - \omega + \omega + 1 - 0$	
7.(b)			$\sin \frac{1}{2}$	
8.(a)	$\beta = \frac{D\lambda}{d}$, Here $\lambda_{\text{yellow}} > \lambda_{\text{blue}}$	32.(b)	$\lim_{x \to \infty} x \sin \frac{1}{x} = \lim_{x \to \infty} \frac{\sin \frac{1}{x}}{\frac{1}{2}} = \lim_{y \to 0} \frac{\sin y}{y} = 1$	
0.(a)	4		$x \to \infty$ $x \to \infty$ $\frac{1}{x}$ $y \to 0$ y	
	So $\beta_{\text{yellow}} > \beta_{\text{blue}}$		1	
9.(c)			with $y = \frac{1}{x}$, $x \to \infty$ implies $y \to 0$	
10.(b)	$f = \frac{2}{0.4} = 5$ beats/s	33.(b)	x, y, z are in AP. So, $-x$, $-y$, $-z$ are in A.P.	
11.(a)	Inside hollow spherical conductor, potential is		Then $-2y = (-x) + (-z)$	
11.(<i>a</i>)	equal to potential on surface.		$\Rightarrow e^{-2y} = e^{-x} \cdot e^{-z} \Rightarrow (e^{-y})^2 = e^{-x} \cdot e^{-z}$	
12.(b)	Q = CV, C is constant so V increases on	V	$\Rightarrow e^{-x}, e^{-y}, e^{-z}$ are in GP	
.(-)	increasing Q.	34.(a)	As the product $\sin^7 x \cos^8 x$ is odd.	
13.(d)	V ²		So $\int_{-10}^{10} \sin^7 x \cos^8 x dx = 0$	
	$\frac{\mathrm{H}_1}{\mathrm{H}_2} = \frac{\frac{\mathrm{V}^2}{\mathrm{R}_1}}{\frac{\mathrm{V}^2}{\mathrm{V}^2}} = \frac{\mathrm{R}_2}{\mathrm{R}_1}$	35.(b)	Replacing x by $-x$, we get $x^2 = 4ay$. So it is	
14.(a)	$\overline{H_2} = \overline{V^2} = \overline{R_1}$		symmetric about y-axis.	
	R ₂	26(a)	$t_{r+1} = c(12, r) (x^2)^{12-r} \cdot \left(\frac{1}{x}\right)^r = c(12, r) x^{24-3r}$	
15.(b)	$H = B_e \cos \delta$	30.(C)	$t_{r+1} - c(12, 1)(x) - c(12, 1)x$	
	or, Be = $\frac{H}{\cos 30^\circ} = \frac{2H}{\sqrt{3}}$		For the term independent of x, we have $24 - 3r$	
	$\cos 30^\circ$ $\sqrt{3}$		$= 0 \Rightarrow r = 8$. So it is 9 th term.	
16.(d)	$\lambda = \frac{h}{mv}$, m is least for β particle.	37.(b)	Equation of normal at $(3, -4)$ is $x(-u) = 3y$ $\Rightarrow 4x + 3y = 0$	
17 (c)	$\alpha = 0.99 = \frac{\Delta I_c}{\Delta I_c}$	38.(c)	The equation of ellipse $3x^2 + 4y^2 = 12$	
17.(0)	6		$\Rightarrow \frac{x^2}{4} + \frac{y^2}{3} = 1$	
	or, $\Delta I_c = 0.99 \times 5$			
	= 4.95 mA		So length of latus rectum = $2\frac{b^2}{a} = 2.\frac{3}{2} = 3$	
			a Z	

PEA Association Pvt. Ltd. Thapathali, Kathmandu, Tel: 4245730, 4257187 2078-9-24 (Set - II) Hints & Solution

As the vectors are orthogonal, so we have, 39.(b) $(\vec{i} - 2\vec{j} + 4\vec{k}).(2\vec{i} + 7\vec{j} + m\vec{k}) = 0$ $\Rightarrow 2-14+4m=0$ \Rightarrow 4m = 12 \Rightarrow m = 3 Here $(\sqrt{2})^2 + (\sqrt{7})^2 = 2 + 7 = 9 = (3)^2$ 40.(c) So it is a right angled triangle \therefore Greatest angle = 90° 41.(b) Given $A = \tan^{-1}x$ i.e. $\tan A = x$. So sin2A = $\frac{2\tan A}{1 - \tan^2 A} = \frac{2x}{1 - x^2}$ For minimum value, 3x - 9 = 042.(a) \Rightarrow 3x = 9 \Rightarrow x = 3 $\sin x + \sin^2 x = 1 \implies \sin x = 1 - \sin^2 x = \cos^2 x$ 43.(b) So, $\cos^2 x + \cos^4 x = \cos^2 x + (\cos^2 x)^2$ = sinx + sin²x = 1 44.(c) $\cos 2\alpha + \cos 2\beta + \cos 2\gamma = 2\cos^2 \alpha - 1 + 2\cos^2 \beta - 1$ $1 + 2\cos^2\gamma - 1$ $= 2(\cos^2\alpha + \cos^2\beta + \cos^2\gamma) - 3 = 2 - 3 = -1$ Here, coeff. of x^2 + coeff. of y^2 = 3 + (-3) = 0 45.(d) So angle = 90° 46.(c) One root = 2 + 3i, other root = 2 - 3i. So sum of roots = 4 $\Rightarrow -\frac{p}{1} = 4 \Rightarrow p = -4$ 47.(d) $\log_{\sqrt{x}} x = \frac{1}{\log_x \sqrt{x}} = \frac{2}{\log_x x} = 2$ So its derivative is 0 48.(b) Given curve is $x^2 + y^2 = 16$. On differentiation, we have $2x + 2y\frac{dy}{dx} = 0$ $\Rightarrow \frac{dy}{dx} = -\frac{x}{v}$ For tangents perpendicular to y-axis, we have $\frac{dy}{dx}$ $= 0 \Rightarrow x = 0$ Putting x = 0, we get $y^2 = 16 \Rightarrow y = \pm 4$ \therefore Required points = (0, ±4) 52.(b) 49.(d) 50.(c) 51.(d) 53.(c) 54.(a) 57.(c) 58.(b) 59.(d) 60.(b) 56.(c) 55.(b) Section – II For acceleration $v_{max} = at_1$ 61.(b) or, $t_1 = \frac{8}{a} \dots (1)$ For retardation $0 = v_{max} - at_2$ or, $t_2 = \frac{8}{a} \dots (2)$ Now $t_1 + t_2 = \frac{8}{a} + \frac{8}{a}$

or, $4 = \frac{16}{2}$ or, $a = 4 \text{ m/s}^2$ So, $S_1 = \frac{1}{2} a t_1^2$ $=\frac{1}{2}\times 4\times 2^2=8m$ $S_2 = ut - \frac{1}{2}at^2$ $= 8 \times 2 - \frac{1}{2} \times 4 \times 2^2 = 8m$ $S = S_1 + S_2 = 8 + 8 = 16 \text{ m}$ 62.(d) Horizontal $S_1 = vt = 1.5 \times 4 = 6 m$ Vertical a = $\frac{F}{m} = \frac{5}{5} = 1 \text{ m/s}^2$ $S_2 = \frac{1}{2} at^2 = \frac{1}{2} \times 1 \times 4^2 = 8 m$:. $S = \sqrt{S_1^2 + S_2^2} = \sqrt{6^2 + 8^2} = 10 \text{ m}$ $\mathbf{F} = \frac{\mathbf{Y}\mathbf{A}_1\mathbf{e}_1}{l_1} = \frac{\mathbf{Y}\mathbf{A}_2\mathbf{e}_e}{l_2}$ 63.(a) or, $\frac{\pi d^2}{4} \times \frac{10}{l} = \frac{\pi (2d)^2}{4} \times \frac{e_2}{2l}$ or, $e_2 = \frac{10}{2} = 5 \text{ mm}$ 64.(d) $r = c_p - c_v = 525 - 315 = \frac{P_0}{\rho_0 T_0}$ or, $\rho_0 = \frac{P_0}{rT_0} = \frac{1.01 \times 10^5}{210 \times 273}$ $= 1.77 \text{ kg/m}^3$ 65.(a) $\tan c = \frac{r}{h}$ 66.(a) or, $r = h \frac{\text{sinc}}{\cos c}$ $=h\times \frac{1}{\mu}\times \frac{1}{\sqrt{1-sin^2c}}$ $=\frac{h}{\sqrt{\mu^2-1}}=\frac{12}{\sqrt{\left(\frac{4}{3}\right)^2-1}}$ $=\frac{36}{\sqrt{7}}$ cm

2078-9-24 (Set – 1	
7.(c) $f_A = 1.03f$ $f_B = 0.98f$	or, $\frac{1}{2}$ mv ² = 4hf ₀ (2)
Now $f_A - f_B = 8$	Dividing (2) by (1) $\left(\frac{v'}{v}\right)^2 = \frac{4}{1}$
or, $1.03f - 0.98f = 8$	$v \int_{-1}^{-1} v = 2 \times 4 \times 10^6 = 8 \times 10^6 \text{ m/s}$
or, $f = \frac{8}{0.05} = 160 \text{ Hz}$	73.(d) For x_1 $N_{x_1} = N_0 e^{-10\lambda t} \dots (1)$
$\therefore f_{\rm B} = 0.98 \times 160$ $= 156.8 \text{ Hz}$	For x_2 $N_{x_2} = N_0 e^{-\lambda t} \dots (2)$
8.(c) $F = K \frac{Q_1 Q_2}{d^2} \dots (1)$	$\frac{N_{x_2}}{N_{x_2}} = \frac{1}{e}$
2 nd case	or, $\frac{N_{x_2}}{e^{-\lambda t}} = \frac{1}{e}$
$25\% \text{ F} = \text{K} \frac{Q_1 Q_2}{\left(\frac{d}{2} + \sqrt{\text{K}} \frac{d}{2}\right)^2}$	
	or, $\left(\frac{1}{e}\right)^{9\lambda t} = \left(\frac{1}{e}\right)^{1}$
or, $\frac{F}{4} = \frac{4F}{(1+\sqrt{K})^2}$	or, $9\lambda t = 1$ or, $t = \frac{1}{02}$
or, $1 + \sqrt{K} = 4$ or, $\sqrt{K} = 3$ or, $K = 9$	74.(b) $\theta = \frac{\beta}{2D} = \frac{D\lambda}{2dD} = \frac{\lambda}{2d}$
or, $K = 9$ 9.(b) $R_1 = \frac{24}{4} = 6\Omega$	$ = \left(\frac{5460 \times 10^{-10}}{2 \times 0.1 \times 10^{-3}} \times \frac{180}{\pi}\right)^{\circ} $
$R_2 = \frac{3R}{4} = \frac{3 \times 24}{4} = 18 \Omega$	$ = (2 \times 0.1 \times 10^{-3} \pi) $ = 0.16°
$R_{eq} = \frac{R_1 R_2}{R_1 + R_2} = \frac{6 \times 18}{6 + 18} = \frac{6 \times 18}{244} = 4.5 \ \Omega$	75.(c) The value of m ranges ranges from <i>-l</i> to - including zero.
$R = R_{eq} + r = 4.5 + 1.5 = 6 \Omega$	76.(c) KClO ₃ $\xrightarrow{\Delta}$ K ₂ O + ClO ₂
$I = \frac{E}{R_T} = \frac{18}{6} = 3A$	77.(a) 78.(c) Methane on electrolysis gives ethyne (C_2H_2)
$I' \times 18 = (I - I')^6$ or, $4I' = 3$	79.(b) Fe ²⁺ + 2e ⁻ \rightarrow Fe, E _{Fe} = $\frac{56}{2}$ = 28
or, $I' = 0.75 A$ 0.(c) Flux due to wire	$W_{Fe} = E_{Fe} \times No. \text{ of } Faraday$ $28 \times 3 = 84$
$B_{w} = \frac{\mu_{0}I}{2\pi a} = \frac{4\pi \times 10 \times 30}{2\pi \times 0.02}$ $= 3 \times 10^{-4} T$	80.(a) $N_{mix} = \frac{75 \times 0.2 + 10 \times 0.5 + 30 \times 0.1}{75 + 10 + 30} = 0.2N$
External field $B = 4 \times 10^{-4} T$	81.(a) $2NaHCO_3 \xrightarrow{\Delta} Na_2CO_3 + H_2O + CO_2$
Two fields are \perp to each other so $B_R = \sqrt{B_w^2 + B^2} = \sqrt{(3 \times 10^{-4})^2 + (4 \times 10^{-4})^2}$ $= 5 \times 10^{-4} \text{ T}$	2 moles NaHCO ₃ gives 1 mole Na ₂ CO ₃ 0. 2 moles NaHCO ₃ gives $\frac{1}{2} \times 0.2 = 0.1$ mole
$= 5 \times 10^{-7} 1$ (1.(b) $E_0 = BA\omega N$	82.(a) $\int \left(\frac{2 + \sin 2x}{1 + \cos 2x}\right) e^{x} dx = \int \frac{2 + 2\sin x \cos x}{2\cos^{2} x} e^{x} dx$
$= 0.05 \times 80 \times 10^{-4} \times 2\pi \left(\frac{2000}{60}\right) \times 50$	
$=\frac{4\pi}{3}V$	$= \int \left(\frac{1}{\cos^2 x} + \frac{\sin x \cos x}{\cos^2 x}\right) e^x dx$
2.(c) $1^{\text{st}} \text{ case}$ KE = h × 2f ₀ - hf ₀ = hf ₀	$= \int (\sec^2 x + \tan x) e^x dx = e^x \tan x + c$
or, $\frac{1}{2}$ mv ² = hf ₀ (1)	As it is of the form $\int e^{x}(f(x) + f'(x)) dx = e^{x} f(x) + c$ 83.(d) Given $y = \cos x$
2^{nd} case KE' = h × 5f ₀ - hf ₀ = 4hf ₀	$\frac{dy}{dx} = -\sin x = \cos\left(\frac{\pi}{2} + x\right)$
· · ·	3

PEA Association Pvt. Ltd. Thapathali, Kathmandu, Tel: 4245730, 4257187 2078-9-24 (Set - II) Hints & Solution

$$\frac{d^{2}y}{dx^{2}} = -\cos x = \cos(\pi + x) = \cos\left(2, \frac{\pi}{2} + x\right)$$

$$\frac{d^{3}y}{dx^{3}} = \sin x = \cos\left(3\frac{\pi}{2} + x\right)$$

and so on. So $\frac{d^{n}y}{dx^{n}} = \cos\left(\frac{n\pi}{2} + x\right)$
84.(b) Given $4\sin^{-1}x + \cos^{-1}x = \pi$
or, $3\sin^{-1}x + \frac{\pi}{2} = \pi \Rightarrow 3\sin^{-1}x = \frac{\pi}{2}$
 $\Rightarrow \sin^{-1}x = \frac{\pi}{6}$
 $\Rightarrow x = \sin\frac{\pi}{6} = \frac{1}{2}$
85.(b) Here, $\frac{a^{2}\sin(B - C)}{\sin B + \sin C} = \frac{4R^{2}\sin^{2}A\sin(B - C)}{\sin B + \sin C}$
 $= \frac{4R^{2}\sin A \sin(B + C) \sin(B - C)}{\sin B + \sin C}$
 $= \frac{4R^{2}\sin A (\sin^{2}B - \sin^{2}C)}{(\sin B + \sin C)}$
 $= 4R^{2}\sin(A(\sin B - \sin C) + \sin B(\sin C - \sin A) + \sin C(\sin A - \sin B)] = 0$
86.(c) Here, $\frac{-1 + \sqrt{3}i}{2} = \omega, \frac{-1 - \sqrt{3}i}{2} = \omega^{2}$
 $n = 3k + 1, k \in \mathbb{Z}$
So, $\omega^{n} + (\omega^{2})^{n} = \omega^{3k+1} + \omega^{6k+2}$
 $= (\omega^{3})^{k} w + (\omega^{2})^{2k} \omega^{2} = \omega + \omega^{2} = -1$
87.(b) Let α and β be the roots of the equation. Then α
 $+\beta = p, \alpha\beta = q$
As $\alpha + \beta = m(\alpha - \beta)$
 $\Rightarrow (\alpha + \beta)^{2} = m^{2}(\alpha - \beta)^{2}$
 $\Rightarrow (\alpha + \beta)^{2} = m^{2}(\alpha + \beta)^{2} = 4\alpha\beta$
 $\Rightarrow p^{2} = m^{2}(p^{2} - 4q)$
 $\Rightarrow p^{2} = (1 - p^{2} - 4q)$
 $\Rightarrow p^{2$

90.(d) Given $|\vec{a} + \vec{b}| = 1$ $\Rightarrow |\vec{a}|^2 + |\vec{b}|^2 + 2\vec{a}.\vec{b} = 1$ \Rightarrow 1+1+2 $\vec{a}.\vec{b}$ = 1 $\Rightarrow 2\vec{a}.\vec{b} = -1$ So, $|\vec{a} - \vec{b}|^2 = |\vec{a}|^2 + |\vec{b}|^2 = -4\vec{a}.\vec{b} = 1 + 1 + 1 = 3$ $\Rightarrow |\vec{a} - \vec{b}| = \sqrt{3}$ 91.(a) Here, n = 6 in which A & N are repeated 2 times. So no of arrangements $=\frac{6!}{2!3!}=60$ When 2N's are together, no. of arrangements = $\frac{5!}{3!} = \frac{120}{6} = 20$... No. of arrangements in which 2N's are never together = 60 - 20 = 40Making homogenous curve with the help of line 92.(a) 2x + y = 1, we have $3x^2 + 4xy - 4x(2x + y) +$ $(2x + y)^{2} = 0$ i.e. $-x^{2} + 4xy + y^{2} = 0$ Here coeff. of x^{2} + coeff. of $y^{2} = 0$. So angle is 90° 93.(a) Here dr's of OA are a = 0, b = 0, c = 0i.e. a, b, c So the equation of required plane is a(x - a) + b(x - a) = b(x - a) $\mathbf{b}(\mathbf{y} - \mathbf{b}) + \mathbf{c}(\mathbf{z} - \mathbf{c}) = \mathbf{0}$ 94.(c) Given hyperbolas are rectangular hyperbola. So e = 2, $e_1 = 2$ Then $e^2 + e_1^2 = 4 + 4 = 8$ 95.(a) Here $\frac{dx}{dt} = 3$ m/s, $\frac{dy}{dt} = ?$ From similar Δs , we have From similar Δs , we have $\frac{2}{5} = \frac{y}{x+y} \Rightarrow 2x + 2y = 5y$ $\Rightarrow 3y = 2x$ i.e. $3\frac{dy}{dx} = 2 \cdot \frac{dx}{dt} \Rightarrow \frac{dy}{dt} = 2 \text{ m/s}$ 96.(b) Solving $y = x^3$ and y = x, we have $x^3 - x = 0 \Rightarrow x = 0, -1, 1$ \therefore Required area = $2\int_{0}^{1} (x - x^3) dx$ (By symmetry) $=2\left[\frac{x^2}{2}-\frac{x^4}{4}\right]_0^1$ $=2\left[\frac{1}{2}-\frac{1}{4}\right]=2\cdot\frac{1}{4}=\frac{1}{2}$ sq. units 97.(c) 98.(b) 99.(c) 100.(d)

...Best of Luck ...