PEA Association Pvt. Ltd. Thapathali, Kathmandu, Tel: 4245730, 4257187 2078-9-24 (Set - II) Hints \& Solution

Section -

1.(b) $\mathrm{KE}=\frac{1}{2} \mathrm{mv}^{2}$

$$
\text { or, } \begin{aligned}
\frac{\Delta \mathrm{KE}}{\mathrm{KE}} & =\frac{1 \mathrm{~m}}{\mathrm{~m}}+2 \frac{\Delta \mathrm{v}}{\mathrm{v}} \\
& =2 \%+2 \times 3 \% \\
& =8 \%
\end{aligned}
$$

2.(c) Body is in uniform speed in circular path so velocity changes due to direction.
3.(a) $\mathrm{F}=\frac{\mathrm{dp}}{\mathrm{dt}}=2 \mathrm{bt}$
$\therefore \quad \mathrm{F} \propto \mathrm{t}$
4.(a) $\quad \mathrm{wt}=$ upthrust

$$
6 \mathrm{~g}=\frac{\mathrm{V}}{3} \sigma_{\mathrm{w}} \mathrm{~g}
$$

or, $V=\frac{18}{\sigma_{\omega}} \ldots$... (i)
Again, $(\mathrm{m}+6) \mathrm{g}=\mathrm{V} \sigma_{\mathrm{w}} \mathrm{g}$
or, $\mathrm{m}=\frac{18}{\sigma_{\mathrm{w}}} \cdot \sigma_{\mathrm{w}}-6=12 \mathrm{~kg}$
5.(c)
6.(a) $S=\frac{d Q}{m d \theta}$, for isothermal process $d \theta=0, S=\infty$
7.(b)
8.(a) $\beta=\frac{D \lambda}{d}$, Here $\lambda_{\text {yellow }}>\lambda_{\text {blue }}$

So $\beta_{\text {yellow }}>\beta_{\text {blue }}$
9.(c)
10.(b) $\mathrm{f}=\frac{2}{0.4}=5$ beats $/ \mathrm{s}$
11.(a) Inside hollow spherical conductor, potential is equal to potential on surface.
12.(b) $\mathrm{Q}=\mathrm{CV}, \mathrm{C}$ is constant so V increases on increasing Q .
13.(d)
14.(a) $\frac{\mathrm{H}_{1}}{\mathrm{H}_{2}}=\frac{\frac{\mathrm{V}^{2}}{\mathrm{R}_{1}}}{\frac{\mathrm{~V}^{2}}{\mathrm{R}_{2}}}=\frac{\mathrm{R}_{2}}{\mathrm{R}_{1}}$
15.(b) $\mathrm{H}=\mathrm{B}_{\mathrm{e}} \cos \delta$
or, $\mathrm{Be}=\frac{\mathrm{H}}{\cos 30^{\circ}}=\frac{2 \mathrm{H}}{\sqrt{3}}$
16.(d) $\lambda=\frac{\mathrm{h}}{\mathrm{mv}}, \mathrm{m}$ is least for β particle.
17.(c) $\quad \alpha=0.99=\frac{\Delta \mathrm{I}_{\mathrm{c}}}{\Delta \mathrm{I}_{\mathrm{e}}}$
or, $\Delta \mathrm{I}_{\mathrm{c}}=0.99 \times 5$
$=4.95 \mathrm{~mA}$
21.(b) $\mathrm{SO}_{2}+2 \mathrm{H}_{2} \mathrm{O} \rightarrow \mathrm{H}_{2} \mathrm{SO}_{4}+2[\mathrm{H}]$
22.(a) $\mathrm{CO}+\mathrm{Cl}_{2} \xrightarrow{\mathrm{hv}} \mathrm{COCl}_{2}$

Phosgene
23.(c)
24.(c)
25.(b)
26.(c)
27.(d)
28.(a)
29.(d) Plotting the graphs, we have

As the graphs intersect at a point $(0,1)$.
So, $A \cap B \neq \phi$
30.(a) If $A B-A C \Rightarrow B=C$ then A must be nonsingular as $A^{-1} A B=A^{-1} A C \Rightarrow B=C$
31.(a) As α and β are the imaginary cube roots of unity so, we may put $\alpha=\omega, \beta=\omega^{2}$. Then $\frac{\alpha}{\beta}+\frac{\beta}{\alpha}+1=$ $\frac{\omega}{\omega^{2}}+1=\frac{\omega^{4}}{\mathrm{w}^{2}}+\frac{\omega^{2}}{\omega}+1=\omega^{2}+\omega+1=0$
32.(b) $\lim _{\mathrm{x} \rightarrow \infty} \mathrm{x} \sin \frac{1}{\mathrm{x}}=\lim _{\mathrm{x} \rightarrow \infty} \frac{\sin \frac{1}{\mathrm{x}}}{\frac{1}{\mathrm{x}}}=\lim _{\mathrm{y} \rightarrow 0} \frac{\sin \mathrm{y}}{\mathrm{y}}=1$
with $\mathrm{y}=\frac{1}{\mathrm{x}}, \mathrm{x} \rightarrow \infty$ implies $\mathrm{y} \rightarrow 0$
33.(b) x, y, z are in AP. So, $-x,-y,-z$ are in A.P.

Then $-2 y=(-x)+(-z)$
$\Rightarrow \mathrm{e}^{-2 \mathrm{y}}=\mathrm{e}^{-\mathrm{x}} \cdot \mathrm{e}^{-\mathrm{z}} \Rightarrow\left(\mathrm{e}^{-\mathrm{y}}\right)^{2}=\mathrm{e}^{-\mathrm{x}} \cdot \mathrm{e}^{-\mathrm{z}}$
$\Rightarrow e^{-x}, e^{-y}, e^{-z}$ are in GP
34.(a) As the product $\sin ^{7} x \cos ^{8} x$ is odd.

So $\int_{-10}^{10} \sin ^{7} x \cos ^{8} x d x=0$
35.(b) Replacing x by $-x$, we get $x^{2}=4 a y$. So it is symmetric about y-axis.
36.(c) $\quad t_{r+1}=c(12, r)\left(x^{2}\right)^{12-r} \cdot\left(\frac{1}{x}\right)^{r}=c(12, r) x^{24-3 r}$

For the term independent of x, we have $24-3 r$ $=0 \Rightarrow r=8$. So it is $9^{\text {th }}$ term.
37.(b) Equation of normal at $(3,-4)$ is $x(-u)=3 y$
$\Rightarrow 4 x+3 y=0$
38.(c) The equation of ellipse $3 x^{2}+4 y^{2}=12$
$\Rightarrow \frac{x^{2}}{4}+\frac{y^{2}}{3}=1$
So length of latus rectum $=2 \frac{\mathrm{~b}^{2}}{\mathrm{a}}=2 \cdot \frac{3}{2}=3$

PEA Association Pvt. Ltd. Thapathali, Kathmandu, Tel: 4245730, 4257187 2078-9-24 (Set - II) Hints \& Solution

39.(b) As the vectors are orthogonal, so we have,
$(\vec{i}-2 \vec{j}+4 \vec{k}) \cdot(2 \vec{i}+7 \vec{j}+m \vec{k})=0$
$\Rightarrow 2-14+4 \mathrm{~m}=0$
$\Rightarrow 4 \mathrm{~m}=12 \Rightarrow \mathrm{~m}=3$
40.(c) Here $(\sqrt{2})^{2}+(\sqrt{7})^{2}=2+7=9=(3)^{2}$

So it is a right angled triangle
\therefore Greatest angle $=90^{\circ}$
41.(b) Given $\mathrm{A}=\tan ^{-1} \mathrm{x}$ i.e. $\tan \mathrm{A}=\mathrm{x}$.

So $\sin 2 \mathrm{~A}=\frac{2 \tan \mathrm{~A}}{1-\tan ^{2} \mathrm{~A}}=\frac{2 \mathrm{x}}{1-\mathrm{x}^{2}}$
42.(a) For minimum value, $3 x-9=0$
$\Rightarrow 3 x=9 \Rightarrow x=3$
43.(b) $\sin x+\sin ^{2} x=1 \Rightarrow \sin x=1-\sin ^{2} x=\cos ^{2} x$

So, $\cos ^{2} x+\cos ^{4} x=\cos ^{2} x+\left(\cos ^{2} x\right)^{2}$

$$
=\sin x+\sin ^{2} x=1
$$

44.(c) $\cos 2 \alpha+\cos 2 \beta+\cos 2 \gamma=2 \cos ^{2} \alpha-1+2 \cos ^{2} \beta-$
$1+2 \cos ^{2} \gamma-1$
$=2\left(\cos ^{2} \alpha+\cos ^{2} \beta+\cos ^{2} \gamma\right)-3=2-3=-1$
45.(d) Here, coeff. of $x^{2}+$ coeff. of $y^{2}=3+(-3)=0$ So angle $=90^{\circ}$
46.(c) One root $=2+3 i$, other root $=2-3 i$.

So sum of roots $=4$
$\Rightarrow \quad-\frac{\mathrm{p}}{1}=4 \Rightarrow \mathrm{p}=-4$
47.(d) $\log _{\sqrt{x}} x=\frac{1}{\log _{x} \sqrt{x}}=\frac{2}{\log _{x} x}=2$

So its derivative is 0
48.(b) Given curve is $\mathrm{x}^{2}+\mathrm{y}^{2}=16$.

On differentiation, we have $2 x+2 y \frac{d y}{d x}=0$
$\Rightarrow \frac{d y}{d x}=-\frac{x}{y}$
For tangents perpendicular to y-axis, we have $\frac{d y}{d x}$
$=0 \Rightarrow \mathrm{x}=0$
Putting $x=0$, we get $y^{2}=16 \Rightarrow y= \pm 4$
$\therefore \quad$ Required points $=(0, \pm 4)$
49.(d) $\quad 50 .(\mathrm{c}) \quad 51 .(\mathrm{d}) \quad 52 .(\mathrm{b}) \quad 53 .(\mathrm{c}) \quad 54 .(\mathrm{a})$
55.(b) $\quad 56 .(\mathrm{c}) \quad 57 .(\mathrm{c}) \quad 58 .(\mathrm{b}) \quad 59 .(\mathrm{d}) \quad 60 .(\mathrm{b})$

Section - II

61.(b) For acceleration $v_{\max }=a t_{1}$
or, $\quad \mathrm{t}_{1}=\frac{8}{\mathrm{a}} \ldots$.(1)
For retardation

$$
0=\mathrm{v}_{\max }-\mathrm{at}_{2}
$$

or, $\quad \mathrm{t}_{2}=\frac{8}{\mathrm{a}} \ldots$ (2)
Now $\mathrm{t}_{1}+\mathrm{t}_{2}=\frac{8}{\mathrm{a}}+\frac{8}{\mathrm{a}}$
or, $\quad 4=\frac{16}{\mathrm{a}}$
or, $\quad a=4 \mathrm{~m} / \mathrm{s}^{2}$
So, $S_{1}=\frac{1}{2}$ at $_{1}{ }^{2}$

$$
=\frac{1}{2} \times 4 \times 2^{2}=8 \mathrm{~m}
$$

$$
\mathrm{S}_{2}=\mathrm{ut}-\frac{1}{2} a \mathrm{t}^{2}
$$

$$
=8 \times 2-\frac{1}{2} \times 4 \times 2^{2}=8 \mathrm{~m}
$$

$$
\mathrm{S}=\mathrm{S}_{1}+\mathrm{S}_{2}=8+8=16 \mathrm{~m}
$$

62.(d) Horizontal
$\mathrm{S}_{1}=\mathrm{vt}=1.5 \times 4=6 \mathrm{~m}$
Vertical $\mathrm{a}=\frac{\mathrm{F}}{\mathrm{m}}=\frac{5}{5}=1 \mathrm{~m} / \mathrm{s}^{2}$
$S_{2}=\frac{1}{2} a t^{2}=\frac{1}{2} \times 1 \times 4^{2}=8 \mathrm{~m}$
$\therefore \quad \mathrm{S}=\sqrt{\mathrm{S}_{1}{ }^{2}+\mathrm{S}_{2}{ }^{2}}=\sqrt{6^{2}+8^{2}}=10 \mathrm{~m}$
63.(a)
$\mathrm{F}=\frac{\mathrm{YA}_{1} \mathrm{e}_{1}}{l_{1}}=\frac{\mathrm{YA}_{2} \mathrm{e}_{\mathrm{e}}}{l_{2}}$
or, $\frac{\pi \mathrm{d}^{2}}{4} \times \frac{10}{l}=\frac{\pi(2 \mathrm{~d})^{2}}{4} \times \frac{\mathrm{e}_{2}}{2 l}$
or, $\mathrm{e}_{2}=\frac{10}{2}=5 \mathrm{~mm}$
64.(d) $r=c_{p}-c_{v}=525-315=\frac{\mathrm{P}_{0}}{\rho_{0} \mathrm{~T}_{0}}$
or, $\quad \rho_{0}=\frac{\mathrm{P}_{0}}{\mathrm{rT}}=\frac{1.01 \times 10^{5}}{210 \times 273}$

$$
=1.77 \mathrm{~kg} / \mathrm{m}^{3}
$$

65.(a)
66.(a) $\operatorname{tanc}=\frac{\mathrm{r}}{\mathrm{h}}$
or, $r=h \frac{\operatorname{sinc}}{\cos c}$

$$
\begin{aligned}
& =\mathrm{h} \times \frac{1}{\mu} \times \frac{1}{\sqrt{1-\sin ^{2} \mathrm{c}}} \\
& =\frac{\mathrm{h}}{\sqrt{\mu^{2}-1}}=\frac{12}{\sqrt{\left(\frac{4}{3}\right)^{2}-1}} \\
& =\frac{36}{\sqrt{7}} \mathrm{~cm}
\end{aligned}
$$

PEA Association Pvt. Ltd. Thapathali, Kathmandu, Tel: 4245730, 4257187

2078-9-24 (Set - II) Hints \& Solution
67.(c) $f_{A}=1.03 f$
$\mathrm{f}_{\mathrm{B}}=0.98 \mathrm{f}$
Now $f_{A}-f_{B}=8$
or, $\quad 1.03 \mathrm{f}-0.98 \mathrm{f}=8$
or, $\mathrm{f}=\frac{8}{0.05}=160 \mathrm{~Hz}$
$\therefore \quad \mathrm{f}_{\mathrm{B}}=0.98 \times 160$

$$
\begin{equation*}
=156.8 \mathrm{~Hz} \tag{1}
\end{equation*}
$$

68.(c) $\mathrm{F}=\mathrm{K} \frac{\mathrm{Q}_{1} \mathrm{Q}_{2}}{\mathrm{~d}^{2}}$
$2^{\text {nd }}$ case

$$
25 \% \mathrm{~F}=\mathrm{K} \frac{\mathrm{Q}_{1} \mathrm{Q}_{2}}{\left(\frac{\mathrm{~d}}{2}+\sqrt{\mathrm{K}} \frac{\mathrm{~d}}{2}\right)^{2}}
$$

or, $\frac{\mathrm{F}}{4}=\frac{4 \mathrm{~F}}{(1+\sqrt{\mathrm{K}})^{2}}$
or, $\quad 1+\sqrt{\mathrm{K}}=4$
or, $\sqrt{\mathrm{K}}=3$
or, $\mathrm{K}=9$
69.(b) $\mathrm{R}_{1}=\frac{24}{4}=6 \Omega$
$\mathrm{R}_{2}=\frac{3 \mathrm{R}}{4}=\frac{3 \times 24}{4}=18 \Omega$
$R_{e q}=\frac{R_{1} R_{2}}{R_{1}+R_{2}}=\frac{6 \times 18}{6+18}=\frac{6 \times 18}{244}=4.5 \Omega$
$\mathrm{R}=\mathrm{R}_{\mathrm{eq}}+\mathrm{r}=4.5+1.5=6 \Omega$
$\mathrm{I}=\frac{\mathrm{E}}{\mathrm{R}_{\mathrm{T}}}=\frac{18}{6}=3 \mathrm{~A}$
$\mathrm{I}^{\prime} \times 18=\left(\mathrm{I}-\mathrm{I}^{\prime}\right)^{6}$
or, $4 \mathrm{I}^{\prime}=3$
or, $\mathrm{I}^{\prime}=0.75 \mathrm{~A}$
70.(c) Flux due to wire
$\mathrm{B}_{\mathrm{w}}=\frac{\mu_{0} \mathrm{I}}{2 \pi \mathrm{a}}=\frac{4 \pi \times 10 \times 30}{2 \pi \times 0.02}$

$$
=3 \times 10^{-4} \mathrm{~T}
$$

External field $\mathrm{B}=4 \times 10^{-4} \mathrm{~T}$
Two fields are \perp to each other so
$\begin{aligned} \mathrm{B}_{\mathrm{R}}=\sqrt{\mathrm{B}_{\mathrm{w}}{ }^{2}+\mathrm{B}^{2}} & =\sqrt{\left(3 \times 10^{-4}\right)^{2}+\left(4 \times 10^{-4}\right)^{2}} \\ & =5 \times 10^{-4} \mathrm{~T}\end{aligned}$
71.(b) $\mathrm{E}_{0}=\mathrm{BA} \omega \mathrm{N}$

$$
\begin{aligned}
& =0.05 \times 80 \times 10^{-4} \times 2 \pi\left(\frac{2000}{60}\right) \times 50 \\
& =\frac{4 \pi}{3} \mathrm{~V}
\end{aligned}
$$

72.(c) $1^{\text {st }}$ case
$\mathrm{KE}=\mathrm{h} \times 2 \mathrm{f}_{0}-\mathrm{hf}_{0}=\mathrm{hf}_{0}$
or, $\frac{1}{2} \mathrm{mv}^{2}=\mathrm{hf}_{0}$
$2^{\text {nd }}$ case
$K E^{\prime}=h \times 5 f_{0}-\mathrm{hf}_{0}=4 \mathrm{hf}_{0}$
or, $\frac{1}{2} \mathrm{mv}^{\prime^{2}}=4 \mathrm{hf}_{0}$
Dividing (2) by (1)

$$
\left(\frac{v^{\prime}}{v}\right)^{2}=\frac{4}{1}
$$

or, $\quad \mathrm{v}^{\prime}=2 \times 4 \times 10^{6}=8 \times 10^{6} \mathrm{~m} / \mathrm{s}$
73.(d) For x_{1}

$$
\begin{equation*}
\mathrm{N}_{\mathrm{x}_{1}}=\mathrm{N}_{0} \mathrm{e}^{-10 \lambda \mathrm{t}} \tag{1}
\end{equation*}
$$

For x_{2}

$$
\begin{align*}
& \mathrm{N}_{\mathrm{x}_{2}}=\mathrm{N}_{0} \mathrm{e}^{-\lambda \mathrm{t}} \tag{2}\\
& \frac{\mathrm{~N}_{\mathrm{x}_{1}}}{\mathrm{~N}_{\mathrm{x}_{2}}}=\frac{1}{\mathrm{e}}
\end{align*}
$$

or, $\frac{\mathrm{e}^{-10 \lambda t}}{\mathrm{e}^{-\lambda \mathrm{t}}}=\frac{1}{\mathrm{e}}$
or, $\left(\frac{1}{e}\right)^{9 \lambda t}=\left(\frac{1}{e}\right)^{1}$
or, $\quad 9 \lambda t=1$
or, $t=\frac{1}{9 \lambda}$
74.(b) $\theta=\frac{\beta}{2 D}=\frac{D \lambda}{2 d D}=\frac{\lambda}{2 d}$

$$
\begin{aligned}
& =\left(\frac{5460 \times 10^{-10}}{2 \times 0.1 \times 10^{-3}} \times \frac{180}{\pi}\right)^{\circ} \\
& =0.16^{\circ}
\end{aligned}
$$

75.(c) The value of m ranges ranges from $-l$ to $+l$ including zero.
76.(c) $\quad \mathrm{KClO}_{3} \xrightarrow{\Delta} \mathrm{~K}_{2} \mathrm{O}+\mathrm{ClO}_{2}$
77.(a)
78.(c) Methane on electrolysis gives ethyne $\left(\mathrm{C}_{2} \mathrm{H}_{2}\right)$
79.(b) $\mathrm{Fe}^{2+}+2 \mathrm{e}^{-} \rightarrow \mathrm{Fe}, \mathrm{E}_{\mathrm{Fe}}=\frac{56}{2}=28$
$\mathrm{W}_{\mathrm{Fe}}=\mathrm{E}_{\mathrm{Fe}} \times$ No. of Faraday

$$
28 \times 3=84
$$

80.(a) $\mathrm{N}_{\text {mix }}=\frac{75 \times 0.2+10 \times 0.5+30 \times 0.1}{75+10+30}=0.2 \mathrm{~N}$
81.(a) $2 \mathrm{NaHCO}_{3} \xrightarrow{\Delta} \mathrm{Na}_{2} \mathrm{CO}_{3}+\mathrm{H}_{2} \mathrm{O}+\mathrm{CO}_{2}$

2 moles NaHCO_{3} gives 1 mole $\mathrm{Na}_{2} \mathrm{CO}_{3}$
0.2 moles NaHCO_{3} gives $\frac{1}{2} \times 0.2=0.1$ mole
82.(a) $\int\left(\frac{2+\sin 2 x}{1+\cos 2 x}\right) e^{x} d x=\int \frac{2+2 \sin x \cos x}{2 \cos ^{2} x} e^{x} d x$

$$
\begin{aligned}
& =\int\left(\frac{1}{\cos ^{2} x}+\frac{\sin x \cos x}{\cos ^{2} x}\right) e^{x} d x \\
& =\int\left(\sec ^{2} x+\tan x\right) e^{x} d x=e^{x} \tan x+c
\end{aligned}
$$

As it is of the form $\int e^{x}\left(f(x)+f^{\prime}(x)\right) d x=e^{x} f(x)+c$
83.(d) Given $y=\cos x$
$\frac{d y}{d x}=-\sin x=\cos \left(\frac{\pi}{2}+x\right)$

PEA Association Pvt. Ltd. Thapathali, Kathmandu, Tel: 4245730, 4257187
2078-9-24 (Set - II) Hints \& Solution
$\frac{d^{2} y}{d x^{2}}=-\cos x=\cos (\pi+x)=\cos \left(2 \cdot \frac{\pi}{2}+x\right)$
$\frac{d^{3} y}{d x^{3}}=\sin x=\cos \left(3 \frac{\pi}{2}+x\right)$
and so on. So $\frac{d^{n} y}{d x^{n}}=\cos \left(\frac{n \pi}{2}+x\right)$
84.(b) Given $4 \sin ^{-1} x+\cos ^{-1} x=\pi$
or, $3 \sin ^{-1} x+\sin ^{-1} x+\cos ^{-1} x=\pi$
or, $3 \sin ^{-1} x+\frac{\pi}{2}=\pi \Rightarrow 3 \sin ^{-1} x=\frac{\pi}{2}$
$\Rightarrow \quad \sin ^{-1} x=\frac{\pi}{6}$
$\Rightarrow \quad \mathrm{x}=\sin \frac{\pi}{6}=\frac{1}{2}$
85.(b) Here, $\frac{\mathrm{a}^{2} \sin (\mathrm{~B}-\mathrm{C})}{\sin \mathrm{B}+\sin \mathrm{C}}=\frac{4 \mathrm{R}^{2} \sin ^{2} \mathrm{~A} \sin (\mathrm{~B}-\mathrm{C})}{\sin \mathrm{B}+\sin \mathrm{C}}$
$=\frac{4 R^{2} \sin \mathrm{~A} \sin (\mathrm{~B}+\mathrm{C}) \sin (\mathrm{B}-\mathrm{C})}{\sin \mathrm{B}+\sin \mathrm{C}}$
$=\frac{4 \mathrm{R}^{2} \sin \mathrm{~A}\left(\sin ^{2} \mathrm{~B}-\sin ^{2} \mathrm{C}\right)}{(\sin \mathrm{B}+\sin \mathrm{C})}$
$=4 \mathrm{R}^{2} \sin \mathrm{~A}(\sin \mathrm{~B}-\sin \mathrm{C})$
So, $4 R^{2}[\sin A(\sin B-\sin C)+\sin B(\sin C-\sin A)$
$+\sin C(\sin A-\sin B)]=0$
86.(c) Here, $\frac{-1+\sqrt{3} \mathrm{i}}{2}=\omega, \frac{-1-\sqrt{3} \mathrm{i}}{2}=\omega^{2}$
$\mathrm{n}=3 \mathrm{k}+1, \mathrm{k} \in \mathrm{z}$
So, $\omega^{\mathrm{n}}+\left(\omega^{2}\right)^{\mathrm{n}}=\omega^{3 \mathrm{k}+1}+\omega^{6 \mathrm{k}+2}$

$$
=\left(\omega^{3}\right)^{k} w+\left(\omega^{2}\right)^{2 k} \omega^{2}=\omega+\omega^{2}=-1
$$

87.(b) Let α and β be the roots of the equation. Then α $+\beta=\mathrm{p}, \alpha \beta=\mathrm{q}$
As $\alpha+\beta=m(\alpha-\beta)$
$\Rightarrow \quad(\alpha+\beta)^{2}=m^{2}(\alpha-\beta)^{2}$
$\Rightarrow \quad(\alpha+\beta)^{2}=m^{2}\left\{(\alpha+\beta)^{2}-4 \alpha \beta\right\}$
$\Rightarrow \mathrm{p}^{2}=\mathrm{m}^{2}\left(\mathrm{p}^{2}-4 \mathrm{q}\right)$
$\Rightarrow \mathrm{p}^{2}\left(1-\mathrm{m}^{2}\right)=-4 \mathrm{~m}^{2} \mathrm{q}$
88.(c) $\frac{1^{3}+2^{3}+3^{3}+\ldots .+12^{3}}{1^{2}+2^{2}+3^{2}+\ldots .+12^{2}}=\frac{312(12+1)}{2 .(2.12+1)}=\frac{234}{25}$
$\left[\frac{\mathrm{s}_{\mathrm{n}}{ }^{3}}{\mathrm{~s}_{\mathrm{n}}{ }^{2}}=\frac{3 \mathrm{n}(\mathrm{n}+1)}{2(2 \mathrm{n}+1)}\right]$
89.(a) $\quad f\left(\frac{x}{y}\right)=\cos \log \frac{x}{y}=\cos (\log x-\log y)$
$f x y=\cos \log x y=\cos (\log x+\log y)$
$f(x y)+f(x, y)=\cos (\log x+\log y)+\cos (\log x-\log y)$

$$
=2 \cos \log x-\cos \log y=2 f(x) f(y)
$$

Thus, $f(x) f(y)-\frac{1}{2}[2 f(x) f(y)]=0$
90.(d) Given $|\vec{a}+\vec{b}|=1$
$\Rightarrow|\vec{a}|^{2}+|\vec{b}|^{2}+2 \vec{a} \cdot \vec{b}=1$
$\Rightarrow \quad 1+1+2 \overrightarrow{\mathrm{a}} \cdot \overrightarrow{\mathrm{b}}=1$
$\Rightarrow \quad 2 \vec{a} \cdot \vec{b}=-1$
So, $|\overrightarrow{\mathrm{a}}-\overrightarrow{\mathrm{b}}|^{2}=|\overrightarrow{\mathrm{a}}|^{2}+|\overrightarrow{\mathrm{b}}|^{2}=-4 \overrightarrow{\mathrm{a}} \cdot \overrightarrow{\mathrm{b}}=1+1+1=3$
$\Rightarrow|\vec{a}-\vec{b}|=\sqrt{3}$
91.(a) Here, $\mathrm{n}=6$ in which $\mathrm{A} \& \mathrm{~N}$ are repeated 2 times. So no of arrangements $=\frac{6!}{2!3!}=60$
When 2 N 's are together, no. of arrangements $=$ $\frac{5!}{3!}=\frac{120}{6}=20$

No. of arrangements in which 2 N 's are never together

$$
=60-20=40
$$

92.(a) Making homogenous curve with the help of line $2 x+y=1$, we have $3 x^{2}+4 x y-4 x(2 x+y)+$ $(2 x+y)^{2}=0$
i.e. $-x^{2}+4 x y+y^{2}=0$

Here coeff. of $x^{2}+$ coeff. of $y^{2}=0$.
So angle is 90°
93.(a) Here dr's of OA are $\mathrm{a}-0, \mathrm{~b}-0, \mathrm{c}-0$
i.e. a, b, c

So the equation of required plane is $a(x-a)+$ $b(y-b)+c(z-c)=0$
94.(c) Given hyperbolas are rectangular hyperbola.

So $\mathrm{e}=2, \mathrm{e}_{1}=2$
Then $\mathrm{e}^{2}+\mathrm{e}_{1}{ }^{2}=4+4=8$
95.(a) Here $\frac{\mathrm{dx}}{\mathrm{dt}}=3 \mathrm{~m} / \mathrm{s}, \frac{\mathrm{dy}}{\mathrm{dt}}=$?

From similar $\Delta \mathrm{s}$, we have

$$
\begin{aligned}
\frac{2}{5}=\frac{y}{x+y} & \Rightarrow 2 x+2 y=5 y \\
& \Rightarrow 3 y=2 x
\end{aligned}
$$

i.e. $3 \frac{d y}{d x}=2 \cdot \frac{d x}{d t} \Rightarrow \frac{d y}{d t}=2 \mathrm{~m} / \mathrm{s}$
96.(b) Solving $y=x^{3}$ and $y=x$, we have

$$
x^{3}-x=0 \Rightarrow x=0,-1,1
$$

$\therefore \quad$ Required area $=2 \int_{0}^{1}\left(x-x^{3}\right) d x$
(By symmetry)

$$
\begin{aligned}
& \quad=2\left[\frac{x^{2}}{2}-\frac{x^{4}}{4}\right]_{0}^{1} \\
& \quad=2\left[\frac{1}{2}-\frac{1}{4}\right]=2 \cdot \frac{1}{4}=\frac{1}{2} \text { sq. units } \\
& \text { 97.(c) } \quad \text { 98.(b) }
\end{aligned}
$$

