PEA Association Pvt. Ltd. Thapathali, Kathmandu, Tel: 4245730, 4257187

Section-1

1. (b)

In soap solution
$\mathrm{P}=\frac{2 \mathrm{~T}}{\mathrm{R}}$
In air
$\mathrm{P}^{\prime}=\frac{2 \times 2 \mathrm{~T}}{\mathrm{R}}=2 \mathrm{P}$
2. (c)

For uniform circular motion $a_{t}=0 \& a_{r}$ is finite.
3. (c)

Stress $=Y \alpha \Delta \theta$, is independent to length of rod.
4. (d)
$\mathrm{P}=\sigma \mathrm{e}\left(\mathrm{T}^{4}-\mathrm{T}_{0}{ }^{4}\right)$ depends on area, nature, difference in temperature between body \& surrounding.
5. (a)
$\frac{\mathrm{I}_{1}}{\mathrm{I}_{2}}=\left(\frac{\mathrm{f}_{1} a_{1}}{\mathrm{f}_{2} a_{2}}\right)^{2}$
or, $\frac{1}{36}=\left(\frac{1}{2} \times \frac{a_{1}}{a_{2}}\right)^{2}$
or, $\frac{1}{9}=\left(\frac{a_{1}}{a_{2}}\right)^{2}$
or, $\frac{a_{1}}{a_{2}}=\frac{1}{3}$
6. (a)

$$
\mathrm{T}=\frac{1}{4 \pi \varepsilon_{0}} \frac{\mathrm{q}^{2}}{(2 l)^{2}}=\frac{\mathrm{q}^{2}}{4 \pi \varepsilon_{0} \times 4 l^{2}}
$$

7. (b)

$$
\frac{\mathrm{R}^{\prime}}{\mathrm{R}}=\frac{\left(l+\frac{l}{10}\right)^{2}}{l^{2}}=1.21
$$

8. (b)

$$
\mu=\frac{\sin \mathrm{i}}{\sin \mathrm{i} / 2}=\frac{2 \sin \mathrm{i} / 2 \cdot \cos \mathrm{i} / 2}{\sin \mathrm{i} / 2}
$$

or, $\quad \cos \frac{1}{2}=\frac{\mu}{2}$
or, $\quad i=2 \cos ^{-1}\left(\frac{\mu}{2}\right)$
9. (c)

$$
\begin{aligned}
& \lambda=\frac{\mathrm{h}}{\mathrm{P}}=\frac{\mathrm{h}}{\sqrt{2 \mathrm{mE}}} \\
& \frac{\lambda^{\prime}}{\lambda}=\sqrt{\frac{\mathrm{E}}{2 \mathrm{E}}}=\frac{1}{\sqrt{2}} \quad \therefore \lambda^{\prime}=\frac{\lambda}{\sqrt{2}}
\end{aligned}
$$

10. (c)

$$
\alpha=\frac{\Delta \mathrm{I}_{\mathrm{c}}}{\Delta \mathrm{I}_{\mathrm{c}}}
$$

or, $\quad \Delta \mathrm{I}_{\mathrm{c}}=0.99 \times 5=4.95 \mathrm{~mA}$
11. (d)
$\mathrm{F}=\mathrm{bt}{ }^{2}$
or, $\quad \mathrm{b}=\frac{\mathrm{MLT}^{-2}}{\mathrm{~T}^{2}}=\mathrm{MLT}^{-4}$
12. (a)

$$
\mathrm{F}=\mathrm{ma}
$$

$$
\text { or, } \quad \mathrm{m}=\frac{\sqrt{6^{2}+8^{2}+10^{2}}}{1}=10 \sqrt{2} \mathrm{~kg}
$$

13. (d)

In isothermal expansion only temperature remain constant
14. (b)
$m=\frac{f_{0}}{f_{e}}$
Eye piece has high power if focal length is less $p=\frac{1}{f}$
15. (c)
$v=\sqrt{\frac{E}{\rho}}$, Here ratio of $\frac{E}{\rho}$ is maximum for steel
16. (c)

17. (c)

$$
\begin{align*}
& \frac{1}{\lambda}=\left(\mathrm{z}_{1}-1\right)^{2}\left[\frac{1}{1^{1}}-\frac{1}{2^{2}}\right] \ldots \ldots \ldots \text { (i) } \\
& \frac{1}{\lambda^{\prime}}=\left(\mathrm{z}_{2}-1\right)^{2}\left[\frac{1}{1^{2}}-\frac{1}{2^{2}}\right] \ldots \ldots . . \text { (ii) } \tag{ii}
\end{align*}
$$

Dividing (i) by (ii)

$$
\frac{\lambda^{\prime}}{\lambda}=\left(\frac{43-1}{29-1}\right)^{2}=\left(\frac{3}{2}\right)^{2}
$$

18. (b)

If $A \subset B$, then $A \cup B=B$
19. (c)

$$
\frac{1}{1+\mathrm{i}}=\frac{1}{1+\mathrm{i}} \times \frac{1-\mathrm{i}}{1-\mathrm{i}}=\frac{1-\mathrm{i}}{2}=\left(\frac{1}{2},-\frac{1}{2}\right)
$$

20. (b)
$\mathrm{HM}=\frac{2 \mathrm{ab}}{\mathrm{a}+\mathrm{b}}=\frac{2 \times 2 \times 8}{2+8}=3.2$
21. (b)
θ lies in $4^{\text {th }}$ quadrant
So, $\theta=2 \pi-\frac{\pi}{4}=\frac{7 \pi}{4}$
$\therefore \quad$ Most general value $=2 n \pi+\frac{7 \pi}{4}$
22. (d)

The slope of tangent to $x^{2}=4 a y$ at $\left(x_{1}, y_{1}\right)$ is $\frac{x_{1}}{2 a}$

$$
\begin{aligned}
& \therefore \frac{\mathrm{x}_{1}}{2 \mathrm{a}}=\mathrm{m} \Rightarrow \mathrm{x}_{1}=2 \mathrm{am} \\
& \mathrm{y}_{1}=\frac{\mathrm{x}_{1}{ }^{2}}{4 \mathrm{a}}=\mathrm{am}^{2} \quad\left(\mathrm{x}_{1}, \mathrm{y}_{1}\right)=\left(2 \mathrm{am}, \mathrm{am}^{2}\right)
\end{aligned}
$$

PEA Association Pvt. Ltd. Thapathali, Kathmandu, Tel: 4245730, 4257187 2078-3-05 Hints \& Solution

23. (a)

If $\mathrm{k}<0$ then $\mathrm{k}=-\mathrm{p}$ where $\mathrm{p}>0$. The equation becomes
$\frac{y^{2}}{p / b}-\frac{x^{2}}{p / a}=1 \Rightarrow e=\sqrt{1+\frac{p / a}{p / b}}=\sqrt{1+\frac{b}{a}}$
24. (c)
$\lim _{n \rightarrow \infty}\left(\frac{\mathrm{n}}{\mathrm{n}+1}\right)^{\mathrm{n}}=\lim _{n \rightarrow \infty}\left[\left(\frac{\mathrm{n}+1}{\mathrm{n}}\right)^{\mathrm{n}}\right]^{-1}$
$=\lim _{n \rightarrow \infty}\left[\left(1+\frac{1}{\mathrm{n}}\right)^{\mathrm{n}}\right]^{-1}=\mathrm{e}^{-1}=\frac{1}{\mathrm{e}}$
25. (b)
$y=\sin ^{2} x, z=\cos x$
$\frac{d y}{d x}=2 \sin x \cos x, \quad \frac{d z}{d x}=-\sin x$
$\frac{d y}{d z}=\frac{2 \sin x \cos x}{-\sin x}=-2 \cos x$
26.
$\int \log _{\mathrm{e}} \mathrm{x} .1 \mathrm{dx}=\mathrm{x} \log _{\mathrm{e}} \mathrm{x}-\int\left(\frac{1}{\mathrm{x}} \cdot \mathrm{x}\right) \mathrm{dx}+\mathrm{c}_{1}$
$=x \log _{e} x-\int 1 d x+c_{1}=x \log _{e} x-x+c$
27. (a)

Let $\vec{a}=x \vec{i}+y \vec{j}+z \vec{k}$
$\vec{a} \cdot \vec{i}=x \Rightarrow(\vec{a} \cdot \vec{i})^{2}=x^{2}$
Similarly,
$\vec{a} \cdot \vec{j}=y \Rightarrow(\vec{a} \cdot \vec{j})^{2}=y^{2},(\vec{a} \cdot \vec{k})^{2}=z^{2}$
$(\vec{a} \cdot \vec{i})^{2}+(\vec{a} \cdot \vec{j})^{2}+(\vec{a} \cdot \vec{k})^{2}=$
$x^{2}+y^{2}+z^{2}=\vec{a} \cdot \vec{a}=\vec{a}^{2}$
28. (c)

Function $f(x)$ is defined if $a^{2}-x^{2} \geq 0$

$$
\begin{array}{ll}
\therefore & \mathrm{a}^{2} \geq \mathrm{x}^{2} \\
\therefore & \mathrm{x} \in[-\mathrm{a}, \mathrm{a}]
\end{array}
$$

29. (b)

$$
\cos \left(\frac{\pi}{3}+i \sin \frac{\pi}{3}\right)^{-3}=\cos (-\pi)+i \sin (-\pi)=-1
$$

30. (b)

Binomial coff. of $4^{\text {th }}$ term $=$ coff. of $\mathrm{T}_{4}={ }^{5} \mathrm{c}_{3}=10$
31. (a)

Using L-Hospital's rule
$\lim _{x \rightarrow 0} \frac{\frac{a}{}_{\sin x} \cdot \log a \cos x}{b^{\sin x} \cdot \log b \cdot \cos x}=\frac{\log a}{\log b}=\log _{b} a$
32. (b)

Normal || to x-axis means tangent in $\perp^{\text {lr }}$ to x -axis

$$
\therefore \quad \frac{d y}{d x}=\infty \quad \therefore \frac{d x}{d y}=0
$$

33. (d)

$$
\int_{0}^{2}|2-x| d x=\int_{0}^{2}(2 x) d x=\left[2 x-\frac{x^{2}}{2}\right]_{0}^{2}=4-2=2
$$

34. (c)

Distance from x -axis $=\sqrt{2^{2}+3^{2}}=\sqrt{13}$
35. (d)

Angle between lines is π if $\mathrm{h}^{2}=\mathrm{ab}$

$$
\therefore \quad 9=2 \mathrm{~K} \quad \therefore \mathrm{~K}=\frac{9}{2}
$$

36. (c)
$\log _{5} \mathrm{~A}=3 \quad \therefore \mathrm{~A}=5^{3}=125$
37. (d)

$$
\cos ^{-1}\left(\frac{1}{2}\right)+\sin ^{-1}\left(\frac{1}{2}\right)+\sin ^{-1}\left(\frac{1}{2}\right)=\frac{\pi}{2}+\frac{\pi}{6}=\frac{4 \pi}{6}
$$

$$
=\frac{2 \pi}{3}
$$

38. (c)

17 g of $\mathrm{NH}_{3}=10 \times \mathrm{N}_{\mathrm{A}}$ electrons
3.4 g of $\mathrm{NH}_{3}=2 \mathrm{~N}_{\mathrm{A}}$ electrons
($\because 1$ molecule of NH_{3} conains 10 electrons)
39. (b)

The configuration of Ca -atom is
$1 s^{2} 2 s^{2} 2 p^{6} 3 s^{2} 3 p^{6} 4 s^{2}$. Each orbital has 1 electron having $\mathrm{m}=0$ and $\mathrm{s}=+1 / 2$
40. (b)

For $\mathrm{PbCl}_{2}, \mathrm{k}_{\mathrm{sp}}=4 \mathrm{~s}^{3}$

$$
=\left(\frac{\mathrm{k}_{\mathrm{sp}}}{4}\right)^{1 / 3}=\left(\frac{5 \times 10^{-7}}{4}\right)^{1 / 3}
$$

41. (b)
$\mathrm{NH}_{4} \mathrm{Cl}$ is salt of weak base and strong acid so its solution is acidic and has pH less than 7 .
42. (c)

In $\mathrm{C}_{2} \mathrm{H}_{2}(\mathrm{H}-\mathrm{C} \equiv \mathrm{C}-\mathrm{H})$, there are 3σ and 2π bonds.
43. (b)
NH_{3} is reduced by sodium metal to H_{2} gas
$\mathrm{Na}+\mathrm{NH}_{3} \longrightarrow \mathrm{NaNH}_{2}+\mathrm{H}_{2}$
44. (a)
$\mathrm{Li}_{2} \mathrm{CO}_{3}$ due to diagonal relation with MgCO_{3} decomposes while other alkali metal carbonates are thermally stable.
45. (d)

Zinc is obtained by distillation so, it doesn't require flux.
46. (c)

Iron becomes passive due to formation of $\mathrm{Fe}_{3} \mathrm{O}_{4}$.
47. (b)
SO_{3} is electrophile due to presence of polar $\mathrm{S}=\mathrm{O}$ bond rest are nuleophilies.
48. (c)

Ethyl iodide is formed by reacting red P and I_{2} with ethanol and $\mathrm{H}_{3} \mathrm{PO}_{3}$ is formed as byproduct.

49. (c)	50. (c)	51. (d)	52. (b)	53. (d)	54. (d)	
55.	(a)	$56 .(\mathrm{d})$	57. (b)	$58 .(\mathrm{b})$	$59 .(\mathrm{b})$	60. (d)

61. (d)

Section-II

$x=40+12 t-t^{3}$
or, $\quad v=\frac{\mathrm{dx}}{\mathrm{dt}}=12-3 \mathrm{t}^{2}$
If comes to rest $v=0$ so

$$
0=12-3 t^{2}
$$

or, $\quad t^{2}=4$
or, $t=2 \sec$

$$
\begin{aligned}
\mathrm{x} & =\int_{0}^{2} v \mathrm{dt}=\int_{0}^{2}\left(12-3 \mathrm{t}^{2}\right) \mathrm{dt}=12(\mathrm{t})_{0}^{2}-3\left(\frac{\mathrm{t}^{3}}{3}\right)_{0}^{2} \\
& =12(2-0)-\left(2^{3}-0^{3}\right)=24-8=16 \mathrm{~m}
\end{aligned}
$$

62. (b)

$$
\mathrm{T}_{\max }=\mathrm{m}(\mathrm{~g}+\mathrm{a})
$$

or, $\quad 300=10(10+a)$
or, $\mathrm{a}=20 \mathrm{~m} / \mathrm{s}^{2}$
$\therefore \quad \mathrm{h}=1 / 2 \mathrm{at}^{2}$

$$
\mathrm{t}=\sqrt{\frac{2 \mathrm{~h}}{\mathrm{a}}}=\sqrt{\frac{2 \times 10}{20}}=1 \mathrm{sec}
$$

63. (b)
$\tau=\mathrm{I} \alpha$
$\alpha=\frac{6.9 \times 10^{2}}{3 \times 10^{2}}=2.3 \mathrm{rad} / \mathrm{s}^{2}$
Again, $\omega=\omega_{0}+\alpha \mathrm{t}$
or, $\quad 0=4.6-2.3 \times \mathrm{t}$
or, $t=2 \sec$
64. (a)

F $=$ Breaking stress \times Area
or, $\quad \operatorname{mr} \omega^{2}=4.8 \times 10^{7} \times 10^{-6}$
or, $\omega=\sqrt{\frac{4.8 \times 10^{7} \times 10^{-6}}{10 \times 0.3}}=4 \mathrm{rad} / \mathrm{s}$
65.
(a)
$\mathrm{d}_{100}=\mathrm{d}_{0}(1+\alpha \Delta \theta)$

$$
=2.54\left(1+2.3 \times 10^{-5} \times 100\right)=2.55 \mathrm{~cm}
$$

66. (a)
$1{ }^{\text {st }}$ case

$$
\frac{\mathrm{V}_{2}}{\mathrm{~V}_{1}}=\frac{\mathrm{T}_{2}}{\mathrm{~T}_{1}} \quad \text { or, } \mathrm{T}_{2}=\frac{2 \mathrm{~V}}{\mathrm{~V}} \times 300=600 \mathrm{k}
$$

$2^{\text {nd }}$ case

$$
\mathrm{T}_{3} \mathrm{~V}_{3}^{\gamma-1}=\mathrm{T}_{2} \mathrm{~V}_{2}{ }^{r-1}
$$

or, $\left(\frac{V_{3}}{2 \times 20}\right)^{5 / 3-1}=\frac{600}{300}$
or, $\quad \mathrm{V}_{3}=(2)^{3 / 2} \times 40=113 \mathrm{lts}$
67. (d)

$\mathrm{f}^{\prime}=\frac{v}{v+v_{\mathrm{s}}} \times \mathrm{f}=\frac{330}{330+5} \times 256=252.2 \mathrm{~Hz}$

For reflected sound
$\mathrm{f}^{\prime \prime}=\frac{v}{v-v_{\mathrm{s}}} \times \mathrm{f}=\frac{330}{330-5} \times 256=260 \mathrm{~Hz}$
$f_{b}=f^{\prime \prime}-f^{\prime}=260-252.2=7.8$ beats $/ \mathrm{s}$
68. (c)
$\mathrm{C}=\frac{\varepsilon_{0} \mathrm{~A}}{\mathrm{~d}}$
$\mathrm{C}_{1}=\frac{\varepsilon_{r} \varepsilon_{0} \mathrm{~A}}{2 \mathrm{~d}}$
$=\frac{2}{2} \times 10=10 \mu \mathrm{~F}$
$\mathrm{C}_{2}=\frac{\varepsilon_{\mathrm{r}}^{\prime} \varepsilon_{0} \mathrm{~A}}{2 \mathrm{~d}}$
$=\frac{4}{2} \times 10=20 \mu \mathrm{~F}$
$\therefore \quad \mathrm{C}_{\mathrm{eq}}=\mathrm{C}_{1}+\mathrm{C}_{2}=10+20=30 \mu \mathrm{~F}$
69. (a) $E=-\frac{d v}{d r}=\frac{d\left(4 x^{2}\right)}{d x}=-8 x$

$$
\text { At } \begin{aligned}
(1,0,2), \quad \mathrm{E} & =-8 \times 1=-8 \mathrm{~V} / \mathrm{m} \\
& =8 \mathrm{~V} / \mathrm{m} \text { along -ve } \mathrm{x} \text {-axis }
\end{aligned}
$$

70. (b)

$$
\operatorname{Bev} \sin \theta=\frac{m(v \sin \theta)^{2}}{r}
$$

or, $\quad r=\frac{m v \sin \theta}{B e}=\frac{10^{8} \times \sin 20^{\circ}}{9.6 \times 10^{-5} \times 1.8 \times 10^{11}}$

$$
=1.98 \mathrm{~m} \approx 2 \mathrm{~m}
$$

71. (d)

$$
\begin{aligned}
\mathrm{E} & =-\frac{\mathrm{d} \phi}{\mathrm{dt}}=-\mathrm{A} \frac{\mathrm{~dB}}{\mathrm{dt}} \\
& =8 \times 2 \times 10^{-4} \times 0.02=32 \times 10^{-6} \mathrm{~V} \\
\mathrm{P} & =\frac{\mathrm{V}^{2}}{\mathrm{R}}=\frac{\left(32 \times 10^{-6}\right)^{2}}{1.6}=6.4 \times 10^{-10} \mathrm{~W}
\end{aligned}
$$

72. (b)

$$
\begin{aligned}
& \theta=\frac{\beta}{D}=\frac{\mathrm{D} \lambda}{\mathrm{dD}}=\frac{\lambda}{\mathrm{d}} \\
& \frac{\theta_{\mathrm{w}}}{\theta_{\mathrm{a}}}=\frac{\lambda_{\mathrm{w}}}{\lambda_{\mathrm{a}}}=\frac{1}{\mu}
\end{aligned}
$$

or, $\quad \theta_{\mathrm{w}}=\frac{\theta_{\mathrm{a}}}{\mu}=\frac{0.4}{4 / 3}=0.3^{\circ}$
73. (b)
5% of $P=\frac{n}{t} \frac{h c}{\lambda}$
or, $\quad \frac{\mathrm{n}}{\mathrm{t}}=\frac{5}{100} \times \frac{0.1 \times 2537 \times 10^{-10}}{6.62 \times 10^{-34} \times 3 \times 10^{8}}$

$$
=6.38 \times 10^{15}
$$

For metal plate

$$
\begin{aligned}
I & =\left(\frac{n}{t} \times \frac{\mathrm{A}}{4 \pi \mathrm{r}^{2}}\right) \mathrm{e} \\
& =\frac{6.38 \times 10^{15} \times 4 \times 10^{-4} \times 1.6 \times 10^{-19}}{4 \pi \times 1^{2}} \\
& =32.5 \times 10^{-9} \mathrm{~A}=32.5 \mathrm{nA}
\end{aligned}
$$

PEA Association Pvt. Ltd. Thapathali, Kathmandu, Tel: 4245730, 4257187

74. (d)
$1^{\text {st }}$ case

$$
\frac{3000}{6000}=\left(\frac{1}{2}\right)^{\frac{t}{T_{1}}}
$$

or, $\frac{1}{2}=\left(\frac{1}{2}\right)^{\frac{140}{T_{1}}}$
or, $\quad \mathrm{T}_{1 / 2}=140$ days
Again,

$$
\frac{\mathrm{C}}{\mathrm{C}_{\mathrm{o}}}=\left(\frac{1}{2}\right)^{\frac{t}{T_{1}}}
$$

or, $\frac{6000}{\mathrm{C}_{\mathrm{o}}}=\left(\frac{1}{2}\right)^{\frac{280}{140}}$
or, $C_{0}=24000 \mathrm{dis} / \mathrm{s}$
75. (d)
$y=\frac{x}{1+x^{2}}$
$y x^{2}-x+y=0$
$\mathrm{x}=\frac{1 \pm \sqrt{1-4 \mathrm{y}^{2}}}{2 \mathrm{y}}$
To be x real, $1-4 \mathrm{y}^{2} \geq 0$
$4 y^{2} \leq 1 \Rightarrow y^{2} \leq \frac{1}{4} \Rightarrow|y| \leq \frac{1}{2}$
$\Rightarrow-\frac{1}{2} \leq \mathrm{y} \leq \frac{1}{2}$
$\mathrm{y}=\left[-\frac{1}{2}, \frac{1}{2}\right]$
76. (c)
$\Delta=(\mathrm{a}+\mathrm{b}-\mathrm{c})(\mathrm{a}-\mathrm{b}+\mathrm{c})=2(\mathrm{~s}-\mathrm{c}) \times 2(\mathrm{~s}-\mathrm{b})$
$\frac{1}{4}=\frac{(\mathrm{s}-\mathrm{b})(\mathrm{s}-\mathrm{c})}{\Delta}=\tan \frac{\mathrm{A}}{2}$
$\tan \mathrm{A}=\frac{2 \tan \mathrm{~A} / 2}{1-\tan ^{2} \mathrm{~A} / 2}=\frac{2 \times 1 / 4}{1-(1 / 4)^{2}}=\frac{8}{15}$
77. (c)

For no solution
$\left|\begin{array}{lll}\alpha & 1 & 1 \\ 1 & \alpha & 1 \\ 1 & 1 & \alpha\end{array}\right|=0$
$\alpha=1$ satisfies this, now for other value,
$\mathrm{c}_{1} \rightarrow \mathrm{c}_{1}+\mathrm{c}_{2}+\mathrm{c}_{3}$
$\left|\begin{array}{lll}\alpha+2 & 1 & 1 \\ \alpha+2 & \alpha & 1 \\ \alpha+2 & 1 & \alpha\end{array}\right|=0 \Rightarrow \alpha=-2$
So option 'c' is suitable
78. (a)
$\begin{aligned} \text { Middle term } & =\mathrm{t}_{2 \mathrm{n} / 2+1} \\ & =\mathrm{t}_{\mathrm{n}+1}\end{aligned}$

$$
\begin{aligned}
& =c(2 n, n)\left(x^{2}\right)^{2 n-n}\left(\frac{1}{x^{2}}\right)^{n} \\
& =c(2 n, n)
\end{aligned}
$$

79. (a)

No. of permutation of the word $=\frac{6!}{3!2!}$

$$
=2 \times 5 \times 6=60
$$

When two N's come together, no. of permutation $=\frac{5!}{3!}=20$
Required permutation $=60-20=40$
80. (c)
$(4)^{2}+\mathrm{p} \times 4+12=0 \Rightarrow \mathrm{p}=-7$
Now, $\mathrm{p}^{2}-4 \mathrm{q}=0 \Rightarrow 4 \mathrm{q}=49 \Rightarrow \mathrm{q}=\frac{49}{4}$
81. (d)

$$
\mathrm{BD}^{2}=\mathrm{BN}^{2}+\mathrm{DN}^{2}
$$

$$
\mathrm{k}^{2}=l^{2}+\mathrm{h}^{2}
$$

\therefore The equation of locus of (h, k) is

$$
\mathrm{y}^{2}=\mathrm{x}^{2}+l^{2}
$$

82. (c)

$$
\begin{aligned}
\Delta & =\frac{3}{2}\left|\begin{array}{cc}
1-0 & 2-0 \\
-3-0 & 4-0
\end{array}\right|=\frac{3}{2}\left|\begin{array}{cc}
1 & \frac{2}{4} \\
-3 & 4
\end{array}\right| \\
& =\frac{3}{2} \times 10=15
\end{aligned}
$$

83. (a)

Area of $\Delta=\frac{1}{2} \times 2 \mathrm{ae} \times \mathrm{b} \sin \theta=\sqrt{\mathrm{a}^{2}-\mathrm{b}^{2}} \times \mathrm{b} \sin \theta$
$\therefore \quad \sqrt{5} \times 2 \sin \theta=\sqrt{10} \Rightarrow \theta=45^{\circ}$
$\therefore \quad(\mathrm{x}, \mathrm{y})=(\mathrm{a} \cos \theta, \mathrm{b} \sin \theta)$

$$
=\left(3 \cos 45^{\circ}, 2 \sin 45^{\circ}\right)=\left(\frac{3}{\sqrt{2}}, \sqrt{2}\right)
$$

84. (a)

The equation of the plane is
$\frac{x}{a}+\frac{y}{b}+\frac{z}{c}=1$
$\frac{x}{4}+\frac{y}{b}+\frac{z}{3}=1$
d.c's of y axis are $0,1,0$
$\therefore \quad \frac{1}{4} \cdot 0+\frac{1}{\mathrm{~b}} \cdot 1+\frac{1}{3} \cdot 0=0 \Rightarrow \frac{1}{\mathrm{~b}}=0$
$\therefore \quad$ The equation of the plane is
$\frac{\mathrm{x}}{4}+\frac{\mathrm{z}}{3}=1$

$$
3 x+4 z=12
$$

PEA Association Pvt. Ltd. Thapathali, Kathmandu, Tel: 4245730, 4257187

85. (d)
$\mathrm{f}^{\prime}(\mathrm{x})=2 \mathrm{x}-\frac{\mathrm{a}}{\mathrm{x}^{2}}, \mathrm{f}^{\prime \prime}(\mathrm{x})=2+\frac{2 \mathrm{a}}{\mathrm{x}^{3}}$
$f^{\prime}(2)=4-\frac{a}{4}=0 \Rightarrow a=16$
86. (c)
$\mathrm{y}^{2}=\frac{1+\mathrm{x}}{1-\mathrm{x}}$
$2 \mathrm{y} \frac{\mathrm{dy}}{\mathrm{dx}}=\frac{2}{(1-\mathrm{x})^{2}}$
$\mathrm{y}^{2} \frac{\mathrm{dy}}{\mathrm{dx}}=\frac{\mathrm{y}}{(1-\mathrm{x})^{2}}$
$\frac{1+x}{1-x} \frac{d y}{d x}=\frac{y}{(1-x)^{2}}$
$\frac{d y}{d x}=\frac{y}{1-x^{2}}$
87. (a)

$$
\begin{aligned}
I & =\int_{0}^{\pi / 2} \frac{\cos \theta d \theta}{\sqrt{1-\sin \theta}} \quad[\text { put } 1-\sin \theta=y] \\
& =-\int_{1}^{0} y^{-1 / 2} d y=\left[-2 y^{1 / 2}\right]_{1}^{0}=2
\end{aligned}
$$

88. (a)

Area $=\int_{0}^{3 / 5} y d x=\int_{0}^{3 / 5}\left(3 x-5 x^{2}\right) d x$
$=\left[\frac{3 x^{2}}{2}-\frac{5 x^{3}}{3}\right]_{0}^{3 / 5}=\frac{9}{50}$
89. (c)
$(p, q)=\lambda(5,1)$
$\Rightarrow \mathrm{p}=5 \lambda, \quad \mathrm{q}=\lambda$
$\mathrm{p}=5 \mathrm{q}$
90.
(c)
91. (d)
92. (b)
93. (a)
94. (b)
$\frac{\mathrm{E}_{\text {metal chloride }}}{\mathrm{E}_{\text {silver chloride }}}=\frac{\mathrm{W}_{\text {metal chloride }}}{\mathrm{W}_{\text {silver chloride }}}$
$\frac{x+35.5}{108+35.5}=\frac{1}{2.11}$
$\mathrm{x}=32.5$
95. (b)
$\mathrm{E}=\frac{\mathrm{W} \times 1000}{\mathrm{~V} \times \mathrm{N}}=\frac{1.18 \times 1000}{40 \times 0.5}=59$
\therefore Mol.wt $=59 \times 2=118$
96. (c)
$M=\frac{E I t}{F}$
$\mathrm{E}=\frac{\mathrm{MF}}{\mathrm{It}}=\frac{3 \times 96500}{9.65 \times 10 \times 60}=50$
$\therefore \mathrm{at} . \mathrm{wt}=$ Eq. wt \times valency $=50 \times 1=50$
97. (d)
$\mathrm{K}_{2} \mathrm{Cr}_{2} \mathrm{O}_{7}+4 \mathrm{H}_{2} \mathrm{SO}_{4} \rightarrow \mathrm{~K}_{2} \mathrm{SO}_{4}+\mathrm{Cr}_{2}\left(\mathrm{SO}_{4}\right)_{3}+\mathrm{H}_{2} \mathrm{O}$
The change in O.N. of $\mathrm{K}_{2} \mathrm{Cr}_{2} \mathrm{O}_{7}$ in acidified $\mathrm{K}_{2} \mathrm{Cr}_{2} \mathrm{O}_{7}$ is 6 .
98. (a)

In redox reaction, $\mathrm{H}_{2} \mathrm{~S}$ is oxidized to S by oxidizing agents.
99. (b)

Acetylene adds $\mathrm{H}_{2} \mathrm{O}$ forming vinyl alcohol which rearranges forming acetaldehyde.
100.(c)
$\mathrm{O} \Rightarrow 1 \mathrm{~s}^{2} 2 \mathrm{~s}^{2} 2 \mathrm{p}^{4}$
After velax of one 'e' $\mathrm{O}^{+} \Rightarrow 1 \mathrm{~s}^{2} 2 \mathrm{~s}^{2} 2 \mathrm{p}^{3}$
Hence it is stable form and has high I.E E_{2}
$\mathrm{N} \Rightarrow 1 \mathrm{~s}^{2} 2 \mathrm{~s}^{2} 2 \mathrm{p}^{3}, \mathrm{~N}^{+} \Rightarrow 1 \mathrm{~s}^{2} 2 \mathrm{~s}^{2} 2 \mathrm{p}^{2}$
...The End...

