## Section - I

1.(a) $2^{\mathrm{n}-4}+1$

$$
2^{6-4}+1=5
$$

2. (d)

3. (c)
4. (c)
5. (a)
6. (b)
7. (a)
8. (c)
9. (d)
10. (c)
11. (b)
12. (c) Total no. of elements $=5$, no. of subsets having

3 elements $=c(5,3)=10$
13. (a) $\sec ^{2} \theta=\frac{4}{3} \quad$ i.e. $\cos ^{2} \theta=\frac{3}{4} \quad$ i.e. $\cos ^{2} \theta=\left(\frac{\sqrt{2}}{2}\right)^{2}$
i.e. $\cos ^{2} \theta=\cos ^{2} \frac{\pi}{6}$
$\therefore \quad \theta=\mathrm{n} \pi \pm \frac{\pi}{6}$
14. (b) $\quad a \sin A=b \sin B$
i.e. $a \cdot \frac{a}{2 R}=b \cdot \frac{b}{2 R}$
i.e. $a^{2}=b^{2}$
i.e. $a=b$
$\therefore \Delta$ is isosceles
15. (b)
$\frac{|\vec{a} \times \vec{b}|}{\vec{a} \cdot \vec{b}}=\frac{3}{\sqrt{3}}$
$\frac{a b \sin \theta}{\text { abcos } \theta}=\sqrt{3} \tan \theta=\sqrt{3}$
i.e. $\theta=60^{\circ}$
16. (b) Logarithm is defined for positive values only so option 'b'
17. (c) Product of roots $=1$
i.e. $\frac{-5}{\mathrm{~K}-2}=1$
i.e. $K-2=-5$
i.e. $K=-3$
18. (a) By definition the determinant of a matrix and its transpose are equal, so 'a'
19. (b) For no solution, $D=0$
$\therefore\left|\begin{array}{ll}\lambda & 3 \\ 1 & 2\end{array}\right|=0$
i.e. $2 \lambda-3=0$
i.e. $\lambda=\frac{3}{2}$
20. (d) The required line is $3(x-1)+5(y-2)=0$ i.e. $3 x+5 y-13=0$
21. (c) Given equations are $5 x+12 y+8=0,10 x+24 y$ $-3=0$
i.e. $10 x+24 y+16=0,10 x+24 y-3=0$
$\therefore \quad$ Distance $= \pm \frac{16-(-3)}{\sqrt{10^{2}+24^{2}}}=\frac{19}{26}$ units
22. (b) Radius $=\sqrt{\mathrm{g}^{2}+\mathrm{f}^{2}-\mathrm{c}}=\sqrt{\sin ^{2} \theta+\cos ^{2} \theta+8}$

$$
=\sqrt{9}=3
$$

23. (d) Here, $\left(\frac{x}{a}\right)^{2}+\left(\frac{y}{b}\right)^{2}=\cos ^{2} \theta+\sin ^{2} \theta, \frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=$ 1, which is an ellipse
24. (b) Given $x^{2}-4 y^{2}=1$
i.e. $\frac{x^{2}}{1}-\frac{y^{2}}{\frac{1}{4}}=1$

So, $e=\sqrt{1+\frac{1}{4}}=\sqrt{\frac{5}{4}}=\frac{\sqrt{5}}{2}$
25. (c) The equation is true only for $x=0, y=0$ So it represents z-axis
26. (a) $\lim _{x \rightarrow 0} \frac{e^{\sin x}-1}{x}=\lim _{x \rightarrow 0} \frac{e^{\sin x}-1}{\sin x} \cdot \frac{\sin x}{x}=1.1=1$
27. (c) For point of discontinuity, $x-3=0$ i.e. $x=3$
28. (b) By formula, option 'b' is correct.
29. (c) $2 \frac{d y}{d x}=0-2 x$
i.e. $\frac{d y}{d x}=-1$
i.e. $\tan \theta=-1$

$$
\theta=135^{\circ}
$$

30. (b) Put $t=\sqrt{x}$
i.e. $d t=\frac{1}{2} \sqrt{x} d x$.

So, $\frac{1}{2} \int \sec ^{2} \mathrm{t} d \mathrm{t}=\tan \mathrm{t}+\mathrm{c}=\tan \sqrt{\mathrm{x}}+\mathrm{c}$
31. (b) Rea. area $\int_{0}^{\pi} \sin x d x=\int_{0}^{\pi} \sin x d x$

$$
\begin{aligned}
& =[-\cos x]_{0}^{\pi} \\
& =(1+1) \\
& =2 \text { sq units }
\end{aligned}
$$

32. (a) When book is held stationary then work done is 0
33. (c) When position of particle changes then its distance as well as displacement are non zero.
34. (d) In smooth inclined plane friction is zero so no torque is produced i.e. can't roll.
35. (c) When ball is in space craft revolving around earth then the speed of ball is equal to speed of space craft i.e. orbital velocity so will revolve around earth with same speed.
36. (b) Cylindrical bulb thermometer is most sensitive since it has greatest surface area for given volume so quickly respond or most sensitive.

PEA Association Pvt. Ltd. Thapathali, Kathmandu, Tel: 4245730, 4257187

## 2078-2-22 Hints \& Solution

37. (a) Pressure is force per unit area
38. (c) When frequency of pendulum is ' f ' then frequency of KE is 2 f ie in each cycle KE become maximum two times.
39. (b) For open, $\mathrm{n}=\frac{\mathrm{v}}{2 l}$

For closed, $\mathrm{n}^{\prime}=\frac{\mathrm{v}}{4 \times \frac{l}{2}}=\frac{\mathrm{v}}{2 l}=\mathrm{n}$
40. (b) In air $=F_{a}=9 \times 10^{9} \frac{\mathrm{Q}_{1} \mathrm{Q}_{2}}{\mathrm{r}^{2}}$

For glass, $\mathrm{F}_{\mathrm{g}}=\frac{9 \times 10^{9}}{\mathrm{~K}} \frac{\mathrm{Q}_{1} \mathrm{Q}_{2}}{\mathrm{r}^{2}}$
Here $\mathrm{K}>1$
So, $\mathrm{F}_{\mathrm{g}}<\mathrm{F}_{\mathrm{a}}$
41. (b) The potential at any point inside the hollow sphere is equal to polential on surface.
42. (a) $\mathrm{P}=\frac{\mathrm{V}^{2}}{\mathrm{R}_{\mathrm{T}}}$

Here, $R_{T}=R+r$, increases on increasing $R$ so power decreases.
43. (b)
44. (b) $\mathrm{v}=\frac{\mathrm{fu}}{\mathrm{u}-\mathrm{f}}=\frac{10 \times 20}{20-10}=20 \mathrm{~cm}$
45. (a) $\beta=\frac{D \lambda}{d}$
$\lambda_{\mathrm{r}}$ is about $7800 \AA \& \lambda_{\mathrm{V}}$ is about $3800 \AA$ So, $\beta_{\mathrm{r}} \approx 2 \beta_{\mathrm{v}}$
46. (a)
$\lambda=\frac{h}{\mathrm{mv}}$
Here $\mathrm{m}_{\alpha}>\mathrm{m}_{\mathrm{n}}>\mathrm{m}_{\mathrm{p}}>\mathrm{m}_{\mathrm{e}}$ mass is least for electron so wave length will be maximum.
47. (c) As the quantum number increases the energy levels become more crowded ie energy difference decreases.
48. (a) $\alpha=0.96=\frac{I_{c}}{I_{e}}$
or, $\quad I_{c}=0.96 \times 7.2=6.912 \mathrm{~mA}$

$$
\mathrm{I}_{\mathrm{b}}=\mathrm{I}_{\mathrm{e}}-\mathrm{I}_{\mathrm{c}}=7.2-6.912=0.29 \mathrm{~mA}
$$

> 49. (a)
50. (d)
51. (b)
52. (d)
53. (c)
54. (b)
55. (a)
56. (b)
57. (d)
58. (c)
59. (b)
60. (a)

## Section-II

61. (c) At. wt. of an element $=6.644 \times 10^{-23} \times 6.023 \times$ $10^{23}=40$
$\therefore \quad 40 \mathrm{~kg}=40000 \mathrm{~g}$
$\therefore \quad 40 \mathrm{~g}$ of the element $=1 \mathrm{~g}$ atom
$\therefore \quad 40000 \mathrm{~g}$ of the element $=\frac{1}{40} \times 4000$

$$
=1000 \mathrm{~g}
$$

62. (b) No. of moles of $\mathrm{HCl}=\frac{100}{36.5}=2.74$

No. of moles of $\mathrm{NaOH}=\frac{100}{40}=2.5$

| $\mathrm{HCl}+\mathrm{NaOH} \rightarrow \mathrm{NaCl}+\mathrm{H}_{2} \mathrm{O}$ |  |  |
| :---: | :---: | :---: |
| 1 mole | 1 mole | 1 mole |
| (2.74-2.5) | 2.5 | 2.5 moles |
| 1 moles $\mathrm{NaCl}=58.5 \mathrm{~g}$ |  |  |
| 2.5 moles $\mathrm{NaCl}=58.5 \times 2.5$ |  |  |
| $=146.2$ |  |  |

63. (a) $3 \mathrm{HCl}+\mathrm{HNO}_{3} \rightarrow \mathrm{NaCl}+\mathrm{H}_{2} \mathrm{O}+2[4]$

Conc $^{n} \quad$ Conc $^{n}$
$\mathrm{Hg}+2[\mathrm{Cl}] \rightarrow \mathrm{HgCl}_{2}$
$\mathrm{HgCl}_{2}+2 \mathrm{KI} \rightarrow \mathrm{HgI}_{2}+2 \mathrm{KCl}$
excess
$\mathrm{HgI}_{2}+\mathrm{KI} \rightarrow \mathrm{K}_{2}\left[\mathrm{HgI}_{4}\right]$
64. (d)

65. (a) $[0.1] \times\left[\mathrm{OH}^{-}\right]^{2}=1 \times 10^{-11}$
$\left[\mathrm{OH}^{-}\right]=10^{-5}$
$\mathrm{pOH}=\log \left[\mathrm{OH}^{-}\right]$

$$
=-\log \left[10^{-5}\right]=5
$$

$\mathrm{pH}=14-5=9$
66. (d) $\mathrm{Chalk}+\mathrm{NaOH}=\mathrm{HCl}$
$\frac{\mathrm{W}}{50}=\frac{10.7 \times 1}{1000}=\frac{50 \times 1}{1000}$
$\mathrm{W}=1.965 \mathrm{~g}$
$\%=\frac{1.965}{2.014} \times 100=97.56 \%$
67. (d) $\mathrm{n}=4$, for $\mathrm{d}, l=2, \mathrm{~m}=-2,-1,0,+1,+\frac{1}{2}$,
$\mathrm{s}=+\frac{1}{2}$ or, $-\frac{1}{2}$
68. (d) We have $\mathrm{e}^{\mathrm{x}}=\mathrm{y}+\sqrt{1+\mathrm{y}^{2}}$
i.e. $\quad e^{x}-y=\sqrt{1+x^{2}}$
i.e. $\quad\left(e^{x}-y\right)^{2}=1+y^{2}$
i.e. $\quad e^{e x}-2 e^{x} y+y^{2}=1+y^{2}$
i.e. $\quad e^{2 x}-1=2 e^{x} y$
i.e. $y=\frac{e^{x}-e^{-x}}{2}$

## PEA Association Pvt. Ltd. Thapathali, Kathmandu, Tel: 4245730, 4257187

## 2078-2-22 Hints \& Solution

69. (c) $\tan ^{-1} \frac{x y}{z r}+\tan ^{-1} \frac{y z}{x r}+\tan ^{-1} \frac{z x}{y r}$
$=\tan ^{-1} \frac{x y}{z r}+\tan ^{-1} \frac{\frac{y z}{x r}+\frac{z x}{y r}}{1-\frac{y z}{x r} \cdot \frac{z x}{y r}}$
$=\tan ^{-1} \frac{x y}{z r}+\tan ^{-1} \frac{\frac{x}{x y r}\left(y^{2}+x^{2}\right)}{\frac{r^{2}-z^{2}}{r^{2} x y}}$
$=\tan ^{-1} \frac{x y}{z r}+\tan ^{-1} \cdot \frac{z r}{x y} \frac{y^{2}+x^{2}}{y^{2}+x^{2}}$
$=\tan ^{-1} \frac{x y}{z r}+\tan ^{-1} \frac{z r}{x y}=\tan ^{-1} \frac{x y}{z r}+\cot ^{-1} \frac{x y}{z r}=\frac{\pi}{2}$
70. (c) $|\vec{x}|=|\vec{y}|=|\vec{z}|=1$ and $\vec{x}+\vec{y}+\vec{z}=\overrightarrow{0}$

So, $\vec{y}+\vec{z}=-\vec{x}$
i.e. $y^{2}+2 \vec{y} . \vec{z}+z^{2}=x^{2}$
i.e. $\quad 1+2.11 \cos \theta+1=1$
i.e. $\quad \cos \theta=-\frac{1}{2} \quad \therefore \theta=\frac{2 \pi}{3}$
71. (b) Total no. of distribution of prizes $=4^{3}=64 \&$ no of ways of getting all the prizes to one $=4$
$\therefore$ Total no. of ways of distribution $=64-4=60$
72. (d) We have, $(1+x)^{n}=c_{0}+c_{1} x+c_{2} x^{2}+c_{3} x^{3}+$ $\mathrm{c}_{\mathrm{n}} \mathrm{x}^{\mathrm{n}}$
Integrating, $\frac{(1+x)^{n+1}}{n+1}=c_{0} x+\frac{c_{1}}{2} x^{2}+\frac{c_{2}}{3} x^{3}+\frac{c_{3}}{4}$ $x^{4}+\ldots .+c_{n} \frac{x^{n+1}}{n+1}+K$
Putting $x=0, K=\frac{1}{n+1}$
Then $\frac{(1+x)^{n+1}}{n+1}$

$$
=c_{0} x+\frac{x^{2}}{2} c_{1}+\frac{x^{3}}{3} c_{2}+\frac{x^{4}}{4} c_{3}+\ldots+\frac{x^{n+1}}{n+1} c_{n}+\frac{1}{n+1}
$$

Putting $x=2, \frac{3^{n+1}}{n+1}-\frac{1}{n+1}=2 c_{0}+\frac{2^{2}}{2} c_{1}+\frac{2^{3}}{3} c_{2}$
$+\frac{2^{4}}{4} c_{3}+\ldots .+\frac{2^{n+1}}{n+1} c_{n}$
73. (b) Put $a=K, b=K+d, c=K+2 d$

Also $(b-a),(-b)$, a are in G.P.
So, $d, d$, a are in GP
i.e. $\quad d^{2}=a d \Rightarrow a=d$

So, $\quad a: b: c=K: 2 K: 3 K$

$$
=1: 2: 3
$$

74. (d) $\left(1+\omega^{2}\right)^{m}=\left(1+\omega^{4}\right)^{m}$
or, $\quad\left(1+\omega^{2}\right)^{m}=(1+\omega)^{m}$
i.e. $\quad(-\omega)^{m}=\left(-\omega^{2}\right)^{m} \Rightarrow\left(\frac{\omega^{2}}{\omega}\right)^{m}=1$
i.e. $\quad \omega^{\mathrm{m}}=1=\omega^{3} \Rightarrow \mathrm{~m}=3$
75. (c) Pair of lines: $x y-x-y+1=0$
i.e. $\quad x(y-1)=0$
i.e. $\quad(x-1)(y-1)=0$
i.e. $\quad x-1=0, y-1=0$

As the lines are concurrent, so put $x=1, y=1$
in $\mathrm{ax}+2 \mathrm{y}-3=0$, we get $\mathrm{a} .1+2.1-3=0$
i.e. $\quad a=1$
76. (d) Here $\mathrm{m}=\tan 45^{\circ}=1, \mathrm{a}^{\prime}=\frac{\mathrm{a}}{4}$

So point of contact

$$
=\left(\frac{\mathrm{a}^{\prime}}{\mathrm{m}^{2}}, \frac{2 \mathrm{a}^{\prime}}{\mathrm{m}}\right)=\left(\frac{\mathrm{a}}{4.1^{2}}, 2 \cdot \frac{\mathrm{a}}{4.1}\right)=\left(\frac{\mathrm{a}}{4}, \frac{\mathrm{a}}{2}\right)
$$

77. (b) Equation of plane is $l \mathrm{x}+\mathrm{my}+\mathrm{nz}=1$

Which meets the coordinate axes at $\left(\frac{1}{l}, 0,0\right)$, $\left(0, \frac{1}{m}, 0\right)$ and $\left(0,0, \frac{1}{\mathrm{n}}\right)$. Then the centroid of the triangle formed is $\left(\frac{1}{3 l}, \frac{1}{3 m}, \frac{1}{3 n}\right)$. Thus $(31)^{2}$
$+(3 m)^{2}+(3 n)^{2}=K$
i.e. $\quad \mathrm{K}=9\left(l^{2}+\mathrm{m}^{2}+\mathrm{n}^{2}\right)=9$
78. (c) For continuity, $\lim _{x \rightarrow 0} f(x)=f(0)$
i.e. $\quad 0=\mathrm{K}$
79. (c) Here $x=\sin ^{-1}\left(3 t-4 t^{3}\right)=3 \sin ^{-1} t$, $y=\cos ^{-1} \sqrt{1-t^{2}}=\sin ^{-1} t$
So, $x=3 y \quad$ i.e. $y=\frac{1}{3} x$

$$
\frac{\mathrm{dy}}{\mathrm{dx}}=\frac{1}{3} \text { and } \frac{\mathrm{d}^{2} \mathrm{y}}{\mathrm{dx}^{2}}=0
$$

80. (b) Here $f(x)=x^{3}+\lambda x^{2}+\mu x+1$

So, $f^{\prime}(x)=3 x^{2}+2 \lambda x+\mu$
Then $\mathrm{f}^{\prime}(0)=0 \Rightarrow 3.0+2 . \lambda .0+\mu=0 \Rightarrow \mu=0$
and $\mathrm{f}^{\prime}(1)=0 \Rightarrow 3.1+2 \lambda .1+0=0 \Rightarrow \lambda=-\frac{3}{2}$
81. (c) $I=\int e^{\sqrt{x}} d x$ put $y=\sqrt{x}$
i.e. $\quad d y=\frac{1}{2 \sqrt{x}} d x$
i.e. $\quad d x=2 y d y$

Then $I=2 \int y^{y}{ }^{y} d y$

$$
\begin{aligned}
& =2\left[y \int e^{y} d y-\int\left(\frac{d y}{d x} \int e^{y} d y\right) d y\right] \\
& =2\left[y^{y}-e^{y}\right]+c \\
& =2 \mathrm{e}^{\sqrt{x}}(\sqrt{x}-1)+c
\end{aligned}
$$

82. (c) Here $\frac{d y}{d x}=2 x+1$

So, $y=x^{2}+x+K$
It passes through the point $(1,2)$.

## PEA Association Pvt. Ltd. Thapathali, Kathmandu, Tel: 4245730, 4257187

## 2078-2-22 Hints \& Solution

So, $2=1+1+K \Rightarrow K=0$
The curve is $y=x^{2}+x$
So it crosses x -axis a points 0 and -1
$\therefore \quad$ Required area $=\int_{-1}^{0} y d x=\int_{-1}^{0}\left(x^{2}+x\right) d x$

$$
=0-\left[-\frac{1}{3}+\frac{1}{2}\right]
$$

$=-\frac{1}{6}=\frac{1}{6}$ sq. units
83. (d) $K=m \omega^{2}$

$$
\begin{aligned}
& =20 \times 10^{-3}(2 \pi \mathrm{f})^{2} \\
& =20 \times 20^{-3} \times 4 \pi^{2} \times 10^{2} \\
& =79 \mathrm{~N} / \mathrm{m}
\end{aligned}
$$

84. (d) For neutron
$\mathrm{KE}_{\mathrm{i}}=\frac{1}{2} \mathrm{mv}^{2}=\frac{1}{2} \times 1 \times \mathrm{v}^{2}$
For carbon

$$
\begin{aligned}
& \begin{aligned}
& \mathrm{v}_{2}= \\
& \mathrm{m}_{1}+\mathrm{m}_{2}
\end{aligned}+\left(\frac{\mathrm{m}_{2}-\mathrm{m}_{1}}{\mathrm{~m}_{1}+\mathrm{m}_{2}}\right) \mathrm{u}_{2} \\
&=\frac{2 \times 1 \times \mathrm{v}}{1+12}+\left(\frac{12-1}{1+12}\right) \times 0=\frac{2 \mathrm{v}}{13} \\
& \mathrm{KE}^{\prime}=\frac{1}{2} \times 12 \times \mathrm{v}_{2}^{2}=6\left(\frac{2 \mathrm{v}}{13}\right)^{2}=\frac{24 \mathrm{v}^{2}}{169} \\
& \% \text { energy }=\frac{\mathrm{KE}^{\prime}}{\mathrm{KE}_{\mathrm{i}}} \times 100 \% \\
&=\frac{24 \mathrm{u}^{2} \times 2}{169 \times \mathrm{v}^{2}} \times 100 \% \\
&=28.4 \%
\end{aligned}
$$

85. (b)
$-\frac{\mathrm{Gm}^{2}}{\mathrm{r}}+0=-\frac{\mathrm{Gm}^{2}}{2 \mathrm{R}}+\frac{1}{2} \times 2 \mathrm{mv}^{2}$
or, $\frac{\mathrm{Gm}^{2}}{2 \mathrm{R}}-\frac{\mathrm{Gm}^{2}}{\mathrm{r}}=\mathrm{mv}^{2}$
or, $\operatorname{Gm}\left[\frac{1}{2 R}-\frac{1}{r}\right]=v^{2}$
or, $\quad \mathrm{v}=\sqrt{6.67 \times 10^{-11} \times 2 \times 10^{30}\left[\frac{1}{2 \times 10^{7}}-\frac{1}{10^{12}}\right]}$
$=2.58 \times 10^{6} \mathrm{~m} / \mathrm{s}$
86. (c) $\mathrm{T}_{2} \mathrm{~V}_{2}^{\gamma-1}=\mathrm{T}_{1} \mathrm{~V}_{1}^{\gamma-1}$

$$
\begin{aligned}
& \text { or, } \begin{aligned}
& \mathrm{T}_{2}=\mathrm{T}_{1}\left(\frac{\mathrm{~V}_{1}}{\mathrm{~V}_{2}}\right)^{\gamma-1} \\
&=288\left(\frac{\mathrm{~V}}{8 \mathrm{~V}}\right)^{5 / 3-1} \\
&=288\left(\frac{1}{8}\right)^{2 / 3} \\
&=72 \mathrm{~K} \\
& \begin{aligned}
\mathrm{T}=\mathrm{T}_{1} & -\mathrm{T}_{2}
\end{aligned} \\
&=288-72 \\
&=216 \mathrm{~K} \text { or } 216^{\circ} \mathrm{C}
\end{aligned}
\end{aligned}
$$

87. (b) Lose in time in $20 \mathrm{hrs}=\frac{1}{2} \propto \Delta \theta \times 20 \mathrm{hrs}$

$$
\begin{aligned}
& =\frac{1}{2} \times 1.2 \times 10^{-5} \times 5 \times 20 \times 3600 \mathrm{~s} \\
& =2.16 \mathrm{~s}
\end{aligned}
$$

88. (c)


Frequency of echo $\left(f^{\prime}\right)=\frac{v+v_{0}}{v+v_{s}} \times f$

$$
\begin{aligned}
& =\frac{330+18}{330-18} \times 100 \\
& =\frac{348}{312} \times 1000 \mathrm{~Hz} \\
& =1115 \mathrm{~Hz}
\end{aligned}
$$

89. (c) $\theta=32^{\prime}=\frac{32^{\circ}}{60}=\left(\frac{32}{60} \times \frac{\pi}{180}\right) \mathrm{rad}$

$$
\therefore \quad \theta=\frac{\mathrm{d}_{1}}{\mathrm{f}}
$$

or, $\begin{aligned} d_{I}=\theta f & =\frac{32 \pi}{60 \times 180} \times 25 \\ & =0.23 \mathrm{~cm}\end{aligned}$

$$
=2.3 \mathrm{~mm}
$$

90. (d) $\beta=\frac{D \lambda}{d}$

$$
\text { or, } \begin{aligned}
\mathrm{d}=\frac{\mathrm{D} \lambda}{\beta} & =\frac{0.4 \times 6000 \times 10^{-10}}{0.012 \times 10^{-2}} \\
& =2 \times 10^{-3} \mathrm{~m} \\
& =0.2 \mathrm{~cm}
\end{aligned}
$$

91. (a) $\mathrm{V}=\mathrm{E}-\mathrm{Ir}$

$$
\begin{aligned}
& =\mathrm{E}-\frac{\mathrm{E}}{\mathrm{R}+\mathrm{r}} \cdot \mathrm{r} \\
& =12-\frac{12}{6.5+1.5} \times 1.5 \\
& =9.75 \mathrm{~V}
\end{aligned}
$$

92. (c) For dc
$R=\frac{V}{I}=\frac{100}{1}=100 \Omega$
For ac

$$
\mathrm{Z}=\frac{\mathrm{V}}{\mathrm{I}}=\frac{100}{0.5}=200 \Omega
$$

Now $\mathrm{Z}=\sqrt{\mathrm{R}^{2}+\mathrm{X}_{\mathrm{L}}{ }^{2}}$
or, $\mathrm{X}_{\mathrm{L}}=\sqrt{\mathrm{Z}^{2}-\mathrm{R}^{2}}=\sqrt{200^{2}-100^{2}}$

$$
\mathrm{X}_{\mathrm{L}}=173.2 \Omega
$$

or, $\quad 2 \pi \mathrm{fL}=173.2$
or, $L=\frac{173.2}{2 \pi \times 50}=0.55 \mathrm{H}$

PEA Association Pvt. Ltd. Thapathali, Kathmandu, Tel: 4245730, 4257187

## 2078-2-22 Hints \& Solution

93. (c) $\mathrm{E}=9 \times 10^{9} \frac{\mathrm{Q}}{\mathrm{r}^{2}}$
or, $\mathrm{Q}=\frac{\mathrm{Er}^{2}}{9 \times 10^{9}}$
or, ne $=\frac{0.036 \times 0.1^{2}}{9 \times 10^{9}}$
or, $\mathrm{n}=\frac{0.036 \times 0.1^{2}}{9 \times 10^{9} \times 1.6 \times 10^{-19}}$

$$
=2.5 \times 10^{5}
$$

For series limit of Balmer series

$$
\frac{1}{\lambda_{\mathrm{B}}}=\mathrm{R}\left[\frac{1}{4}-\frac{1}{\infty}\right]
$$

or, $\lambda_{B}=\frac{4}{R} \ldots$... (ii)
Dividing (ii) by (i)

$$
\frac{\lambda_{\mathrm{B}}}{\lambda_{\mathrm{L}}}=\frac{4}{\mathrm{R}} \times \frac{3 \mathrm{R}}{4}
$$

or, $\lambda_{B}=3 \lambda_{L}=3 \times 1216 \AA=3648 \AA$
94. (c) $\mathrm{E}=\mathrm{L} \frac{\mathrm{dI}}{\mathrm{dt}}$
or, $L=\frac{\mathrm{E}}{\frac{\mathrm{dI}}{\mathrm{dt}}}=\frac{0.05}{5 \times 10^{-3}}$

$$
=10 \mathrm{H}
$$

95. (c) $\lambda_{L}=1216 \AA$

For Lyman series, first line $\frac{1}{\lambda_{\mathrm{L}}}=\mathrm{R}\left[\frac{1}{1}-\frac{1}{4}\right]=\frac{3 \mathrm{R}}{4}$
or, $\lambda_{\mathrm{L}}=\frac{4}{3 \mathrm{R}} \ldots$... (i)

