PEA Association Pvt. Ltd. Thapathali, Kathmandu, Tel: 4245730, 4257187 2078-1-25 Hints & Solution	
Section - I	21. (c) Given equations are $5x + 12y + 8 = 0$, $10x + 24y$
1.(a) $2^{n-4} + 1$ $2^{6-4} + 1 = 5$	-3 = 0 i.e. $10x + 24y + 16 = 0$, $10x + 24y - 3 = 0$
2. (d)	:. Distance $=\pm \frac{16 - (-3)}{\sqrt{10^2 + 24^2}} = \frac{19}{26}$ units
$\begin{array}{c} CH_3 CH_3 \\ {}^4 CH_3 - {}^{3l} CH - {}^{2l} CH - {}^1 CH_3 \end{array}$	22. (b) Radius = $\sqrt{g^2 + f^2 - c} = \sqrt{\sin^2\theta + \cos^2\theta + 8}$ = $\sqrt{9} = 3$
3. (c)	23. (d) Here, $\left(\frac{x}{a}\right)^2 + \left(\frac{y}{b}\right)^2 = \cos^2\theta + \sin^2\theta, \frac{x^2}{a^2} + \frac{y^2}{b^2} =$
4. (c) 5. (a)	
6. (b)	1, which is an ellipse 24. (b) Given $x^2 - 4y^2 = 1$
7. (a)	i.e. $\frac{x^2}{1} - \frac{y^2}{\frac{1}{4}} = 1$ So, $e = \sqrt{1 + \frac{1}{4}} = \sqrt{\frac{5}{4}} = \frac{\sqrt{5}}{2}$
8. (c)	
9. (d)	
10. (c) 11. (b)	So, $e = \sqrt{1 + \frac{1}{4}} = \sqrt{\frac{3}{4}} = \frac{\sqrt{3}}{2}$
12. (c) Total no. of elements = 5, no. of subsets having	25. (c) The equation is true only for $x = 0$, $y = 0$
3 elements = $c(5, 3) = 10$	So it represents z-axis $\lim_{x \to \infty} e^{\sin x} = 1$ $\lim_{x \to \infty} e^{\sin x} = 1$ sinx
13. (a) $\sec^2\theta = \frac{4}{3}$ i.e. $\cos^2\theta = \frac{3}{4}$ i.e. $\cos^2\theta = \left(\frac{\sqrt{2}}{2}\right)^2$	26. (a) $\lim_{x \to 0} \frac{e^{\sin x} - 1}{x} = \lim_{x \to 0} \frac{e^{\sin x} - 1}{\sin x} \cdot \frac{\sin x}{x} = 1.1 = 1$
	27. (c) For point of discontinuity, $x - 3 = 0$
i.e. $\cos^2\theta = \cos^2\frac{\pi}{6}$	i.e. $x = 3$ 28. (b) By formula, option 'b' is correct.
$\therefore \theta = n\pi \pm \frac{\pi}{6}$	29. (c) $2\frac{dy}{dx} = 0 - 2x$
0	
14. (b) $asinA = bsinB$	i.e. $\frac{dy}{dx} = -1$
i.e. $a \cdot \frac{a}{2R} = b \cdot \frac{b}{2R}$	i.e. $\tan\theta = -1$
i.e. $a^2 = b^2$ i.e. $a = b$	$\theta = 135^{\circ}$
$\therefore \Delta$ is isosceles	30. (b) Put $t = \sqrt{x}$
	i.e. $dt = \frac{1}{2}\sqrt{x} dx$.
15. (b) $\frac{ \vec{a} \times \vec{b} }{\vec{a}.\vec{b}} = \frac{3}{\sqrt{3}}$	So, $\frac{1}{2}\int \sec^2 t dt = \tan t + c = \tan \sqrt{x} + c$
$\frac{ab\sin\theta}{ab\cos\theta} = \sqrt{3} \tan\theta = \sqrt{3}$	<i>π</i> π
	31. (b) Rea. area $\int_{0}^{\pi} \sin x dx = \int_{0}^{\pi} \sin x dx$
i.e. $\theta = 60^{\circ}$ 16. (b) Logarithm is defined for positive values only so	$= [-\cos x]^{\pi}$
option 'b'	=(1+1)
17. (c) Product of roots = 1 -5	= 2 sq units
i.e. $\frac{-5}{K-2} = 1$	32. (a) When book is held stationary then work done is 0
i.e. $K - 2 = -5$	33. (c) When position of particle changes then its distance as well as displacement are non zero.
i.e. $K = -3$ 18. (a) By definition the determinant of a matrix and its	
transpose are equal, so 'a'	torque is produced i.e. can't roll.
19. (b) For no solution, $D = 0$	35. (c) When ball is in space craft revolving around
$\therefore \begin{vmatrix} \lambda & 3 \\ 1 & 2 \end{vmatrix} = 0$	earth then the speed of ball is equal to speed of space craft i.e. orbital velocity so will revolve
	around earth with same speed.
i.e. $2\lambda - 3 = 0$ i.e. $\lambda = \frac{3}{2}$	36. (b) Cylindrical bulb thermometer is most sensitive
20. (d) The required line is $3(x-1) + 5(y-2) = 0$ i.e. $3x + 5y - 13 = 0$	since it has greatest surface area for given
1.0. 5x + 5y - 15 = 0	volume so quickly respond or most sensitive.

PEA Association Pvt. Ltd. Thapathali, Kathmandu, Tel: 4245730, 4257187

PEA Association Pvt. Ltd. Thapathali, Kathmandu, Tel: 4245730, 4257187 2078-1-25 Hints & Solution

37. (a) Pressure is force per unit area
38. (c) When frequency of KE is 2f ic in each cycle KE
become maximum two times.
39. (b) For open,
$$n = \frac{y}{21}$$

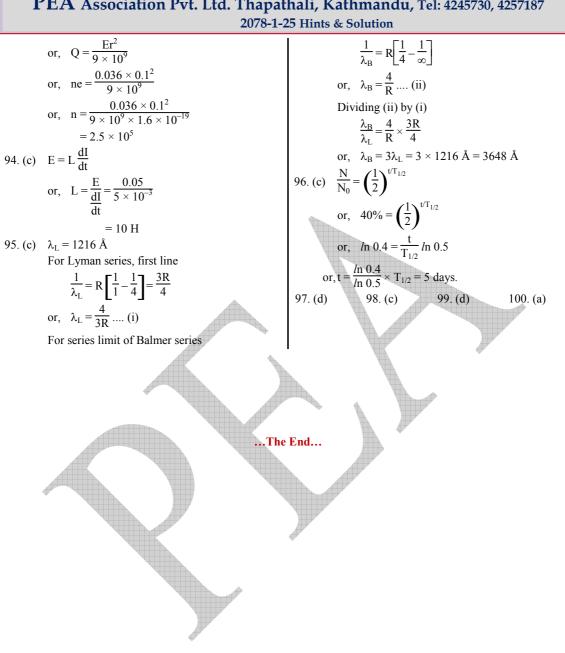
For closed, $n^{2} = \frac{y}{4 - x_{2}^{2}} = \frac{y}{21} = n$
40. (b) In air = $F_{a} = 9 \times 10^{9} \frac{Q_{1}Q_{2}}{r^{2}}$
Here K > 1
So, $F_{x} \leq F_{x}$
41. (b) The potential at any point inside the hollow
sphere is equal to polential on surface.
42. (a) $P = \frac{V^{2}}{R_{T}}$
Here $R_{T} = R + r$, increases on increasing R
power decreases.
43. (a)
44. (b) $v = \frac{f_{u}}{u - t} = \frac{10 \times 20}{20 - 10} < 20 \text{ cm}$
45. (a) $\beta = \frac{D\lambda}{d}$
 λ_{x} is about 7800 Å & λ_{x} is about 3800 Å
So, $\beta_{x} \geq 2\beta_{x}$
46. (a) $\lambda = \frac{h}{m_{V}}$
Here k > lso of increases on increasing R
power decreases.
45. (a) $\beta = \frac{D\lambda}{d}$
 λ_{x} is about 7800 Å & λ_{x} is about 3800 Å
So, $\beta_{x} \geq 2\beta_{x}$
46. (a) $\lambda = \frac{h}{m_{V}}$
Here $R_{x} = 120 - 10 < 20 \text{ cm}$
45. (a) $\beta = \frac{D\lambda}{d}$
 λ_{x} is about 7800 Å & λ_{x} is about 3800 Å
So, $\beta_{x} \geq 2\beta_{x}$
46. (a) $\lambda = \frac{h}{m_{V}}$
Here $R_{x} = 120 - 10 < 20 \text{ cm}$
47. (c) As the quantum number increases the energy
difference decreases.
48. (a) $\alpha = 0.96 = \frac{L}{k}$
or, $l_{x} = 0.96 \times 7.2 = 6.912 \text{ mA}$
 $l_{y} = \frac{10.60 \text{ s}}{51. (a)} 55. (b) 57. (d) 58. (c) 59. (b) 60. (a)$
Cultored
48. (a) $\alpha = 0.96 = \frac{L}{k}$
or, $l_{x} = 0.96 \times 7.2 = 6.912 \text{ mA}$
 $\lambda = 0.96 \times 57. (d) 58. (c) 59. (b) 60. (a)$
Cultored
49. (a) 50. (d) 51. (b) 52. (d) 53. (c) 54. (b) 55. (a) 56. (b) 57. (d) 58. (c) 59. (b) 60. (a)
Cultored
61. (c) At w t, of an element = 1 g atom
 \therefore 40000 g of the element = 1 g atom
 \therefore 40000 g of the element = 1 g atom
 \therefore 40000 g of the element = 1 g atom
 \therefore 40000 g of the element = $\frac{1}{40} \times 4000$
 $= 1000 g$

PEA Association Pvt. Ltd. Thapathali, Kathmandu, Tel: 4245730, 4257187 2078-1-25 Hints & Solution

69. (c)
$$\tan^{-1} \frac{xy}{zr} + \tan^{-1} \frac{yz}{xr} + \tan^{-1} \frac{zx}{yr}}{yr}$$

$$= \tan^{-1} \frac{xy}{zr} + \tan^{-1} \frac{x}{xyr} \frac{yz}{yr} + \frac{zx}{yr}}{1 - \frac{yz}{xr} + \frac{xx}{yr}}$$

$$= \tan^{-1} \frac{xy}{zr} + \tan^{-1} \frac{x}{xyr} (y^{2} + x^{2})$$


$$= \tan^{-1} \frac{xy}{zr} + \tan^{-1} \frac{x}{xy} \frac{y^{2} + x^{2}}{r^{2} + x^{2}}$$

$$= \tan^{-1} \frac{xy}{zr} + \tan^{-1} \frac{zr}{xy} = \tan^{-1} \frac{xy}{zr} + \cot^{-1} \frac{xy}{zr} = \frac{\pi}{2}$$
70. (c) $|\vec{x}| = |\vec{y}| = |\vec{z}| = 1$ and $\vec{x} + \vec{y} + \vec{z} = \vec{0}$
So, $\vec{y} + \vec{z} = -\vec{x}$
i.e. $y^{2} + 2\vec{y} \cdot \vec{z} + z^{2} = x^{2}$
i.e. $1 + 2 \cdot 11 \cos\theta + 1 = 1$
i.e. $\cos\theta = -\frac{1}{2}$ $\therefore \theta = \frac{2\pi}{3}$
71. (b) Total no. of distribution of prizes $= 4^{3} = 64$ & no of ways of getting all the prizes to one $= 4$
 \therefore Total no. of distribution $= 64 - 4 = 60$
72. (d) We have, $(1 + x)^{n+1} = c_{0}x + \frac{c_{1}}{2}x^{2} + \frac{c_{2}}{3}x^{3} + \frac{c_{3}}{4}$
 $x^{4} + \ldots + c_{n}\frac{x^{n+1}}{n+1} + K$
Putting $x = 0$, $K = \frac{1}{n+1}$
Then $\frac{(1 + x)^{n+1}}{n+1}$
 $= c_{0}x + \frac{x^{2}}{2}c_{1} + \frac{x^{3}}{3}c_{2} + \frac{x^{4}}{4}c_{3} + \ldots + \frac{x^{n+1}}{n+1}c_{n} + \frac{1}{n+1}$
 $putting $x = 2, \frac{3^{n+1}}{n+1} - \frac{1}{n+1} = 2c_{0} + \frac{2^{2}}{2}c_{1} + \frac{2^{3}}{3}c_{2}$
 $+ \frac{2^{4}}{4}c_{3} + \ldots + \frac{2^{n+1}}{n+1}c_{n}$
73. (b) Put $a = K, b = K + d, c = K + 2d$
Also $(b - a)$ ($-b)$, a are in GP
i.e. $d^{2} = ad \Rightarrow a = d$
So, $a : b : c = K : 2K : 3K = 1 : 2 : 3$
74. (d) $(1 + \omega^{2})^{m} = (1 + \omega)^{m}$
i.e. $(-\omega)^{m} = (-\omega^{2})^{m} \Rightarrow (\frac{\omega^{2}}{\omega})^{m} = 1$
i.e. $\omega^{m} = 1 = \omega^{3} \Rightarrow m = 3$$

75. (c) Pair of lines: xy - x - y + 1 = 0i.e. x(y-1) = 0i.e. (x-1)(y-1) = 0i.e. x - 1 = 0, y - 1 = 0As the lines are concurrent, so put x = 1, y = 1in ax + 2y - 3 = 0, we get $a \cdot 1 + 2 \cdot 1 - 3 = 0$ i.e. a = 1 76. (d) Here m = tan45° = 1, a' = $\frac{a}{4}$ So point of contact $= \left(\frac{\mathbf{a}'}{\mathbf{m}^2}, \frac{2\mathbf{a}'}{\mathbf{m}}\right) = \left(\frac{\mathbf{a}}{4.1^2}, 2\cdot\frac{\mathbf{a}}{4.1}\right) = \left(\frac{\mathbf{a}}{4}, \frac{\mathbf{a}}{2}\right)$ 77. (b) Equation of plane is lx + my + nz = 1Which meets the coordinate axes at $\left(\frac{1}{l}, 0, 0\right)$, $\left(0,\frac{1}{m},0\right)$ and $\left(0,0,\frac{1}{n}\right)$. Then the centroid of the triangle formed is $\left(\frac{1}{3l}, \frac{1}{3m}, \frac{1}{3n}\right)$. Thus $(31)^2$ + $(3m)^2 + (3n)^2 = K$ i.e. $K = 9 (l^2 + m^2 + n^2) = 9$ 78. (c) For continuity, $\lim_{x \to 0} f(x) = f(0)$ i.e. 0 = K79. (c) Here $x = \sin^{-1}(3t - 4t^3) = 3\sin^{-1}t$, $y = \cos^{-1}\sqrt{1 - t^2} = \sin^{-1}t$ So, x = 3y i.e. $y = \frac{1}{3}x$ $\therefore \frac{dy}{dx} = \frac{1}{3} \text{ and } \frac{d^2y}{dx^2} = 0$ 80. (b) Here $f(x) = x^3 + \lambda x^2 + \mu x + 1$ So, $f'(x) = 3x^2 + 2\lambda x + \mu$ Then $f'(0) = 0 \Longrightarrow 3.0 + 2.\lambda .0 + \mu = 0 \Longrightarrow \mu = 0$ and $f'(1) = 0 \Longrightarrow 3.1 + 2\lambda .1 + 0 = 0 \Longrightarrow \lambda = -\frac{3}{2}$ 81. (c) $I = \int e^{\sqrt{x}} dx$ put $y = \sqrt{x}$ i.e. $dy = \frac{1}{2\sqrt{x}} dx$ i.e. dx = 2y dyThen I = $2\int ye^{y}dy$ $= 2 \left[y \int e^{y} dy - \int \left(\frac{dy}{dx} \int e^{y} dy \right) dy \right]$ $= 2 \left[y e^{y} - e^{y} \right] + c$ $= 2 e^{\sqrt{x}} (\sqrt{x} - 1) + c$ 82. (c) Here $\frac{dy}{dx} = 2x + 1$ So, $y = x^2 + x + K$ It passes through the point (1, 2).

3

PEA Association Pvt. Ltd. Thapathali, Kathmandu, Tel: 4245730, 4257187 2078-1-25 Hints & Solution So, $2 = 1 + 1 + K \implies K = 0$ $=\frac{1}{2} \times 1.2 \times 10^{-5} \times 5 \times 20 \times 3600 \text{s}$ The curve is $y = x^2 + x$ So it crosses x-axis a points 0 and -1 = 2.16sRequired area = $\int_{-1}^{0} y dx = \int_{-1}^{0} (x^2 + x) dx$ 88. (c) ÷ $v \rightarrow v$ s $v_s = v_0$ v $= 0 - \left[-\frac{1}{3} + \frac{1}{2} \right]$ $=-\frac{1}{6}=\frac{1}{6}$ sq. units Frequency of echo (f') = $\frac{v + v_0}{v + v_s} \times f$ 83. (d) $K = m\omega^2$ $=\frac{330+18}{330-18}\times100$ $= 20 \times 10^{-3} (2\pi f)^2$ $= 20 \times 20^{-3} \times 4\pi^2 \times 10^2$ $=\frac{348}{312}$ × 1000 Hz = 79 N/m 84. (d) For neutron = 1115 Hz 89. (c) $\theta = 32' = \frac{32^{\circ}}{60} = \left(\frac{32}{60} \times \frac{\pi}{180}\right)$ rad $\mathrm{KE}_{\mathrm{i}} = \frac{1}{2}\,\mathrm{mv}^2 = \frac{1}{2} \times 1 \times \mathrm{v}^2$ For carbon $\therefore \quad \theta = \frac{d_{I}}{f}$ $v_2 = \frac{2m_1u_1}{m_1 + m_2} + \left(\frac{m_2 - m_1}{m_1 + m_2}\right)u_2$ or, $d_I = \theta f = \frac{32\pi}{60 \times 180} \times 25$ $=\frac{2 \times 1 \times v}{1+12} + \left(\frac{12-1}{1+12}\right) \times 0 = \frac{2v}{13}$ = 0.23 cm 2.3 mm KE' = $\frac{1}{2} \times 12 \times v_2^2 = 6 \left(\frac{2v}{13}\right)^2 = \frac{24v^2}{169}$ 90. (d) $\beta = \frac{D\lambda}{A}$ % energy = $\frac{\text{KE'}}{\text{KE}_{i}} \times 100\%$ or, $d = \frac{D\lambda}{\beta} = \frac{0.4 \times 6000 \times 10^{-10}}{0.012 \times 10^{-2}}$ $=\frac{24u^2 \times 2}{169 \times y^2} \times 100\% = 28.4\%$ $= 2 \times 10^{-3} \text{ m}$ 85. (b) $-\frac{Gm^2}{r} + 0 = -\frac{Gm^2}{2R} + \frac{1}{2} \times 2 \text{ mv}^2$ = 0.2 cm91. (a) V = E - Iror, $\frac{Gm^2}{2R} - \frac{Gm^2}{r} = mv^2$ $= E - \frac{E}{R+r} \cdot r$ $= 12 - \frac{12}{6.5 + 1.5} \times 1.5$ or, $\operatorname{Gm}\left[\frac{1}{2R} - \frac{1}{r}\right] = v^2$ or, $v = \sqrt{6.67 \times 10^{-11} \times 2 \times 10^{30} \left[\frac{1}{2 \times 10^7} - \frac{1}{10^{12}}\right]}$ = 2.58 × 10⁶ m/s 86. (c) $T_2 V_2^{\gamma - 1} = T_1 V_1^{\gamma - 1}$ = 9.75 V 92. (c) For dc $R = \frac{V}{I} = \frac{100}{1} = 100 \Omega$ For ac or, $T_2 = T_1 \left(\frac{V_1}{V_2}\right)^{\gamma-1}$ $Z = \frac{V}{I} = \frac{100}{0.5} = 200 \ \Omega$ $=288\left(\frac{\mathrm{V}}{\mathrm{8V}}\right)^{5/3-1}$ Now $Z = \sqrt{R^2 + X_L^2}$ or, $X_L = \sqrt{Z^2 - R^2} = \sqrt{200^2 - 100^2}$ $=288\left(\frac{1}{8}\right)^{2/3}$ $X_L = 173.2\Omega$ or, $2\pi fL = 173.2$ = 72 K or, $L = \frac{173.2}{2\pi \times 50} = 0.55 \text{ H}$ $\Delta T = T_1 - T_2 = 288 - 72$ = 216 K or 216°C 93. (c) $E = 9 \times 10^9 \frac{Q}{r^2}$ 87. (b) Lose in time in 20 hrs = $\frac{1}{2} \propto \Delta \theta \times 20$ hrs

