PEA Association Pvt. Ltd. Thapathali, Kathmandu, Tel: 4245730, 4257187

 2078-1-18 Hints \& Solution
Section - I

1. (d) $x^{2}=16 \Rightarrow x= \pm 4$
$\mathrm{x}^{2}-5 \mathrm{x}+6=0 \Rightarrow \mathrm{x}=2,3$
$\therefore \quad A=\{-4,4\} \cup\{2,3\}=\{-4,2,3,4\}$
2. (b)
3. (d) $\sec ^{2}\left(\tan ^{-1} 3\right)+\operatorname{cosec}^{2}\left(\cot ^{-1} 4\right)$
$=1+\tan ^{2}\left(\tan ^{-1} 3\right)+1+\cot ^{2}\left(\cot ^{-1} 4\right)$
$=1+3^{2}+1+4^{2}$
$=27$
4. (d) General values give infinite solution.
5. (b) If a \& b are negative numbers then $G=-\sqrt{a b}$
6. (b) $n!=n!$
$(\mathrm{n}+1)!=(\mathrm{n}+1) . \mathrm{n}!$
$(n+2)!=(n+2)(n+1) \cdot n!$
$\therefore \quad$ H.C.F $=\mathrm{n}$!
7. (b) $\quad\left|\begin{array}{cc}2 & 3 \\ 4 & -\mathrm{k}\end{array}\right|=0$
$\Rightarrow \quad-2 \mathrm{k}-12=0$
$\Rightarrow \mathrm{k}=-6$
8. (c) $\mathrm{x}^{2}=-\mathrm{a}^{2}$
$\therefore \quad \mathrm{x}= \pm \mathrm{ai}$
9. (b) Formula
10. (c) For point of discontinuity, $x-2=0$
$\Rightarrow \quad x=2$
11. (d) $\mathrm{y}=\sqrt{\mathrm{x}+\mathrm{y}}$
or, $y^{2}=x+y$
or, $2 y \frac{d y}{d x}=1+\frac{d y}{d x}$
$\therefore \quad \frac{d y}{d x}=\frac{1}{2 y-1}$
12. (c) Since $\sin ^{11} x$ is odd function, $\int_{-11}^{11} \sin ^{11} x d x=0$
13. (c) Slope of normal $=-\frac{d x}{d y}$

Then, $-\frac{d x}{d y}=\tan 0=0$
$\therefore \quad \frac{\mathrm{dx}}{\mathrm{dy}}=0$
14. (a) $\mathrm{A}=\int_{2}^{3} \mathrm{ydx}=\int_{2}^{3} 4 \mathrm{x}^{3} \mathrm{dx}=\left[\frac{4 \mathrm{x}^{4}}{4}\right]_{2}^{3}=3^{4}-2^{4}=65$
15. (c) $\vec{a} \times(\vec{b}+\vec{c})+\vec{b} \times(\vec{c}+\vec{a})+\vec{c} \times(\vec{a}+\vec{b})$
$=\vec{a} \times \vec{b}+\vec{a} \times \vec{c}+\vec{b} \times \vec{c}+\vec{b} \times \vec{a}+\vec{c} \times \vec{a}+\vec{c} \times \vec{b}$
$=\vec{a} \times \vec{b}+\vec{b} \times \vec{c}+\vec{c} \times \vec{a}-\vec{c} \times \vec{a}-\vec{a} \times \vec{b}-\vec{b} \times \vec{c}$
$=0$
16. (d) $|\vec{a}|=1,|\vec{b}|=1$
$\therefore \quad|\vec{a}|=|\vec{b}|$, option (d) is always true.
17. (b) Distance between parallel lines
$=\left|\frac{c_{1}-c_{2}}{\sqrt{a^{2}+b^{2}}}\right|=\left|\frac{-11-23}{\sqrt{3^{2}+5^{2}}}\right|=\sqrt{34}$
18. (a) $\mathrm{c}=\frac{\mathrm{a}}{\mathrm{m}}$
or, $\quad 3=\frac{\mathrm{a}}{2}$

$$
\therefore \quad a=6
$$

19. (b) Formula
20. (c) $\mathrm{a}^{2}=9, \mathrm{~b}^{2}=16$
$e=\sqrt{1+\frac{b^{2}}{a^{2}}}=\sqrt{1+\frac{16}{9}}=\frac{5}{3}$
Foci $=(\pm \mathrm{ae}, 0)=\left(\pm \frac{5}{3} \cdot 3,0\right)=(\pm 5,0)$
21. (c) Speed is maximum in medium of least refractive index i.e. air
22. (b) At resonance $\mathrm{V}_{\mathrm{L}}=\mathrm{V}_{\mathrm{C}}$ so I and V are in phase.
23. (b) $\frac{(\mathrm{e} / \mathrm{m})_{p}}{(2 \mathrm{e} / 4 \mathrm{~m})_{\alpha}}=2: 1$
24. (d) $r=\frac{\mathrm{P}}{\rho_{\mathrm{T}}}=\frac{10^{5}}{1.775 \times 300}=188 \mathrm{JKg}^{-1} \mathrm{~K}^{-1}$
25. (c) $\mathrm{M}=2 \mathrm{~m} l \quad$ or, $2 l=\frac{\mathrm{M}}{\mathrm{m}}=\frac{5}{25}=0.2 \mathrm{~m}$
26. (a) $I=\frac{n e}{t}$
or, $\frac{\mathrm{n}}{\mathrm{t}}=\frac{\mathrm{I}}{\mathrm{e}}=\frac{16 \times 10^{-3}}{16 \times 10^{-19}}=1 \times 10^{17} / \mathrm{s}$
27. (c) $\mathrm{KE}=\mathrm{PE}$
or, $\frac{1}{2} m \omega^{2}\left(r^{2}-y^{2}\right)=\frac{1}{2} m \omega^{2} y^{2}=\frac{1}{2} m \omega^{2} y^{2}$
or, $r^{2}-y^{2}=y^{2}$
or, $2 y^{2}=r^{2}$
or, $\mathrm{y}=\frac{\mathrm{r}}{\sqrt{2}}=\frac{4}{\sqrt{2}}=2 \sqrt{2} \mathrm{~cm}=2.8 \mathrm{~cm}$
28. (c) $\frac{\mathrm{mg}^{\prime}}{\mathrm{mg}}=\left(\frac{\mathrm{R}}{\mathrm{R}+\frac{\mathrm{R}}{2}}\right)^{2}=\frac{4}{9}$
$\therefore \quad \mathrm{mg}^{\prime}=\frac{4}{9} \times 90=40 \mathrm{~N}$
29. (d) $\Delta \mathrm{P}=\mathrm{mv}-(-\mathrm{mu})$

$$
\begin{aligned}
& =\mathrm{mv}+\mathrm{mu} \\
& =0.1 \times 20+0.1 \times 30=5 \mathrm{NS}
\end{aligned}
$$

30. (c) Resistance of each part $\mathrm{R}^{\prime}=\frac{\mathrm{R}}{3}$

In parallel
$\mathrm{R}_{\mathrm{eq}}=\frac{\mathrm{R}^{\prime}}{3}=\frac{\mathrm{R}}{9}=\frac{90}{9}=10 \Omega$
31. (a) $\mathrm{L}=10 \log \frac{\mathrm{I}}{\mathrm{I}_{0}}$
or, $40=10 \log \frac{10^{-12}}{\mathrm{I}_{0}}$
or, $\frac{10^{-12}}{\mathrm{I}_{0}}=10^{4}$
or, $\mathrm{I}_{0}=\frac{10^{-12}}{10^{4}}=10^{-16} \mathrm{w} / \mathrm{cm}^{2}$

PEA Association Pvt. Ltd. Thapathali, Kathmandu, Tel: 4245730, 4257187 2078-1-18 Hints \& Solution

32. (c) The sensitivity increases if potential gradient decreases.
33. (c) $\frac{\Delta \mathrm{V}}{\mathrm{V}}=0.12 \%$
or, $\gamma \Delta \theta=0.12 \%$
or, $3 \alpha \Delta \theta=0.12 \%$
or, $\quad \alpha=\frac{0.12}{100 \times 3 \times 20}=2 \times 10^{-5} /{ }^{\circ} \mathrm{C}$
34. (a) Potential difference between plates remain same if source is connected across it.
35. (b) $\mathrm{PE}=\frac{\mathrm{Q}_{1} \mathrm{Q}_{2}}{4 \pi \varepsilon_{0} \mathrm{r}}$

Charge of electron is - ve so
$\mathrm{PE}=\frac{(-\mathrm{e})(-\mathrm{e})}{4 \pi \varepsilon_{0} \mathrm{r}}=\frac{\mathrm{e}^{2}}{4 \pi \varepsilon_{0} \mathrm{r}}$
if r decreases PE increases.
36. (c)

or, $\mathrm{r}=\mathrm{h} \tan \mathrm{C}=\mathrm{h} \frac{\sin \mathrm{C}}{\cos \mathrm{C}}$

$$
\begin{aligned}
& =\frac{\mathrm{h}}{\mu \sqrt{1-\sin ^{2} \mathrm{C}}} \\
& =\frac{\mathrm{h} \times \mu}{\mu \sqrt{\mu^{2}-1}}=\frac{1}{\sqrt{\mu^{2}-1}}
\end{aligned}
$$

37. (b) $\alpha=\frac{\Delta \mathrm{I}_{\mathrm{c}}}{\Delta \mathrm{I}_{\mathrm{e}}}$
or, $\quad 0.9=\frac{\Delta \mathrm{I}_{\mathrm{c}}}{\Delta \mathrm{I}_{\mathrm{c}}+\Delta \mathrm{I}_{\mathrm{b}}}$
or, $0.9 \Delta \mathrm{I}_{\mathrm{c}}+0.9 \Delta \mathrm{I}_{\mathrm{b}}=\Delta \mathrm{I}_{\mathrm{c}}$
or, $0.9 \Delta \mathrm{I}_{\mathrm{b}}=0.1 \Delta \mathrm{I}_{\mathrm{c}}$
or, $\Delta \mathrm{I}_{\mathrm{c}}=9 \times 2=18 \mu \mathrm{~A}$
38. (c) No. of $\mathrm{p}^{+} \mathrm{s}=27-14=13$

No. of $\mathrm{p}^{+} \mathrm{s}=$ no. of $\mathrm{e}^{-} \mathrm{s}: \mathrm{Al}: 2,8,3$, III $^{\text {rd }}$ period.
40. (c)
41. (b)
42. (c)
43. (d)
44. (b)
45. (b)
46. (c)

47. (b)
48. (c) Above reaction is disproportionation reaction i.e., Br_{2} is O.A. as well as R.A.

As, O.A., eq. wt. of $\mathrm{Br}_{2}=\frac{\mathrm{M}}{2}$
As, R.A., eq. wt. of $\mathrm{Br}_{2}=\frac{\mathrm{M}}{10}$
$\left[\stackrel{0}{\mathrm{Br}_{2}}+\mathrm{NaOH} \longrightarrow \mathrm{Na-} \stackrel{-1}{\mathrm{Br}}+\mathrm{NaBrO}_{3}+\mathrm{H}_{2} \mathrm{O}\right]$

English

49. (c)
50. (d) 51. (c)
(c) 52. (a)
51. (c)
52. (b)
53. (b)
54. (a) 57. (c)
55. (b)
56. (d)
57. (a)

Section - II

61. (d) $\sin ^{-1}(x-3) \Rightarrow-1 \leq x-3 \leq 1$
$\Rightarrow \quad 2 \leq x \leq 4 \ldots$ (i)
For denominator, $9-x^{2}>0$
$\Rightarrow \quad x^{2}<9$
$\Rightarrow \quad|x|<3$
$\Rightarrow \quad-3<x<3$.
Thus, domain is $2 \leq x<3$
[intersection of (i) and (ii)]
i.e. $[2,3)$
62. (b) $\frac{\mathrm{b}^{2}-\mathrm{c}^{2}}{2 \mathrm{aR}}=\frac{4 \mathrm{R}^{2}\left(\sin ^{2} \mathrm{~B}-\sin ^{2} \mathrm{C}\right)}{2.2 \mathrm{R} \sin \mathrm{A} \cdot \mathrm{R}}=\frac{\sin (\mathrm{B}+\mathrm{C}) \sin (\mathrm{B}-\mathrm{C})}{\sin \mathrm{A}}$

$$
=\sin (B-C)
$$

63. (d) $\left|\begin{array}{ccc}2 & -1 & 1 \\ 1 & 2 & -3 \\ 3 & a & 5\end{array}\right|=0$
i.e. $\quad 2\left|\begin{array}{cc}2 & -3 \\ \mathrm{a} & 5\end{array}\right|-(-1)\left|\begin{array}{cc}1 & -3 \\ 3 & 5\end{array}\right|+1\left|\begin{array}{ll}1 & 2 \\ 3 & \mathrm{a}\end{array}\right|=0$
$\Rightarrow \quad \mathrm{a}=-4$
64. (b) Apply $R_{3} \rightarrow R_{3}-x R_{1}-y R_{2}$
$\left|\begin{array}{ccc}a & b & a x+b y \\ b & c & b x+c y \\ 0 & 0 & -\left(a x^{2}+2 b x y+c y^{2}\right)\end{array}\right|=0$
$\Rightarrow \quad\left(\mathrm{ac}-\mathrm{b}^{2}\right)\left(\mathrm{ax}^{2}+2 \mathrm{bxy}+\mathrm{cy}^{2}\right)=0$
$\Rightarrow \quad \mathrm{b}^{2}=\mathrm{ac}$
i.e. $\quad a, b, c$ are in G.P.
65. (a) $\left.-_{-} \frac{\left(\frac{1}{n+1}\right)}{1}-\frac{\left(\frac{1}{n+1}\right)^{2}}{2}-\frac{\left(\frac{1}{n+1}\right)^{3}}{3}-\ldots\right\}$
$=-\log _{e}\left(1-\frac{1}{n+1}\right)=-\log _{e}\left(\frac{n}{n+1}\right)$
$=\log _{e}\left(\frac{n+1}{n}\right)=\log _{e}\left(1+\frac{1}{n}\right)$
66. (a) If two O's are taken as one letter, then the no. of arrangements $=5!=120$
If no restriction is enforced, total no. of arrangements

$$
=\frac{6!}{2!}=360
$$

Hence if no two O's are together, then no. of arrangements $=360-120=240$

PEA Association Pvt. Ltd. Thapathali, Kathmandu, Tel: 4245730, 4257187

 2078-1-18 Hints \& Solution67. (d) $\frac{(\cos \theta+\mathrm{i} \sin \theta)^{4}}{\mathrm{i}^{5}(\cos \theta-\mathrm{i} \sin \theta)^{5}}=\frac{\cos 4 \theta+\mathrm{i} \sin 4 \theta}{\mathrm{i}(\cos 5 \theta-\mathrm{i} \sin 5 \theta)}$ $=-\mathrm{i}\{\cos (4 \theta+5 \theta)+\mathrm{i}(\sin (4 \theta+5 \theta)\}$ $=\sin 9 \theta-i \cos 9 \theta$
68. (b) Equation of angle bisectors of $x^{2}-2 p x y-y^{2}=0$ $-p\left(x^{2}-y^{2}\right)=[1-(-1)] x y$
$p x^{2}+2 x y-p y^{2}=0$
This equation is identical to $x^{2}-2 q x y-y^{2}=0$
So, $\frac{\mathrm{p}}{1}=\frac{2}{-2 \mathrm{q}}=\frac{-1}{-1} \Rightarrow \mathrm{pq}=-1$
69. (a) Given planes are $2 x+y+2 z-8=0$
$\& 2 x+y+2 z+\frac{5}{2}=0$
Distance $=\left|\frac{\mathrm{d}_{1}-\mathrm{d}_{2}}{\sqrt{\mathrm{a}^{2}+\mathrm{b}^{2}+\mathrm{c}^{2}}}\right|=\left|\frac{-8-\frac{5}{2}}{\sqrt{2^{2}+1^{2}+2^{2}}}\right|$

$$
=\frac{21}{2 \times 3}=\frac{7}{2}
$$

70. (a) $9 x^{2}+5 y^{2}-30 y=0$
or, $\quad \frac{x^{2}}{5}+\frac{(y-3)^{2}}{9}=1$
$\mathrm{a}^{2}=5, \mathrm{~b}^{2}=9$
$\mathrm{e}=\sqrt{1-\frac{\mathrm{a}^{2}}{\mathrm{~b}^{2}}}=\sqrt{1-\frac{5}{9}}=\frac{2}{3}$
71. (a)
$\lim _{x \rightarrow \infty} \frac{\frac{1}{2}\left(\frac{2}{5}\right)^{x}-\left(\frac{3}{5}\right)^{x}}{4 .\left(\frac{4}{5}\right)^{x}+5^{2}}$
$\left(\right.$ Dividing each term by $\left.5^{x}\right)=\frac{0-0}{0+25}=0$
72. (a) $f^{\prime}(x)=\frac{(1+|x|) \cdot 1-x \frac{d}{d x}(1+|x|)}{(1+|x|)^{2}}$

$$
=\frac{(1+|x|)-x \cdot \frac{|x|}{x}}{(1+|x|)^{2}}=\frac{1}{(1+|x|)^{2}}
$$

73. (b) $\int_{0}^{\frac{\sqrt{3}}{2}} \frac{\mathrm{dx}}{\sqrt{1-\mathrm{x}^{2}}}=\left[\sin ^{-1} \mathrm{x}\right]_{0}^{\frac{\sqrt{3}}{2}}$

$$
\begin{aligned}
& =\sin ^{-1}\left(\frac{\sqrt{3}}{2}\right)-\sin ^{-1}(0) \\
& =\frac{\pi}{3}-0 \\
& =\frac{\pi}{3}
\end{aligned}
$$

74. (b) $y=2 x^{2}-x+1 \Rightarrow \frac{d y}{d x}=4 x-1$

For the tangent to be parallel with $\mathrm{y}=3 \mathrm{x}+9$,

$$
\begin{aligned}
& 4 x-1=3 \\
& x=1
\end{aligned}
$$

When $\mathrm{x}=1, \mathrm{y}=2 \times 1^{2}-1+1=2$
Thus the required point is $(1,2)$
75. (b)

Point of intersection of $y=\sin x$ and $y=\cos x$ are $\frac{\pi}{4}$ and $\frac{3 \pi}{4}$. Also, $\sin x \geq \cos x$ on the interval $\left[\frac{\pi}{4}, \frac{5 \pi}{4}\right]$. Also of one such region
$=\int_{\pi / 4}^{5 \pi}(\sin x-\cos x) d x$
$=2 \sqrt{2}$
76. (b)

$\mathrm{h}=\mathrm{u} \times 2-\frac{1}{2} \mathrm{~g} \times 2^{2}=\mathrm{u} \times 10-\frac{1}{2} \mathrm{~g} \times 10^{2}$
or, $2 \mathrm{u}-20=10 \mathrm{u}-500$
or, $8 u-480$
or, $u=60 \mathrm{~m} / \mathrm{s}$
Again $\mathrm{h}=60 \times 2-\frac{1}{2} \times 10 \times 2^{2}$

$$
=120-20=100 \mathrm{~m}
$$

77. (d) $\mathrm{mr} \omega^{2}=\mu \mathrm{mg}$
or, $\mu=\frac{\mathrm{r}(2 \pi \mathrm{f})^{2}}{\mathrm{~g}}$

$$
=\frac{0.1 \times 4 \pi^{2} \times 1^{2}}{10}=0.4
$$

78. (a) $\tau=\mathrm{I} \alpha$
or, $\alpha=\frac{500}{100}=5 \mathrm{rad} / \mathrm{s}^{2}$
Again $\omega=\omega_{0}+\alpha \mathrm{t}$

$$
=0+5 \times 2=10 \mathrm{rad} / \mathrm{s}
$$

79. (d) $\frac{\mathrm{P}_{2} \mathrm{~V}}{\mathrm{P}_{1} \mathrm{~V}}=\frac{\mathrm{m}_{2} \mathrm{r} \mathrm{T}_{2}}{\mathrm{~m}_{1} \mathrm{r}_{1}}$
or, $\frac{\mathrm{m}_{2}}{\mathrm{~m}_{1}}=\frac{10 \mathrm{~A}}{9.5 \mathrm{~A}} \times \frac{280}{300}=0.98$
or, $\mathrm{m}_{2}=0.98 \times 19=18.66 \mathrm{~kg}$
$\therefore \quad$ Mass escape $=19-18.66$

$$
=0.33 \mathrm{~kg}
$$

80. (b) $\eta=\left(1-\frac{T_{1}-75}{T_{1}}\right) \times 100 \%$
or, $\frac{22}{100}=1-1+\frac{75}{\mathrm{~T}_{1}}$
or, $\mathrm{T}_{1}=\frac{7500}{22}=341 \mathrm{~K}$

PEA Association Pvt. Ltd. Thapathali, Kathmandu, Tel: 4245730, 4257187

81. (c) $\mathrm{i}=\mathrm{e}=\frac{3}{4}$ of $\mathrm{A}=\frac{3}{4} \times 60=45^{\circ}$
$\delta=2 \mathrm{i}-\mathrm{A}=2 \times 45-60=30^{\circ}$
82. (b) $\frac{\beta_{r}}{\beta_{y}}=\frac{\lambda_{r}}{\lambda_{y}}$
or, $\quad \beta_{\mathrm{r}}=\frac{6.5 \times 10^{-7}}{5.2 \times 10^{-7}} \times 0.2=0.25 \mathrm{~mm}$
83. (c) $\mathrm{f}_{0}=\frac{1}{2 l} \sqrt{\frac{\mathrm{~T} l}{\mathrm{M}}}$

$$
=\frac{1}{2 \times 0.5} \sqrt{\frac{800 \times 0.5}{0.01}}=200 \mathrm{~Hz}
$$

84. (d) $\mathrm{E}=\mathrm{B} / \mathrm{v}$

$$
\begin{aligned}
& =0.3 \times 10^{-4} \times 10 \times 5 \\
& =1.5 \times 10^{-3} \mathrm{~V}=1.5 \mathrm{mV}
\end{aligned}
$$

85. (c) $\mathrm{R}_{\mathrm{p}}=\frac{\mathrm{R}_{1} \mathrm{R}_{2}}{\mathrm{R}_{1}+\mathrm{R}_{2}}$
or, $\quad 3.43=\frac{\mathrm{R}_{1} \mathrm{R}_{2}}{\mathrm{R}_{1}+\mathrm{R}_{2}} \ldots$ (1)

$$
\mathrm{R}_{\mathrm{s}}=\mathrm{R}_{1}+\mathrm{R}_{2}=14 \ldots \text { (2) }
$$

Now $R_{1} R_{2}=3.43 \times 14=48 \Omega$
or, $\quad \mathrm{R}_{2}=\frac{48}{\mathrm{R}_{1}} \quad$ So, $\mathrm{R}_{1}+\frac{48}{\mathrm{R}_{1}}=14$
or, $\quad R_{1}{ }^{2}-14 R_{1}+48=0$
or, $\quad R_{1}{ }^{2}-6 R-8 R_{1}-48=0$
or, $\quad\left(R_{1}-6\right)\left(R_{1}-8\right)=0$
$\therefore \quad \mathrm{R}_{1}=6 \Omega$ or 8Ω
\therefore Greater resistors is 8Ω
86. (b) $I=\frac{V}{Z}=\frac{100}{\sqrt{\mathrm{R}_{\mathrm{T}}{ }^{2}+\mathrm{X}_{\mathrm{L}}{ }^{2}}}$

$$
=\frac{100}{\sqrt{(450+50)^{2}+(2 \pi \mathrm{fL})^{2}}}=0.124 \mathrm{~A}
$$

Voltage across coil
$\mathrm{V}^{\prime}=\mathrm{IZ}^{\prime}$

$$
\begin{aligned}
& =0.124 \sqrt{\mathrm{r}^{2}+\mathrm{X}_{\mathrm{L}}{ }^{2}} \\
& =0.124 \sqrt{50^{2}+(2 \pi \mathrm{fL})^{2}}=78.2 \mathrm{~V}
\end{aligned}
$$

87. (b) $\mathrm{PE}=2 \mathrm{KE}$
or, $\mathrm{KE}=9 \times 10^{9} \frac{\mathrm{e}^{2}}{\mathrm{r}} \times \frac{1}{2}$

$$
\begin{aligned}
& =9 \times 10^{9} \frac{\left(1.6 \times 10^{-19}\right)^{2}}{10^{-10} \times 2} \\
& =11.5 \times 10^{-19} \mathrm{~J}
\end{aligned}
$$

88. (c) $\mathbf{1}^{\text {st }}$ case

$$
\frac{\mathrm{hc}}{\lambda}=\phi+3 \mathrm{ev}_{0}
$$

or, $\frac{\mathrm{hc}}{2 \lambda}-\phi=3 \mathrm{ev}_{0} \ldots$ (1)
$2^{\text {nd }}$ case
$\frac{\mathrm{hc}}{2 \lambda}=\phi+\mathrm{ev}_{0}$
or, $\frac{\mathrm{hc}}{2 \lambda}-\phi=\mathrm{ev}_{0} \ldots$. (2)
From (1) \& (2)

$$
\frac{\mathrm{hc}}{\lambda}-\phi=3\left(\frac{\mathrm{hc}}{2 \lambda}-\phi\right)
$$

or, $\frac{h c}{\lambda}-\phi=\frac{3 h c}{2 \lambda}-3 \phi$
or, $2 \phi=\frac{\mathrm{hc}}{2 \lambda}$
or, $2 \frac{\mathrm{hc}}{\lambda_{0}}=\frac{\mathrm{hc}}{2 \lambda}$
or, $\lambda_{0}=4 \lambda$
89. (b) $\frac{\mathrm{A}}{\mathrm{A}_{0}}=\left(\frac{1}{2}\right)^{\frac{\mathrm{t}}{\mathrm{T}_{1 / 2}}}$
or, $\frac{19-10}{82-10}=\left(\frac{1}{2}\right)^{\frac{210}{T_{1 / 2}}}$
or, $\left(\frac{1}{2}\right)^{3}=\left(\frac{1}{2}\right)^{\frac{210}{\mathrm{~T}_{1 / 2}}}$

$$
\mathrm{T}_{1 / 2}=\frac{210}{3}=70 \mathrm{~s}
$$

90. (b)

91. (b) $\mathrm{Sb}_{2} \mathrm{~S}_{3}+\mathrm{HCl} \longrightarrow 2 \mathrm{SbCl}_{3}+3 \mathrm{H}_{2} \mathrm{~S}$
$3 \mathrm{H}_{2} \mathrm{~S}+2 \mathrm{HNO}_{3} \rightarrow 2 \mathrm{NO}+4 \mathrm{H}_{2} \mathrm{O}+3 \mathrm{~S}$
Colloidal sulphur
92. (a) Equivalent volume of chlorine is same in all three cases as valency of chlorine is same. Hence volume becomes same.
93. (d) HCl and $\mathrm{H}_{3} \mathrm{O}^{+}$give acid solution and does CuSO_{4}, when it hydrolyzes in water.
94. (c) For $\mathrm{CaF}_{2}, \mathrm{~K}_{\text {sp }}=4 \mathrm{~S}^{3}$

$$
\begin{aligned}
\mathrm{S}=\left(\frac{\mathrm{K}_{\text {sp }}}{4}\right)^{1 / 3} & =\left(\frac{3.2 \times 10^{-11}}{4}\right)^{1 / 3} \\
& =2 \times 10^{-4} \mathrm{moles} / \mathrm{lit} t \\
& =2 \times 10^{-4} \times 78 \mathrm{~g} / \mathrm{l}
\end{aligned}
$$

or, $\quad 1.56 \times 10^{-2} \mathrm{~g} / \mathrm{l}$
95. (b) $\mathrm{N}_{\min } \frac{100 \times 0.2-150 \times 0.1}{500}=0.01 \mathrm{~N}^{2}$ of $\mathrm{H}_{2} \mathrm{SO}_{4}$
$\mathrm{pH}=-\log [0.01]=2$
96. (c) $\mathrm{S}_{2} \mathrm{O}_{3}{ }^{--}+\mathrm{I}_{2} \longrightarrow \underset{\downarrow}{\mathrm{~S}_{4} \mathrm{O}_{6}--}+\mathrm{I}^{-}$
Tetrathionate ions
97. (d)
98. (c) 99. (a)
100. (c)

$$
\begin{aligned}
& =0.005 \mathrm{M} \mathrm{of}_{2} \mathrm{SO}_{4} \\
& =0.01 \mathrm{M} \mathrm{of}^{+}
\end{aligned}
$$

