PEA Association Pvt. Ltd. Thapathali, Kathmandu, Tel: 4245730, 4257187 2078-1-18 Hints & Solution

Section - I $x^2 = 16 \Longrightarrow x = \pm 4$ 1. (d) $x^2 - 5x + 6 = 0 \Longrightarrow x = 2, 3$ $\therefore \quad A = \{-4, 4\} \cup \{2, 3\} = \{-4, 2, 3, 4\}$ 2. (b) $\sec^2(\tan^{-1}3) + \csc^2(\cot^{-1}4)$ 3. (d) $= 1 + \tan^{2}(\tan^{-1}3) + 1 + \cot^{2}(\cot^{-1}4)$ = 1 + 3² + 1 + 4² = 27 4. (d) General values give infinite solution. If a & b are negative numbers then $G = -\sqrt{ab}$ 5. (b) n! = n!6. (b) (n+1)! = (n+1).n!(n+2)! = (n+2)(n+1).n! \therefore H.C.F = n! $\begin{vmatrix} 2 & 3 \\ 4 & -k \end{vmatrix} = 0$ 7. (b) $\Rightarrow -2k - 12 = 0$ $\Rightarrow k = -6$ $x^2 = -a^2$ 8. (c) \therefore x = ± ai 9. (b) Formula 10. (c) For point of discontinuity, x - 2 = 0 $\Rightarrow x = 2$ 11. (d) $y = \sqrt{x + y}$ or, $y^{2} = x + y$ or, $2y \frac{dy}{dx} = 1 + \frac{dy}{dx}$ $\therefore \quad \frac{\mathrm{d}y}{\mathrm{d}x} = \frac{1}{2y-1}$ 12. (c) Since $\sin^{11}x$ is odd function, $\int_{-11}^{11} \sin^{11}x \, dx = 0$ 13. (c) Slope of normal = $-\frac{dx}{dy}$ Then, $-\frac{\mathrm{d}x}{\mathrm{d}y} = \tan 0 = 0$ $\therefore \quad \frac{\mathrm{d}x}{\mathrm{d}y} = 0$ 14. (a) $A = \int_{2}^{3} y dx = \int_{2}^{3} 4x^{3} dx = \left[\frac{4x^{4}}{4}\right]_{2}^{3} = 3^{4} - 2^{4} = 65$ 15. (c) $\vec{a} \times (\vec{b} + \vec{c}) + \vec{b} \times (\vec{c} + \vec{a}) + \vec{c} \times (\vec{a} + \vec{b})$ $= \vec{a} \times \vec{b} + \vec{a} \times \vec{c} + \vec{b} \times \vec{c} + \vec{b} \times \vec{a} + \vec{c} \times \vec{a} + \vec{c} \times \vec{b}$ $= \vec{a} \times \vec{b} + \vec{b} \times \vec{c} + \vec{c} \times \vec{a} - \vec{c} \times \vec{a} - \vec{a} \times \vec{b} - \vec{b} \times \vec{c}$ = 016. (d) $|\vec{a}| = 1, |\vec{b}| = 1$ \therefore $|\vec{a}| = |\vec{b}|$, option (d) is always true. 17. (b) Distance between parallel lines $= \left| \frac{c_1 - c_2}{\sqrt{a^2 + b^2}} \right| = \left| \frac{-11 - 23}{\sqrt{3^2 + 5^2}} \right| = \sqrt{34}$

18. (a)
$$c = \frac{a}{m}$$

or, $3 = \frac{a}{2}$
∴ $a = 6$
19. (b) Formula
20. (c) $a^2 = 9, b^2 = 16$
 $e = \sqrt{1 + \frac{b^2}{a^2}} = \sqrt{1 + \frac{16}{9}} = \frac{5}{3}$
Foci = (± ae, 0) = $(\pm \frac{5}{3}, 3, 0) = (\pm 5, 0)$
21. (c) Speed is maximum in medium of least refractive
index i.e. air
22. (b) At resonance $V_L = V_C$ so I and V are in phase.
23. (b) $\frac{(e'm)_p}{(2e/4m)_a} = 2:1$
24. (d) $r = \frac{P}{\rho_T} = \frac{10^5}{1.775 \times 300} = 188 \text{ JKg}^{-1}\text{K}^{-1}$
25. (c) $M = 2ml$ or, $2l = \frac{M}{m} = \frac{5}{25} = 0.2 \text{ m}$
26. (a) $I = \frac{ne}{t}$
or, $\frac{n}{t} = \frac{I}{e} = \frac{16 \times 10^{-3}}{16 \times 10^{-19}} = 1 \times 10^{17}/\text{s}$
27. (c) $KE = PE$
or, $\frac{1}{2} \text{ mo}^2(r^2 - y^2) = \frac{1}{2} \text{ mo}^2 y^2 = \frac{1}{2} \text{ mo}^2 y^2$
or, $2y^2 = r^2$
or, $y = \frac{r}{\sqrt{2}} = \frac{4}{\sqrt{2}} = 2\sqrt{2} \text{ cm} = 2.8 \text{ cm}$
28. (c) $\frac{mg'}{mg} = \left(\frac{R}{R + \frac{R}{2}}\right)^2 = \frac{4}{9}$
∴ $mg' = \frac{4}{9} \times 90 = 40 \text{ N}$
29. (d) $\Delta P = mv - (-mu)$
 $= mv + mu$
 $= 0.1 \times 20 + 0.1 \times 30 = 5 \text{ NS}$
30. (c) Resistance of each part $R' = \frac{R}{3}$
In parallel
 $R_{eq} = \frac{R'}{3} = \frac{R}{9} = \frac{90}{9} = 10 \Omega$
31. (a) $L = 10\log \frac{1}{l_0}$
or, $40 = 10\log \frac{10^{-12}}{l_0}$
or, $\frac{10^{-12}}{l_0} = 10^4$
or, $I_0 = \frac{10^{-12}}{10^4} = 10^{-16} \text{ w/cm}^2$

PEA Association Pvt. Ltd. Thapathali, Kathmandu, Tel: 4245730, 4257187 2078-1-18 Hints & Solution

32. (c) The sensitivity increases if potential gradient 48. (c) Above reaction is disproportionation reaction decreases. i.e., Br2 is O.A. as well as R.A. $\frac{\Delta V}{V} = 0.12\%$ As, O.A., eq. wt. of $Br_2 = \frac{M}{2}$ 33. (c) or, $\gamma \Delta \theta = 0.12\%$ As, R.A., eq. wt. of $Br_2 = \frac{M}{10}$ or, $3\alpha\Delta\theta = 0.12\%$ or, $\alpha = \frac{0.12}{100 \times 3 \times 20} = 2 \times 10^{-5/\circ} \text{C}$ $\begin{bmatrix} 0 \\ Br_2 + NaOH \longrightarrow NaBr + NaBrO_3 + H_2O \end{bmatrix}$ Potential difference between plates remain same English 34. (a) 49. (c) 50. (d) 51. (c) 52. (a) 53. (c) 54. (b) if source is connected across it. 35. (b) PE = $\frac{Q_1Q_2}{4}$ 56. (a) 57. (c) 58. (b) 59. (d) 60. (a) 55. (b) $4\pi\epsilon_0 r$ Section - II Charge of electron is -ve so $PE = \frac{(-e)(-e)}{4} = \frac{e^2}{e^2}$ 61. (d) $\sin^{-1}(x-3) \Rightarrow -1 \le x-3 \le 1$ $\Rightarrow 2 \le x \le 4 \dots (i)$ $4\pi\epsilon_0 r$ -4πε₀r For denominator, $9 - x^2 > 0$ if r decreases PE increases. $\Rightarrow x^2 < 9$ 36. (c) |x| < 3 \Rightarrow \Rightarrow $-3 < x < 3 \dots$ (ii) Thus, domain is $2 \le x < 3$ [intersection of (i) and (ii)] i.e. [2, 3) $\frac{b^2 - c^2}{2} = \frac{4R^2(\sin^2 B - \sin^2 C)}{2R^2} = \frac{\sin(B + C)\sin(B - C)}{2R^2}$ 62. (b) 2aR 2.2RsinA.R sinA $= \sin(B - C)$ $\begin{vmatrix} 2 & -1 & 1 \\ 1 & 2 & -3 \\ 3 & a & 5 \end{vmatrix} = 0$ $\tan C = \frac{r}{h}$ 63. (d) or, $r = h \tan C = h \frac{\sin C}{\cos C}$ i.e. $2\begin{vmatrix} 2 & -3 \\ a & 5 \end{vmatrix} - (-1)\begin{vmatrix} 1 & -3 \\ 3 & 5 \end{vmatrix} + 1\begin{vmatrix} 1 & 2 \\ 3 & a \end{vmatrix} = 0$ $\Rightarrow a = -4$ $=\frac{\frac{1}{\mu\sqrt{1-\sin^2C}}}{\frac{h\times\mu}{\mu\sqrt{\mu^2-1}}}=\frac{1}{\sqrt{\mu^2-1}}$ 64. (b) Apply $R_3 \rightarrow R_3 - xR_1 - yR_2$ $\begin{vmatrix} a & b & ax + by \\ b & c & bx + cy \\ 0 & 0 & -(ax^2 + 2bxy + cy^2) \end{vmatrix} = 0$ $\Rightarrow (ac - b^2) (ax^2 + 2bxy + cy^2) = 0$ $\Rightarrow b^2 = ac$ 37. (b) $\alpha = \frac{\Delta I_c}{\Delta I_e}$ or, $0.9 = \frac{\Delta I_c}{\Delta I_c + \Delta I_b}$ i.e. a, b, c are in G.P. $\underbrace{\left(\frac{1}{n+1}\right)}_{1} - \underbrace{\left(\frac{1}{n+1}\right)^{2}}_{2} - \underbrace{\left(\frac{1}{n+1}\right)^{3}}_{3} - \ldots \right\}$ or, $0.9 \Delta I_c + 0.9 \Delta I_b = \Delta I_c$ or, $0.9 \Delta I_b = 0.1 \Delta I_c$ 65. (a) or, $\Delta I_c = 9 \times 2 = 18 \ \mu A$ 38. (c) No. of $p^+s = 27 - 14 = 13$ $= -\log_e \left(1 - \frac{1}{n+1}\right) = -\log_e \left(\frac{n}{n+1}\right)$ No. of $p^+s = no.$ of $e^-s : Al : 2, 8, 3$, III^{rd} period. 39. (b) $= \log_e \left(\frac{n+1}{n}\right) = \log_e \left(1 + \frac{1}{n}\right)$ 40. (c) 41. (b) 66. (a) If two O's are taken as one letter, then the no. of 42. (c) arrangements = 5! = 12043. (d) If no restriction is enforced, total no. of 44. (b) arrangements 45. (b) $=\frac{6!}{2!}=360$ 46. (c) $H - C \equiv C + H_2 \xrightarrow{Pd/BaSO_4} CH_2 = CH_2$ Hence if no two O's are together, then no. of arrangements = 360 - 120 = 24047. (b)

PEA Association Pvt. Ltd. Thapathali, Kathmandu, Tel: 4245730, 4257187 2078-1-18 Hints & Solution

67. (d)
$$\frac{(\cos\theta + i\sin\theta)^3}{i^3(\cos\theta - i\sin\theta)^3} = \frac{\cos 4\theta + i\sin 4\theta}{i(\cos 5\theta - i\sin 5\theta)}$$

= - i {\le \cos (4\theta + 5\theta) + i(\sin (4\theta + 5\theta))}
= sin 9\theta - icos 9\theta
68. (b) Equation of angle bisectors of x² - 2pxy - y² = 0
-p(x² - y²) = [1 - (-1)] xy
px² + 2xy - py² = 0
This equation is identical to x² - 2qxy - y² = 0
So, $\frac{p}{1} = \frac{-2}{-2q} = \frac{-1}{-1} \Rightarrow pq = -1$
69. (a) Given planes are 2x + y + 2z - 8 = 0
& 2x + y + 2z + $\frac{5}{2} = 0$
Distance = $\left|\frac{d_1 - d_2}{\sqrt{a^2 + b^2 + c^2}}\right| = \left|\frac{-8 - \frac{5}{2}}{\sqrt{2^2 + 1^2 + 2^2}}\right|$
= $\frac{21}{2 \times 3} = \frac{7}{2}$
70. (a) $9x^2 + 5y^2 - 30y = 0$
or, $\frac{x^2}{5} + \frac{(y - 3)^2}{9} = 1$
 $a^2 = 5, b^2 = 9$
 $e = \sqrt{1 - \frac{a^2}{b^2}} = \sqrt{1 - \frac{5}{9}} = \frac{2}{3}$
71. (a) $\lim_{x \to \infty} \frac{\frac{1}{2}\left(\frac{2}{5}\right)^x - \left(\frac{3}{5}\right)^x}{4\cdot\left(\frac{4}{5}\right)^x + 5^2}$
(Dividing each term by 5^x) = $\frac{0 - 0}{0 + 25} = 0$
72. (a) $f'(x) = \frac{(1 + |x|) \cdot 1 - x \frac{d}{dx} (1 + |x|)}{(1 + |x|)^2}$
 $= \frac{(1 + |x|) - x \frac{|x|}{x}}{\sqrt{1 - x^2}} = \frac{1}{(1 + |x|)^2}$
73. (b) $\int \frac{\sqrt{3}}{2} \frac{dx}{\sqrt{1 - x^2}} = [\sin^{-1}x]^{\frac{3}{2}}$
 $= \sin^{-1}\left(\frac{\sqrt{3}}{2}\right) - \sin^{-1}(0)$
 $= \frac{\pi}{3}$
74. (b) $y = 2x^2 - x + 1 \Rightarrow \frac{dy}{dx} = 4x - 1$
For the tangent to be parallel with y = 3x + 9, $4x - 1 = 3$
 $x = 1$
When x = 1, y = 2 × 1² - 1 + 1 = 2
Thus the required point is (1, 2)

75. (b)
Y
Point of intersection of y = sinx and y = cosx are
$$\frac{\pi}{4}$$

and $\frac{3\pi}{4}$. Also, sinx \geq cosx on the interval $\left[\frac{\pi}{4}, \frac{5\pi}{4}\right]$.
Also of one such region
 $= \int_{\pi/4}^{5\pi} (\sin x - \cos x) dx$
 $= 2\sqrt{2}$
76. (b)
 $h = u \times 2 - \frac{1}{2}g \times 2^2 = u \times 10 - \frac{1}{2}g \times 10^2$
or, $2u - 20 = 10 u - 500$
or, $8u - 480$
or, $u = 60 m/s$
Again h = $60 \times 2 - \frac{1}{2} \times 10 \times 2^2$
 $= 120 - 20 = 100 m$
77. (d) $mro^2 = \mu mg$
or, $\mu = \frac{r(2\pi f)^2}{10} = 0.4$
78. (a) $\tau = I\alpha$
or, $\alpha = \frac{500}{100} = 5 rad/s^2$
Again $\omega = \omega_0 + \alpha t$
 $= 0 + 5 \times 2 = 10 rad/s$
79. (d) $\frac{P_2V}{P_1V} = \frac{m_2 T_2}{m_1 T_1}$
or, $\frac{m_2}{m_1} = \frac{10A}{9.5A} \times \frac{280}{200} = 0.98$
or, $m = 0.98 \times 19 = 18.66 kg$
 \therefore Mass escape = 19 - 18.66
 $= 0.33 kg$
80. (b) $\eta = \left(1 - \frac{T_1 - 75}{T_1}\right) \times 100\%$
or, $\frac{22}{100} = 1 - 1 + \frac{75}{T_1}$
or, $T_1 = \frac{7500}{22} = 341 K$

I EA Association Pvt. Ltd. Inapatnall, Kathmandu, 1el: 4245/30, 425/18/ 2078-1-18 Hints & Solution		
81. (c)	$i = e = \frac{3}{4} \text{ of } A = \frac{3}{4} \times 60 = 45^{\circ}$	$\frac{\mathrm{hc}}{\lambda} - \phi = 3\left(\frac{\mathrm{hc}}{2\lambda} - \phi\right)$
	$\delta = 2i - A = 2 \times 45 - 60 = 30^{\circ}$	or, $\frac{hc}{\lambda} - \phi = \frac{3hc}{2\lambda} - 3\phi$
82. (b)	$\frac{\beta_r}{\beta_y} = \frac{\lambda_r}{\lambda_y}$	$\lambda = 2\lambda$
	or, $\beta_r = \frac{6.5 \times 10^{-7}}{5.2 \times 10^{-7}} \times 0.2 = 0.25 \text{ mm}$	or, $2\phi = \frac{hc}{2\lambda}$
02 ()	5.2×10^{-10}	or, $2\frac{hc}{\lambda_0} = \frac{hc}{2\lambda}$
83. (c)	$f_0 = \frac{1}{2l} \sqrt{\frac{Tl}{M}}$	or, $\lambda_0 = 4\lambda_t$
	$=\frac{1}{2 \times 0.5} \sqrt{\frac{800 \times 0.5}{0.01}} = 200 \text{ Hz}$	89. (b) $\frac{A}{A_0} = \left(\frac{1}{2}\right)^{\frac{1}{T_{1/2}}}$
84. (d)	$E = Bl_V$ = 0.3 × 10 ⁻⁴ × 10 × 5	210
	$= 1.5 \times 10^{-3} \text{ V} = 1.5 \text{ mV}$	or, $\frac{19-10}{82-10} = \left(\frac{1}{2}\right)^{\frac{1}{T_{1/2}}}$
85. (c)	$R_p = \frac{R_1 R_2}{R_1 + R_2}$	or, $\left(\frac{1}{2}\right)^3 = \left(\frac{1}{2}\right)^{\frac{210}{T_{1/2}}}$
	or, $3.43 = \frac{R_1 R_2}{R_1 + R_2} \dots (1)$	
	$R_s = R_1 + R_2 = 14 (2)$ Now $R_1R_2 = 3.43 \times 14 = 48 Ω$	$T_{1/2} = \frac{210}{3} = 70s$
	or, $R_2 = \frac{48}{R_1}$ So, $R_1 + \frac{48}{R_1} = 14$	90. (b)
	or, $R_{12}^2 - 14R_1 + 48 = 0$	CH_{3} $CH_{3} - C = CH - CH_{3} + O_{3} \longrightarrow CH_{3}$ $CH_{3} - C = CH - CH_{3} + O_{3} \longrightarrow CH_{3}$ $CH_{3} - C = CH - CH_{3} + O_{3} \longrightarrow CH_{3}$ $CH_{3} - C = CH - CH_{3} + O_{3} \longrightarrow CH_{3}$
	or, $R_1^2 - 6R - 8R_1 - 48 = 0$ or, $(R_1 - 6)(R_1 - 8) = 0$	$CH_3 - C = CH - CH_3 + O_3 \longrightarrow CH_3 + C C CH_3$
	$\therefore \mathbf{R}_1 = 6\Omega \text{ or } 8\Omega$ $\therefore \text{ Greater resistors is } 8\Omega$	
86. (b)	$I = \frac{V}{Z} = \frac{100}{\sqrt{R_{x}^{2} + X_{y}^{2}}}$	
	VIL	$CH_3 - C - CH_3 + CH_3 - C - H$ 91. (b) $Sb_2S_3 + HCl \rightarrow 2SbCl_3 + 3H_2S$
	$=\frac{100}{\sqrt{(450+50)^2+(2\pi fL)^2}}=0.124 \text{ A}$	$3H_2S + 2HNO_3 \longrightarrow 2NO + 4H_2O + 3S$
	Voltage across coil V' = IZ'	Colloidal sulphur
	$= 0.124 \sqrt{r^2 + X_L^2}$ = 0.124 \sqrt{50^2 + (2\pi fL)^2} = 78.2 V	92. (a) Equivalent volume of chlorine is same in all three cases as valency of chlorine is same.
87. (b)	$= 0.124\sqrt{50^{\circ} + (2\pi i L)^{\circ}} = 78.2V$ PE = 2KE	Hence volume becomes same. 93. (d) HCl and H_3O^+ give acid solution and does
	or, $KE = 9 \times 10^9 \frac{e^2}{r} \times \frac{1}{2}$	CuSO ₄ , when it hydrolyzes in water. 94. (c) For CaF ₂ , $K_{sp} = 4S^3$
	$=9\times10^9\frac{(1.6\times10^{-19})^2}{10^{-10}\times2}$	$S = \left(\frac{K_{sp}}{4}\right)^{1/3} = \left(\frac{3.2 \times 10^{-11}}{4}\right)^{1/3}$
	$= 11.5 \times 10^{-19} \text{ J}$	$S = \left(\frac{K_{sp}}{4}\right)^{1/3} = \left(\frac{3.2 \times 10^{-11}}{4}\right)^{1/3}$ = 2 × 10 ⁻⁴ moles/litre = 2 × 10 ⁻⁴ × 78 g/l
88. (c)	1 st case hc	$\alpha r = 1.56 \times 10^{-2} c/l$
	$\frac{hc}{\lambda} = \phi + 3ev_0$	95. (b) $N_{min} \frac{100 \times 0.2 - 150 \times 0.1}{500} = 0.01 \text{ N of } H_2 SO_4$
	or, $\frac{hc}{2\lambda} - \phi = 3ev_0 \dots (1)$	95. (b) $N_{\min} \frac{100 \times 0.2 - 150 \times 0.1}{500} = 0.01 \text{ N of } \text{H}_2\text{SO}_4$ = 0.005 M of H ₂ SO ₄ = 0.01 M of H ⁺
	2^{nd} case <u>hc</u> <u>hc</u> <u>hc</u> <u>hc</u> <u>hc</u> <u>hc</u> <u>hc</u> <u>hc</u>	$= 0.005 \text{ M of } H_2 \text{SO}_4$ = 0.01 M of H ⁺ 96. (c) $S_2 \text{O}_3^{} + \text{I}_2 \longrightarrow S_4 \text{O}_6^{} + \text{I}^-$ \downarrow Tetrathionate ions 97. (d) 98. (c) 99. (a) 100. (c)
	$\frac{hc}{2\lambda} = \phi + ev_0$	96. (c) $S_2O_3^{} + I_2 \longrightarrow S_4O_6^{} + I^{}$
	or, $\frac{\mathrm{hc}}{2\lambda} - \phi = \mathrm{ev}_0 \dots (2)$	Tetrathionate ions 97 (d) $98 (c)$ $99 (c)$ $100 (c)$
	From (1) & (2)	97. (d) 98. (c) 99. (a) 100. (c)
The End		

PEA Association Pvt. Ltd. Thapathali, Kathmandu, Tel: 4245730, 4257187

4