2078-04-16 Hints & Solution					
	Section - I		Dividing (i) & (by) (ii) then we get		
1.(b)	Displacement $(\overrightarrow{\Delta S}) = 2r\sin\frac{\theta}{2} = 2r\sin\frac{180^{\circ}}{2} = 2r$		$\Rightarrow \frac{C_0}{C} = \sqrt{\frac{\gamma \cdot p}{3 \cdot p}} = \sqrt{\frac{\gamma}{3}} = \left(\frac{\gamma}{3}\right)^{1/2}$		
	Distance = $r\theta = \pi r$		$\therefore C_0 = C \left(\frac{\gamma}{2}\right)^{1/2}$		
2.(c)	$R_{max} = \frac{u}{g}$		$I_{\text{max}} \left(\frac{a_1 + a_2}{2} \right)^2 \left(\frac{5 + 3}{2} \right)^2 \left(\frac{8}{2} \right)^2$		
	or, $u^2 = R_{max} \times g$ $u^2 = 80 \times 10$	13.(b)	Then, $\overline{I_{\min}} = \left(\frac{1}{a_1 - a_2}\right) = \left(\frac{1}{5 - 3}\right) = \left(\frac{1}{2}\right)$		
2 (h)	Again H = $\frac{1}{2g} = \frac{1}{2 \times 10} = 40 \text{ m}$		$\therefore \frac{I_{\text{max}}}{I_{\text{min}}} = 16:1$		
3.(0)	Tension = wt. of part BC A	14.(b)	$f = \frac{v}{4l} \Rightarrow f \propto \frac{1}{l}$		
	$T = \frac{M}{L} (L - y)g = \frac{Mg(L - y)}{L}$		$\therefore \frac{\mathbf{f}}{\mathbf{f}} = \frac{l}{n} = \frac{l}{2l}$		
	AT 1 B		f l' 2l		
4.(a)	$\Delta P = \frac{+1}{R} \propto \frac{1}{R}$		$\frac{1}{2}$		
	$\frac{\Delta P_1}{\Delta P_2} = \frac{R_2}{R_1} = \frac{1}{2}$	15.(c)	$\frac{1}{2\mu_1} + \frac{1}{2\mu_2} = \frac{1}{\mu}$		
5.(c)	Since cubical expensivity = $3 \times$ linear expasivity		or, $\mu = \frac{2\mu_1\mu_2}{\mu_1 + \mu_2} = \frac{2 \times 3 \times 2}{3 + 2} = 2.4$		
	$=3\times\frac{\alpha}{3}=\alpha$	16.(a)	$\mathbf{E} = \frac{\mathbf{I}}{\mathbf{I}^2}$		
6.(d)	So remains stationary mgh = ms $\Delta \theta$		$ar = \frac{E'}{r} - (\frac{r}{r})^2 - (\frac{3}{2})^2 - \frac{9}{2}$		
	or, $\Delta \theta = \frac{gh}{c} = \frac{10 \times 21}{4200} = 0.05^{\circ}C$		$G_{1}, E_{-}(r') = (4) = 16$		
7.(c)	$Q = \sigma A t T^4$		% decrease = $\left(1 - \frac{E}{E}\right) \times 100\%$		
	$\frac{Q_1}{Q_2} = \left(\frac{T_1}{T_2}\right)^4 = \frac{1}{16}$		$=\left(1-\frac{9}{16}\right)\times100\%=43.7\%$		
8.(b)	We know, volumetric stain = $-\frac{\Delta V}{V} = \frac{\Delta \rho}{100} = \frac{0.2}{100}$	17.(c)	Here, $x_L \propto f$		
	$= 2 \times 10^{-3}^{\circ}$ 100		$\therefore \frac{X_L}{X_L} = \frac{T}{f}$		
	Now pressure = bulk modulus × stain (volumetric) = $2 \times 10^9 \times 2 \times 10^{-3} = 4 \times 10^6 \text{ N/m}^2$		$\Rightarrow X_{L}' = \frac{f}{f} \times X_{L} = \frac{80}{50} \times 200$		
9.(a)	$\frac{\theta}{100} = \frac{R_{\theta} - R_{0}}{R_{\theta} - R_{0}}$		$X_{L}' = 320\Omega$		
	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	18.(d) 19.(b)			
	or, $\frac{100}{100} = \frac{7.74 - 6.74}{7.74 - 6.74}$ or, $\frac{100}{100} = -0.21$	20.(d) 21.(a)	$I_2 + 10HNO_3 \rightarrow 2HIO_3 + 10NO_2 + 4H_2O$		
10.(b)	Here water contacts from 0° C to 4° C.	22.(a)	ÿ→0		
	system.	22 (1)			
	So $dQ = du + dw$ or, $du = dQ - dw$	23.(b) 24.(d)	Exactly tetranedral in geometry.		
11.(c)	Here, dw is -ve so $C_v > C_p$ $E_1 = E$	25.(c) 26.(c)	Al, Fe and Cr make passivity with conc ^a HNO ₃		
(-)	$\overline{E}_2 = 2\overline{E}$	27.(a) 28 (b)	NH ₄ Cl is acidic salt and gets cationic hydrolysis		
	Now, $\frac{2E}{E} = \left(\frac{I_2}{T_1}\right)^2 \Rightarrow (2)^{1/4} = \frac{I_2}{T_1}$	29.(b)	Since $A \cap B = \phi$, $A - B = A$		
12 (d)	:. $T_2 = (2)^{1/4} \times 1000 = 1189 \text{ K}$	30.(d)	$\cos^{-1}x + \cos^{-1}y = \left(\frac{\pi}{2} - \sin^{-1}x\right) + \left(\frac{\pi}{2} - \sin^{-1}y\right)$		
12.(u)	$C_{0} = \gamma \frac{\sqrt{\gamma \cdot p}}{\gamma \cdot p} \qquad (i)$		$=\pi-\frac{\pi}{3}=\frac{2\pi}{3}$		
	$\sim_0 \qquad \sqrt{\frac{\rho}{3 p}}$	31.(c)	$i^{n} + i^{n+1} + i^{n+2} + i^{n+3}$		
	and $C = \sqrt{\frac{\beta \cdot p}{\rho}}$ (ii)	32.(b)	$= i^{"} (1 + i + i^{2} + i^{2}) = i^{"} (1 + i - 1 - i) = 0$ Adj (KI) = K ³⁻¹ I = K ² I		

PEA Association Pvt. Ltd. Thapathali, Kathmandu, Tel: 4245730, 4257187 2078-04-16 Hints & Solution

	2078-04-16 Hints & Solution					
33.(a)	$B^2 - 4AC = 0$		Section – II			
	$(-p)^2 - 4.5.45 = 0$		GM			
	$\Rightarrow p = \pm 30$	61.(d)	$g = \frac{1}{R^2}$			
34.(d)	$e^{2x} = 1 + \frac{(2x)}{1!} + \frac{(2x)^2}{2!} + \dots + \frac{(2x)^7}{7!} + \dots$		$\frac{g_{\text{planet}}}{g_{\text{earth}}} = \frac{M_p}{M_e} \times \left(\frac{R_e}{R_p}\right)^2 = \frac{1}{2} \times (2)^2 = 2$			
	Coefficient of $x^7 = \frac{2^7}{7!}$		\therefore g _p = 2g (2-2) $(2-2)^2$			
25 (h)	Here $\frac{a_1}{b_1} \neq \frac{b_1}{b_1}$	62.(b)	$F_{max} = m\omega^2 A = m\left(\frac{2\pi}{T}\right)^2 A = \frac{4\pi}{T^2} mA$			
55.(0)	$\begin{array}{l} \text{Rele}, a_2 \neq b_2 \\ \text{So, the system has unique solution} \end{array}$		$=\frac{4\pi^2 \times 50 \times 10^{-3} \times 0.1}{0.1^2} = 20$ N			
36.(a)	Formula	63.(b)	Total weight = wt. of water displaced			
37.(a)	Projection of \vec{b} on $\vec{a} = \frac{\vec{a} \cdot \vec{b}}{ \vec{a} } = \frac{10 - 3 + 2}{3} = 3$		$m_1g + m_2g = (v_1 + v_2) \rho_w g$ $m_1 + 10 = \left(\frac{m_1}{m_1} + \frac{10}{m_1}\right) \times 1$			
38 (c)	$[a] = \vec{a}$		$m_1 = 10^{\circ} (11^{\circ} 0.2)^{\circ} 1$			
50.(c)	By triangle law, $\vec{a} + \vec{b} + \vec{c} = 0$	64.(c)	Tension (= 150) < weight			
	$\Rightarrow \vec{c} = -\vec{i} - \vec{k}$		so acceleration down ward $mg - T = ma$			
39.(d)	We have		or, $20 \times 9.8 - 150 = 20a$			
	$c_0 + c_1 x + c_2 x^2 + \dots + c_n x^n (1 + x)^n$ Putting x = 3		or, $a = 2.3 \text{ m/s}^2$			
	$c_0 + 3c_1 + 9c_2 + \dots + 3^n c_n = 4^n$	65.(a)	$\frac{\Delta t}{l_1 \alpha} = \Delta \Theta$			
40.(d)	Number selection = ${}^{5}C_{3} \times {}^{5}C_{2}$ = 10 × 10 = 100		$\frac{0.0005 \text{ mm}}{1 \text{ mm} \times 1.32 \times 10^{-5}} = \Delta \theta$			
41 (a)	$\vec{\underline{a}}.\vec{\underline{b}} = -4 - 6 - 6 = -16 = -16$		$\Rightarrow \Delta \theta = 37.8^{\circ}C$			
11.(u)	$\ \vec{b}\ = \sqrt{4+4+1} = \sqrt{9} = 3$	66.(a)	Here, $F = qE$			
42.(b)	Here a, b, c are in A.P. a+c		$E = \frac{1}{q} = \frac{5000}{3} = 1000 \text{ N/C}$			
	$\Rightarrow b = \frac{a}{2}$		Then, $E = \frac{V}{d} \Rightarrow V = 1000 \times (1 \times 10^{-2}) V$			
	$\Rightarrow a - 2b + c = 0$: (1 2) lines on the line as $+ by + c = 0$		or, $V = 10V$			
	Hence, $ax + by + c = 0$ represents a family of	67.(a)	Here, $\frac{1}{C} = \frac{1}{C} + \frac{1}{nC}$			
	lines passing trough $(1, -2)$		1 n+1 - nC			
43.(b)	Here $h^2 - ab = 6^2 - 4.9 = 0$		$\overline{C_{eq}} = \overline{nC} \Longrightarrow C_{eq} = \overline{n+1}$			
44.(d)	$(x-5)^2 + (y-7)^2 = 3^2(\cos^2\theta + \sin^2\theta) = 9$	68.(c)	Here, $E_{10} = -\frac{13.6}{10^2} eV = -0.136 eV$			
	It is a circle		$E_{\infty} = 0$			
45.(d)	$c = \frac{a}{m} = \frac{4}{2} = 2$		∴ $\Delta E = E_{\infty} - E_{10} = (0 - (-0.136) \text{ eV})$ ∴ $\Delta E = 0.136 \text{ eV}$			
46.(a)	l = m = n	69.(d)	Here, $n = \frac{T}{T} = \frac{30}{5} = 6$			
	$\therefore l^{2} + m^{2} + n^{2} = 1$		$\therefore n = 6$			
	$3l = 1$ \therefore $l = m = n = \pm \frac{1}{\sqrt{3}}$		Now, $\left(\frac{N}{N}\right) = \left(\frac{1}{2}\right)^n = \left(\frac{1}{2}\right)^6 = \frac{1}{4}$			
47.(b)	$\frac{b\cos C + b\cos A + \cos B + a\cos B}{b(c + a)}$		$\begin{pmatrix} N_0 \end{pmatrix}$ $\begin{pmatrix} 2 \end{pmatrix}$ $\begin{pmatrix} 2 \end{pmatrix}$ $\begin{pmatrix} 2 \end{pmatrix}$ $\begin{pmatrix} 64 \end{pmatrix}$			
	$- \frac{c+a}{1}$	70 (h)	$\therefore \overline{N_0} = \frac{64}{64}$			
40 (L)	$=\frac{b(c+a)}{b}$	70.(0)	Here, number of atoms in one gram of uranium $\frac{6.02 \times 10^{23}}{10^{23}}$			
48.(b)	Here comparing with $asinx + bcosx = c$ a = 1, b = 1, c = 2		15 - 235 Now, energy released			
	$\therefore c > \sqrt{a^2 + b^2} = \sqrt{2}$		$= \left(\frac{6.02 \times 10^{23}}{2} \times 200\right)$ MeV			
10 (a)	:. I here is no solution. 50 (a) 51 (b) 52 (a) 53 (d) 54 (a)		$\int \frac{235}{10^{23}} M_{\rm eV}$			
55.(b)	$\begin{array}{cccccccccccccccccccccccccccccccccccc$		-3×10 MeV			

PEA Association Pvt. Ltd. Thapathali, Kathmandu, Tel: 4245730, 4257187 2078-04-16 Hints & Solution

	PEA Association Pvt. Ltd. Thapathali, Kathmandu, Tel: 4245730, 4257187				
	2078-04	ts & Solution			
71.(c)	Here, energy released = m_0C^2 If C' = $\frac{2}{2}C$	81.(b)	Total no. of $H^+ = No.$ of H^+ from HCl + No. of H^+ from water		
	Energy released = $m_0 \left(\frac{2}{3}C\right)^2 = \frac{4}{9}m_0C^2$		$= 10^{-4} + 10^{-7}$ $= 2 \times 10^{-7}$ $pH = -\log[H_3O^4]$		
	Decrease in energy (ΔE) = $m_0C^2 - \frac{4}{9}m_0C^2$	82.(b)	$= -\log[2 \times 10^{-1}] = 6.7$ Here y = cos ⁻¹ $\frac{1 - (\log x)^2}{1 + (\log x)^2}$		
	$= \frac{5}{9} (m_0 C^2)$ $= \frac{5}{9} (initial energy)$		$\therefore \frac{dy}{dx} = 2 \frac{d}{dx} \tan^{-1}(\log x)$		
72.(a)	Here, $eV = \frac{hC}{\lambda}$		$= 2\frac{d}{d (\log x)} \tan^{-1} (\log x) \frac{d}{dx} \log x$ $= 2\frac{1}{dx} \times \frac{1}{dx}$		
72 ()	$V = \frac{hc}{e\lambda} = \frac{6.62 \times 10^{-54} \times 3 \times 10^8}{1.6 \times 10^{-19} \times 3 \times 10^{-10}} = 4137.5 V$ $0^2 - 100^2 0^2 - v^2$		$At h = e, \frac{dy}{dx} = \frac{2}{1+1^2} \cdot \frac{1}{e} = \frac{1}{e}$		
/3.(a)	$a = \frac{1}{2 \times 4} = \frac{1}{2 \times 9}$ or, $-\frac{100^2}{4} = -\frac{v^2}{9}$	83.(b)	$\int \sin^{-1}x dx$		
	or, $v = \sqrt{\frac{9}{4} \times 100^2} = 1.5 \times 100 = 150 \text{ m/s}$		$= x\sin^{-1}x - \int \left(\frac{dx}{dx}\sin^{-1}x \int dx\right) dx$ $= x\sin^{-1}x - \int \frac{x}{\sqrt{1-x^2}} dx$		
74.(b)	$20\beta = 8.62 \times 10^{-3}$ or, $20 \frac{D\lambda}{d} = 8.62 \times 10^{-3}$		$= x \sin^{-1}x + \frac{1}{2} \int \frac{-2x}{\sqrt{1-x^2}} dx$		
	or, $d = \frac{20 \times 2 \times 5893 \times 10^{-10}}{8.62 \times 10^{-3}}$ = 2.73 × 10 ⁻³ m = 2.7 mm		$= x \sin^{-1} x + \frac{1}{2} \cdot 2\sqrt{1 - x^2} + c$ = $x \sin^{-1} x + \sqrt{1 - x^2} + c$		
75.(c) CH ₃ – C	$P = CH + O_3 \xrightarrow{CCI_4} CH_3 - C - CH \xrightarrow{Zn/H_2O} CH_3 - C - C - H$	84.(d)	$f(x) = \cos x - \cos^2 x + \cos^3 x - \dots + \infty$ $= \frac{\cos x}{x + \cos^2 x}$		
- , -	O-O Ozonide 2-Ketopropanal or		$\int f(x) dx = \int \frac{\cos x dx}{1 + \cos x}$		
76.(d)			$\int \frac{1+\cos x-1}{1+\cos x} dx$ $= \int dx = \int \frac{1}{1+\cos x} dx = x + \frac{1}{2} \int \frac{dx}{1+\cos x} dx$		
	$H + Cl - C - CH_3$ $C - CH_3 + HCl$ Acetophenone		$\int dx = \int \frac{1}{1 + \cos x} dx = x - 2 \int \frac{1}{\cos \frac{2x}{2}}$		
77.(a) 78.(a)	$\begin{array}{c} \text{Ca(OH)}_2 + \text{Cl}_2 & \xrightarrow{\text{Warm}/40^{\circ}\text{C}} & \text{CaOCl}_2 + \text{H}_2\text{O} \\ & & +7 & & +4 \end{array}$	85.(a)	$= x - \frac{1}{2} \int \sec^2 \frac{1}{2} dx = x - \tan \frac{1}{2} + c$ At certain time t, A = area r = radius p = perimeter		
	$2KMnO_4 + H_2O \longrightarrow 2KOH + 2MnO_2 + 3[O]$ Change in oxidation of number of Mn = +7 - (+4) = 3 1 mole MnO_4 = 3 mole charge		$A = \pi r^{2}, p = 2\pi r$ $\frac{dA}{dt} = K \qquad 2\pi r \frac{dr}{dt} = K$		
79.(d)	= 3F = (3 × 96500)C Due to increase the effective nuclear charge.		$\frac{dr}{dt} = \frac{K}{2\pi r} \qquad \Rightarrow \frac{dr}{dt} \propto \frac{1}{r}$		
80.(a)	$^{+3}_{As_2S_3}$ $^{-2}_{As_2S_3}$ $+$ HNO ₃ \longrightarrow H ₃ ASO ₄ $+$ $\stackrel{0}{S}$ $+$ NO ₂ $+$ H ₂ O	86.(a)	Let $\sqrt{5 + 121} = x + iy$ then $x^2 = \frac{\sqrt{a^2 + b^2} + a}{2}, y^2 = \frac{\sqrt{a^2 + b^2} - a}{2}$		
	Change in O.N. of $As = S - (+3) = 2 \times 2 = 4$ Change in O.N. of $S = O - (-2) = +2 \times 3 = 6$ Total change = 10		$=\frac{\sqrt{5^2+12^2+5}}{2} = \frac{\sqrt{5^2+12^2-5}}{2}$		
	Eq. wt. = $\frac{Mol. wt.}{Change in O.N.} = \frac{M}{10}$		$x = \pm 3$ Since $b = 12 > 0$, so square roots are $\pm (3 + 2i)$		

PEA Association Pvt. Ltd. Thapathali, Kathmandu, Tel: 4245730, 4257187

...The End...