PEA Association Pvt. Ltd. Thapathali, Kathmandu, Tel: 4245730, 4257187

 2078-08-18 (Set - II) Hints \& Solution
Section-1

1.(d)
2.(b) $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{NH}_{4}$ and $\mathrm{CH}_{3} \mathrm{CO}_{2} \mathrm{NH}_{4}$ contain equal no. of $\mathrm{NH}_{4}{ }^{+}$ion.
3.(d) After addition KCN it does not affect the $\mathrm{K}_{\text {sp }}$ of AgCN
4.(c) $2 \mathrm{Cu}_{2} \mathrm{O}+\mathrm{Cu}_{2} \mathrm{~S} \rightarrow 6 \mathrm{Cu}+\mathrm{SO}_{2}$

In this reaction $\mathrm{Cu}_{2} \mathrm{O}$ acts as a reducing agent and $\mathrm{Cu}_{2} \mathrm{~S}$ acts as an oxidizing agent and this reaction is a self reduction reaction.
5.(b)
6.(d) According to Ostwald's dilution law the degree of dissociation of weak electrolyte is increased by the diluting $\alpha \propto \sqrt{\mathrm{V}}$
7.(c) When the excited state the hydrogen atom in the sixth energy level and it return come back to ground state
$\mathrm{n}_{1}=1$, Pfund series
$\left.\begin{array}{l}\mathrm{n}_{1}=2, \text { Brackette series } \\ \mathrm{n}_{1}=3, \text { Paschen series }\end{array}\right\}$ IR-region
$\mathrm{n}_{1}=4$, Balmer series Visible region
$\mathrm{n}_{1}=5$, Lyman series UV region
8.(c) F, O and N are highly electronegative elements and extremely small in size so they do not easily hydrolyzed.
9.(d) Each benzene molecule ring contains three double covalent bond each double covalent bond contains two π electrons.
10.(a) $\mathrm{N}_{2}=2 \times 7=14$
$\mathrm{NO}^{+}=7+8-1=14$
$\mathrm{CN}^{-}=6+7+1=14$
Different species having same number of electrons is known isoelectronic species.
11.(b) In $\mathrm{SO}_{4}{ }^{2-}$, the oxidation state of $\mathrm{S}=+6$

In $\mathrm{S}_{2} \mathrm{O}_{3}{ }^{2-}$, the oxidation state of $\mathrm{S}=+2$
In $\mathrm{S}_{2} \mathrm{O}_{4}{ }^{2-}$, the oxidation state of $\mathrm{S}=+3$ In $\mathrm{S}_{2} \mathrm{O}_{6}{ }^{2-}$, the oxidation state of $\mathrm{S}=+5$
Lower the oxidation state of central atom higher will be the reducing character.
12.(a) $f(x)=\sqrt{\tan x}$
$f(x+\pi)=\sqrt{\tan (\pi+x)}=\sqrt{\tan x}=f(x)$
13.(c) $\mathrm{A}=\{2,3,5,7\}, \mathrm{n}=4$

No. of non empty proper subsets $=2^{n}-2=2^{4}-2=14$
14.(a) Given $\mathrm{a}, \mathrm{b}, \mathrm{c}$ are in G.P. So, $\mathrm{b}^{2}=\mathrm{ac}$ $\log _{e} b^{2}=\log _{e} a c \Rightarrow 2 \log _{e} b=\log _{e} a+\log _{e} c$
$\therefore \quad \log _{e} a, \log _{e} b, \log _{e} c$ are in A.P.
15.(d) $\left|\begin{array}{lll}1 / \mathrm{a} & 1 & \mathrm{bc} \\ 1 / \mathrm{b} & 1 & \mathrm{ca} \\ 1 / \mathrm{c} & 1 & \mathrm{ab}\end{array}\right|=\frac{1}{\mathrm{abc}}\left|\begin{array}{lll}\mathrm{abc} / \mathrm{a} & 1 & \mathrm{bc} \\ \mathrm{abc} / \mathrm{b} & 1 & \mathrm{ca} \\ \mathrm{abc} / \mathrm{c} & 1 & \mathrm{ab}\end{array}\right|$
$=\frac{1}{\mathrm{abc}}\left|\begin{array}{ccc}\mathrm{bc} & 1 & \mathrm{bc} \\ \mathrm{ca} & 1 & \mathrm{ca} \\ \mathrm{ab} & 1 & \mathrm{ab}\end{array}\right|=0\left(\because \mathrm{C}_{1}=\mathrm{C}_{3}\right)$
16.(c) $x^{2}-y^{2}=a^{2}\left(\operatorname{sech}^{2} t-\tanh ^{2} t\right)=a^{2}$ which is a rectangular hyperbola.
$\frac{a+b \omega+c \omega^{2}}{a \omega+b \omega^{2}+c}=\frac{a+b \omega+c \omega^{2}}{a \omega+b \omega^{2}+c \omega^{3}}$
$=\frac{\left(a+b \omega+c \omega^{2}\right)}{\omega\left(a+b \omega+c \omega^{2}\right)}=\frac{1}{\omega}=\frac{\omega^{3}}{\omega}=\omega^{2}$
18.(c) As both roots are common, we have $1=\frac{\mathrm{b}}{\mathrm{d}}=\frac{\mathrm{c}}{\mathrm{e}} \Rightarrow$ $\mathrm{be}=\mathrm{cd}$
19.(d) If $l, \mathrm{~m}, \mathrm{n}$ are dc's of a line then we have $l^{2}+\mathrm{m}^{2}$ $+\mathrm{n}^{2}=1$
20.(c) Any line parallel to x-axis have slope 0 .
21.(a) $(a, b)=\lambda(5,1) \Rightarrow 5 \lambda=a, \lambda=b \Rightarrow a=5 b$
22.(a) Here the function $\sin ^{7} x$ is odd so $\int_{-1}^{1} \sin ^{7} x d x=0$
$\lim _{x \rightarrow 1} \frac{x+x^{2}+x^{3}+\ldots .+x^{n}-n}{x-1}$
$=\lim _{\mathrm{x} \rightarrow 1} \frac{1+2 \mathrm{x}+3 \mathrm{x}^{2}+\ldots .+\mathrm{nx}^{\mathrm{n}-1}}{1}$
(Using L' Hospital rule)
$=1+2+3+\ldots+n=\frac{\mathrm{n}(\mathrm{n}+1)}{2}$
24.(c) $2 y=2-x^{2}$ on differentiating $2 \frac{d y}{d x}=-2 x$
i.e. $\frac{d y}{d x}=-x$

At $\mathrm{x}=-1, \frac{\mathrm{dy}}{\mathrm{dx}}=1 . \quad$ So slope $=1$
25.(d)
$\log _{\sqrt{x}} x=\frac{1}{\log _{x} \sqrt{x}}=\frac{1}{\frac{1}{2} \log _{x} x}=2$,
which is constant and so its derivative is 0 .
26.(d) $E q^{n}$ of normal is $y-0=\frac{4-0}{3-0}(x-0)$
i.e. $y=\frac{4}{3} x \Rightarrow 4 x-3 y=0$
27.(a) By definition, the eccentricity of the parabola is 0 .
28.(d) Required area $=\int_{0}^{\pi / 4} \sec ^{2} x d x=[\tan x]_{0}^{\pi / 4}=\tan \frac{\pi}{4}-$ $\tan 0=1$ sq. unit.
29.(d) Using sine law, $\frac{a}{\sin A}=\frac{b}{\sin B}$
$\Rightarrow \quad \sin \mathrm{B}=\frac{\mathrm{b}}{\mathrm{a}} \sin \mathrm{A}=\frac{4}{3} \cdot \frac{3}{4}=1$
$\Rightarrow \mathrm{B}=90^{\circ}$
30.(b) $\sin x+\cos x=2, \frac{1}{\sqrt{2}} \sin x+\frac{1}{\sqrt{2}} \cos x=\frac{2}{\sqrt{2}}$
$\Rightarrow \quad \sin x \cos \frac{\pi}{4}+\operatorname{cossin} \frac{\pi}{4}=\sqrt{2}$
$\Rightarrow \quad \sin \left(x+\frac{\pi}{4}\right)=\sqrt{2}$, impossible

PEA Association Pvt. Ltd. Thapathali, Kathmandu, Tel: 4245730, 4257187

31.(d) Here the lines are parallel and donot intersect and has no solution.
32.(b) $1=\sqrt{1^{2}+2.1 \cos \theta+1^{2}}$
or, $\cos \theta=-\frac{1}{2}=\cos 120^{\circ}$

$$
\theta=120^{\circ}
$$

Difference $(R)=\sqrt{1^{2}-2.1^{2} \cos 120^{\circ}+1^{2}}=\sqrt{3}$
33.(c) $I \propto d^{2}$
$\frac{\Delta \mathrm{I}}{\mathrm{I}}=\frac{2 \Delta \mathrm{~d}}{\mathrm{~d}}=2 \times 1 \%=2 \%$
34.(a) Random motion of particle is called Brownian motion.
35.(b) Efficiency will be maximum if ratio of $\frac{\mathrm{T}_{2}}{\mathrm{~T}_{1}}$ is least.
36.(d) On introducing conductor in between plates of capacitor capacitance increase.
37.(d) $\quad \mathrm{F}=\frac{\mu_{0} \mathrm{I}_{1} \mathrm{I}_{2}}{2 \pi \mathrm{r}}$

If current is doubled then
$\mathrm{F}^{\prime}=\frac{\mu_{0} 2 \mathrm{I}_{1} \times 2 \mathrm{I}_{2}}{2 \pi \mathrm{r}}=4 \mathrm{~F}$
38.(a) $2 \mathrm{~d} \sin \theta=\lambda$

For diffraction. $2 \mathrm{~d} \leq \lambda$
39.(b) $\quad \alpha=\frac{\mathrm{I}_{\mathrm{c}}}{\mathrm{I}_{\mathrm{e}}}<\mathrm{I}$
40.(c)
41.(d) $f_{\max }=20000 \mathrm{~Hz}$
$\lambda_{\text {min }}=\frac{\nu}{f_{\text {max }}}=\frac{330}{20000}=0.0165 \mathrm{~m}=16.5 \mathrm{~mm}$
42.(b) $\frac{\mathrm{T}}{2}=0.25 \mathrm{~s}$
or, $\mathrm{T}=0.5 \mathrm{~s} \quad \therefore \mathrm{f}=\frac{1}{\mathrm{~T}}=\frac{1}{0.5}=2 \mathrm{~Hz}$
43.(d) $\frac{w_{m}}{w_{h}}=\frac{T_{h}}{T_{m}} ; \quad T_{h}=$ period of hour hand
$\mathrm{T}_{\mathrm{m}}=$ period of minute hand
or, $\frac{\mathrm{w}_{\mathrm{m}}}{\mathrm{w}_{\mathrm{h}}}=\frac{12 \mathrm{hrs}}{60 \mathrm{~min}}=\frac{12 \times 60}{60}=12: 1$
44.(d) $\lambda_{\mathrm{m}}=\frac{\lambda \mathrm{v}}{\mu}$
$\therefore \quad \mu>1$, so $\lambda_{\mathrm{m}}<\lambda_{\mathrm{w}}$, i.e. wavelength decrease but frequency is unchanged.
45.(a) $\mathrm{f}=\frac{v}{4 l} \quad$ i.e. $\mathrm{f} \propto \frac{1}{l}$

As length of air column in vessel decrease, frequency increase.
46.(b) $\mathrm{F}=\frac{1}{4 \pi \varepsilon_{0}} \frac{\mathrm{~g}_{1} \mathrm{q}_{2}}{\mathrm{r}_{2}}$
$\mathrm{F}_{\mathrm{m}}=\frac{1}{4 \pi \varepsilon_{0} \mathrm{~K}} \frac{\mathrm{q}_{1} \mathrm{q}_{2}}{\mathrm{r}_{2}}$ or, $\mathrm{F}_{\mathrm{m}}=\frac{\mathrm{F}}{\mathrm{K}}$
47.(b) When a battery is connected in series another battery of higher emf with their negative terminal connected together, then battery is charged, so its emf will be less than its terminal p.d.
$\frac{\left(\frac{q}{m}\right)}{\left(\frac{q}{m}\right)}=\frac{\frac{e}{m_{p}}}{\frac{2 e}{4 m_{p}}}=2$
49.(b)
55.(b)

50.(a)	$51 .(\mathrm{a})$	$52 .(\mathrm{d})$	$53 .(\mathrm{c})$	$54 .(\mathrm{a})$
$56 .(\mathrm{c})$	$57 .(\mathrm{a})$	$58 .(\mathrm{b})$	$59 .(\mathrm{b})$	$60 .(\mathrm{c})$

Section - II

61.(b) $\mathrm{Ni}^{++}+\mathrm{S}^{--} \xrightarrow[\text { medium }]{\text { alkaline }} \mathrm{NiS} \downarrow$
62.(c)
63.(b)
64.(a)
$\mathrm{Zn}\left(\mathrm{NO}_{3}\right)_{2} \rightleftharpoons \mathrm{Zn}^{++}+2 \mathrm{NO}_{3}{ }^{-}$
$\mathrm{H}_{2} \mathrm{O} \rightleftharpoons \mathrm{H}^{+}+\mathrm{OH}^{-}$
Reaction at an anode: $40 \mathrm{H}^{-} \rightarrow 2 \mathrm{H}_{2} \mathrm{O}+\mathrm{O}_{2}+4 \mathrm{e}^{-}$
Reaction at cathode: $\mathrm{Zn}^{++}+2 \mathrm{e}^{-} \rightarrow \mathrm{Zn}$
Zn and O_{2} are products
65.(d) For ${ }^{\text {nd }}$ I.P
$\mathrm{Be}^{+}=4-1=3=1 \mathrm{~s}^{2} 2 \mathrm{~s}^{1}$
$\mathrm{C}^{+}=\mathrm{B}-1=5=1 \mathrm{~s}^{2} 2 \mathrm{~s}^{2} 2 \mathrm{p}^{1}$
$\mathrm{N}^{+}=7-1=6=1 \mathrm{~s}^{2} 2 \mathrm{~s}^{2} 2 \mathrm{p}^{2}$
$\mathrm{O}^{+}=8-1=7=1 \mathrm{~s}^{2} 2 \mathrm{~s}^{2} 2 \mathrm{p}^{3}$
So $2^{\text {nd }}$ I.P. of $\mathrm{Be}<\mathrm{C}<\mathrm{N}<\mathrm{O}$
66.(b) $\mathrm{KBrO}_{3} \rightarrow \mathrm{~K}^{+}+\mathrm{BrO}_{3}{ }^{-}$

This compound contains either six + ve charge or six -ve charge.
Mol. wt. of $\mathrm{KBrO}_{3}=167, \mathrm{E}=\frac{167}{6}=27.83$
$\frac{\mathrm{W}}{\mathrm{E}}=\frac{\mathrm{N} \times \mathrm{V}_{\mathrm{ml}}}{1000}$
$\frac{0.1262}{27.83}=\frac{\mathrm{N} \times 45}{1000}$
$\mathrm{N}=\frac{126.2}{1252.5}=0.1007 \mathrm{~N}$
67.(b) AgCl is AB type
$\mathrm{K}_{\text {sp }}=1.5 \times 10^{-1}$
$K_{\text {sp }}=\mathrm{s}^{2}$
$\mathrm{s}=\sqrt{1.5 \times 10^{-10}}=1.22 \times 10^{-5}$
68.(d) $|\vec{a} \times \vec{b}|=27 \Rightarrow|\vec{a}||\vec{b}| \sin \theta=27$
$\Rightarrow 9.5 \sin \theta \Rightarrow 27 \Rightarrow \sin \theta=\frac{3}{5}$
So $\cos \theta=\frac{4}{5}$. Then $\vec{a} \cdot \vec{b}=|\vec{a}||\vec{b}| \cos \theta=9.5 \cdot \frac{4}{5}=36$
69.(c) $\cos ^{-1} x+\cos ^{-1} y=\frac{\pi}{2} \Rightarrow \cos ^{-1} x=\frac{\pi}{2}-\cos ^{-1} y$
$\Rightarrow \quad \cos ^{-1} x=\sin ^{-1} y$
$\Rightarrow \quad \cos ^{-1} \mathrm{x}=\cos ^{-1} \sqrt{1-\mathrm{y}^{2}}$
$\Rightarrow \mathrm{x}=\sqrt{1-\mathrm{y}^{2}} \quad \Rightarrow \mathrm{x}^{2}+\mathrm{y}^{2}=1$

PEA Association Pvt. Ltd. Thapathali, Kathmandu, Tel: 4245730, 4257187

70.(b) One root $=3+4 \mathrm{i}$, other root $=3-4 \mathrm{i}$, sum $=6$, product $=25$
$\Rightarrow-\frac{\mathrm{p}}{1}=6, \frac{\mathrm{q}}{1}=25 \Rightarrow \mathrm{p}=-6, \mathrm{q}=25$
71.(c) $\tan \mathrm{A}=\frac{1-\cos \mathrm{B}}{\sin \mathrm{B}}=\frac{2 \sin ^{2} \frac{\mathrm{~B}}{2}}{2 \sin \frac{\mathrm{~B}}{2} \cos \frac{\mathrm{~B}}{2}}=\tan \frac{\mathrm{B}}{2}$
$\Rightarrow \quad \mathrm{A}=\frac{\mathrm{B}}{2} \Rightarrow 2 \mathrm{~A}=\mathrm{B}$
So $\tan 2 \mathrm{~A}=\tan \mathrm{B}$
72.(a) As the pair of lines intersect on y-axis, so $x=0$.

Then $\mathrm{by}^{2}+2 \mathrm{fy}+\mathrm{c}=0$. Also discriminant $=0$
$(2 \mathrm{f})^{2}-4 . \mathrm{bc}=0 \quad \Rightarrow \mathrm{f}^{2}=\mathrm{bc}$
73.(b) Intercept on y-axis $=2 \sqrt{f^{2}-c}=2 \sqrt{(-3)^{2}+12}$

$$
=2 \sqrt{21} \text { units }
$$

74.(d) $\mathrm{c}=-\lambda, \mathrm{m}=-2, \mathrm{a}=-2$

So $\mathrm{c}=-2 \mathrm{am}-\mathrm{am}^{3}$ to be a normal

$$
-\lambda=-2 .-2 .-2-(-2) .(-2)^{3}
$$

$\Rightarrow-\lambda=-8-16 \quad \Rightarrow \lambda=24$
75.(d) $E q^{n}$ is $9 x^{2}+36 y^{2}=324$
i.e. $\frac{x^{2}}{36}+\frac{y^{2}}{9}=1$

So $a=6, b=3$
$\therefore \quad\left|\mathrm{PS}+\mathrm{PS}^{\prime}\right|=2 \mathrm{a}=2.6=12$
76.(a) Eq^{n} of plane cutting equal intercepts on the axes is $x+y+z=a$
As it passes through the point $(2,3,4)$
So, $2+3+4=\mathrm{a}$
i.e. $a=9 \quad \therefore E q^{n}$ is $x+y+z=9$
77.(d) Let $z=\sqrt{-1-\sqrt{-1-\sqrt{-1 \ldots \text { to } \infty}}}$
$\Rightarrow \mathrm{z}=\sqrt{-1-\mathrm{z}} \Rightarrow \mathrm{z}^{2}+\mathrm{z}+1=0$
$\Rightarrow \quad \mathrm{z}=\frac{1 \pm \sqrt{1^{2}-4.1 .1}}{2.1}=\frac{-1 \pm \sqrt{-3}}{2}$

$$
=\frac{-1 \pm \sqrt{3} \mathrm{i}}{2}=\omega, \omega^{2}
$$

78.(c) No. of sides of polygon $=\mathrm{n}$ then no. of diagonals $=\frac{\mathrm{n}(\mathrm{n}-3)}{2}$
As per question, $\mathrm{n}=\frac{\mathrm{n}(\mathrm{n}-3)}{2} \Rightarrow \mathrm{n}-3=2 \Rightarrow \mathrm{n}=5$
79.(b) Given $y=\sqrt{\tan x+\sqrt{\tan x+\sqrt{\tan x \ldots \text { to } \infty}}}$

$$
y=\sqrt{\tan x+y}
$$

or, $y^{2}=y+\tan x$
On differentiation, $2 y \frac{d y}{d x}=\frac{d y}{d x}+\sec ^{2} x$
$\Rightarrow \quad(2 y-1) \frac{d y}{d x}=\sec ^{2} x$
80.(b)
$\int\left\{\frac{1}{\log x}-\frac{1}{(\log x)^{2}}\right\} \mathrm{dx}$
$=\int \frac{1}{\log x} d x-\int \frac{1}{(\log x)^{2}} d x$
$=(\log x)^{-1} \int d x-\int\left\{\frac{d(\log x)^{-1}}{d \log x} \cdot \frac{d \log x}{d x} \int d x\right\} d x-\int \frac{1}{(\log x)^{2}} d x$
$=\frac{x}{\log x}-\int-\frac{1}{(\log x)^{2}} \frac{1}{x} x d x-\int \frac{1}{(\log x)^{2}} d x$
$=\frac{x}{\log x}+\int \frac{1}{(\log x)^{2}} d x-\int \frac{1}{(\log x)^{2}} d x=\frac{x}{\log x}+c$
81.(d) Here $x^{2}+y^{2}=25$

So when $x=3 m$, then $y=4 m, \frac{d y}{d t}=-3 \mathrm{~m} / \mathrm{s}$
On differentiation, $2 x \frac{d x}{d t}+2 y \frac{d y}{d t}=0$
i.e. $\frac{d x}{d t}=-\frac{y}{x} \frac{d y}{d t}=\frac{3 y}{x}$

When $\mathrm{x}=3 \mathrm{~m}, \frac{\mathrm{dx}}{\mathrm{dt}}=3 \cdot \frac{4}{3}=4 \mathrm{~m} / \mathrm{s}$
82.(b) Solving $y=x^{2}$ and $y=x$, we get $x=0,1$

With reference to figure, we have,

Required area $=2 \int_{0}^{1}\left(y_{1}-y_{2}\right) d x$
$=2 \int_{0}^{1}\left(x^{2}-x\right) d x=2\left[\frac{x^{3}}{3}-\frac{x^{2}}{2}\right]_{0}^{1}$
$=2\left[\frac{1}{3}-\frac{1}{2}\right]=2 .-\frac{1}{6}=-\frac{1}{3}=\frac{1}{3}$ sq. units.
83.(c) Let, $\mathrm{u}=$ velocity of projection

Time to reach greatest height $(\mathrm{t})=5 \mathrm{sec}$.
Then, $v=u-g t$
or, $\quad 0=\mathrm{u}-10 \times \mathrm{t}$
or, $u=10 \times 5$
or, $u=50 \mathrm{~m} / \mathrm{s}$
84.(b) Work-done against friction $=$ loss in kinetic energy
or, $\quad \mathrm{F}_{\mathrm{f}} \times \mathrm{s}=\frac{1}{2} \mathrm{~m} v^{2}$
or, $\quad \mu \mathrm{mg} \times \mathrm{s}=\frac{1}{2} \mathrm{mv} v^{2}=\frac{v^{2}}{2 \mu \mathrm{~g}}=\frac{(10)^{2}}{2 \times 0.5 \times 10}=10 \mathrm{~m}$
85.(a) $\tau=\mathrm{I} \times \alpha$
or, $\mathrm{F} \times \mathrm{R}=\mathrm{I}$
or, $\alpha=\frac{\mathrm{F} \times \mathrm{R}}{\mathrm{I}}=\frac{15 \times 10 \times 10^{-2}}{0.02}=75 \mathrm{rad} / \mathrm{s}^{2}$
86.(c) $\frac{\mathrm{h}_{1}}{\cos \theta_{1}}=\frac{\mathrm{h}_{2}}{\cos \theta_{2}}$

PEA Association Pvt. Ltd. Thapathali, Kathmandu, Tel: 4245730, 4257187 2078-08-18 (Set - II) Hints \& Solution
$\binom{$ hpg $=\frac{2 \mathrm{~T}}{\mathrm{r}} \cos \theta}{$ or $\quad \frac{\mathrm{h}}{\cos \theta}=\frac{2 \mathrm{~T}}{\mathrm{rpg}}=$ cons tan t}
or, $\cos \theta_{2}=\frac{\mathrm{h}_{2}}{\mathrm{~h}_{1}} \cos \theta_{1}$
or, $\cos \theta_{2}=\frac{1}{2} \cos 0^{\circ}$
or, $\theta_{2}=\cos ^{-1}\left(\frac{1}{2}\right)=60^{\circ}$
87.(b) $\mathrm{PV}=\mathrm{NKT}$
or, $\frac{\mathrm{N}}{\mathrm{V}}=\frac{\mathrm{P}}{\mathrm{KT}}$
or, $\quad \frac{\mathrm{N}}{\mathrm{V}}=\frac{1.01 \times 10^{-13}}{1.38 \times 10^{-23} \times 293}$
or, $\frac{\mathrm{N}}{\mathrm{V}}=24.97 \times 10^{6} / \mathrm{ms}^{3}=25 / \mathrm{cm}^{3}$
88.(b) $\mathrm{PV}=\mathrm{nRT}$
$\therefore \quad \mathrm{PdV}+\mathrm{VdP}=\mathrm{nRdT}$
$\because \quad$ Pressure is constant, $\mathrm{dP}=0$
$\therefore \quad \mathrm{PdV}=\mathrm{nRdT}$
The, $\mathrm{dW}=\mathrm{PdV}=\mathrm{nRdT}=5 \times 8.31 \times 20=831 \mathrm{~J}$
89.(d) $\quad \theta_{\text {air }}=\frac{\beta_{\mathrm{a}}}{D} \quad \therefore \theta_{\text {water }}=\frac{\beta_{\mathrm{w}}}{\mathrm{D}}$
or, $\frac{\theta_{\mathrm{w}}}{\theta_{\mathrm{a}}}=\frac{\beta_{\mathrm{w}}}{\beta_{\mathrm{a}}}=\frac{\lambda_{\mathrm{w}}}{\lambda_{\mathrm{a}}}=\frac{1}{\mu \mathrm{w}} \quad\left[\because \mu_{\mathrm{w}}=\lambda_{\mathrm{a}} / \lambda_{\mathrm{w}}\right]$
or, $\theta_{\mathrm{w}}=\frac{\theta_{\mathrm{a}}}{\mu_{\mathrm{w}}}=\frac{0.25}{1.33}=0.19^{\circ}$
90.(a) $v_{\mathrm{b}}=0.02 \mathrm{v}_{\mathrm{s}} ; v_{\mathrm{s}}=$ velocity of sound
$v_{b}=$ velocity of bat
Now for wave reflected from wall,
$\mathrm{f}=\frac{v_{\mathrm{s}}+\mathrm{v}_{\mathrm{b}}}{v_{\mathrm{s}}-\mathrm{v}_{\mathrm{b}}} \times \mathrm{f}=\frac{\mathrm{v}_{\mathrm{s}}+0.02 v_{\mathrm{s}}}{\mathrm{v}_{\mathrm{s}}-0.02 \mathrm{v}_{\mathrm{s}}} \times 39$
$=40.59 \mathrm{KHz}$
91.(c) $\mathrm{E}=\frac{\sigma}{2 \varepsilon_{0}}$
or, $\frac{V}{d}=\frac{\sigma}{2 \varepsilon_{0}}$
or, $\mathrm{d}=\frac{\mathrm{V} \times 2 \varepsilon_{0}}{\sigma}=\frac{50 \times 2 \times 8.854 \times 10^{-22}}{0.10 \times 10^{-6}}$
or, $d=8.8 \times 10^{-3} \mathrm{~m}=8.8 \mathrm{~mm}$
92.(a) $\quad \mathrm{P}=\mathrm{I}^{2} \mathrm{R}$
or, $\quad I=\sqrt{\frac{P}{R}}=\sqrt{\frac{10}{0.1}}=10 \mathrm{~A}$
or, $\frac{\mathrm{E}}{\mathrm{R}+\mathrm{r}}=10$
or, $\quad \frac{1.5}{0.1+\mathrm{r}}=10$
or, $\quad 0.1+\mathrm{r}=\frac{1.5}{10}$
or, $r=0.15-0.1=0.05 \Omega$
93.(b) Loop current due to electron
$\mathrm{I}=\frac{\mathrm{e}}{\mathrm{T}} \quad \mathrm{T}=$ period of motion

$$
=\frac{\mathrm{e}}{\frac{2 \pi \mathrm{r}}{v}} \quad=\frac{\mathrm{e} v}{2 \pi \mathrm{r}}
$$

Magnetic moment of current loop $(\mu)=$ IA
$\therefore \tau_{\text {max }}=\mu \mathrm{B}=\mathrm{IAB}=\frac{\mathrm{e} v}{2 \pi \mathrm{r}} \times \pi \mathrm{r}^{2} \times \mathrm{B}$

$$
\begin{aligned}
& =\frac{\mathrm{evr}}{2} \times \mathrm{B} \\
= & \frac{1.6 \times 10^{-19} \times 4.2 \times 10^{6} \times 5.29 \times 10^{-11}}{2} \times 7.10 \times 10^{-3} \\
= & 1.23 \times 10^{-25} \mathrm{Nm}
\end{aligned}
$$

94.(c) Total energy $\left(\mathrm{E}_{\mathrm{n}}\right)=-3.4 \mathrm{eV}$
$\therefore \quad$ K. E. of electron in orbit $(K . E)=-E_{n}$

$$
=-(-3.4)=3.4 \mathrm{eV}
$$

$\therefore \quad \lambda=\frac{\mathrm{h}}{\sqrt{2 \mathrm{mK.E}}}$

$$
=\frac{6.62 \times 10^{-34}}{\sqrt{2 \times 9.1 \times 10^{-31} \times 3.4 \times 1.6 \times 10^{-19}}}
$$

$$
=6.65 \times 10^{-10} \mathrm{~m}=6.65 \AA
$$

95.(c) Initial activity per $1 \mathrm{~g}(\mathrm{~A} 0)=32 \mathrm{dis} / \mathrm{min}$

Final activity per $1 \mathrm{~g}(\mathrm{~A})=\frac{48}{6}=8 \mathrm{dis} / \mathrm{min}$
$\mathrm{T}_{1 / 2}=5730 \mathrm{yrs}$
$\mathrm{t}=$?
Now, $\frac{A}{A_{0}}=\left(\frac{1}{2}\right)^{\frac{t}{T_{1 / 2}}}$
or, $\frac{8}{32}=\left(\frac{1}{2}\right)^{\frac{\mathrm{t}}{\mathrm{T}_{1 / 2}}}$
or, $\left(\frac{1}{2}\right)^{2}=\left(\frac{1}{2}\right)^{\frac{\mathrm{t}}{\mathrm{T}_{1 / 2}}}$
$\therefore \quad \frac{\mathrm{t}}{\mathrm{T}_{1 / 2}}=2$
or, $t=2 \times \mathrm{T}_{1 / 2}=2 \times 5730=11460$ years
96.(d)
97.(b)
$\mathrm{E}=-\frac{\mathrm{LdI}}{\mathrm{dt}}$
or, $\quad 2=-\mathrm{L} \times \frac{1}{10^{-3}}$
or, $\mathrm{L}=2 \mathrm{mH}$
98.(b) 99.(a) 100.(c)

