## PEA Association Pvt. Ltd. Thapathali, Kathmandu, Tel: 4245730, 4257187

## 2078-08-04 Hints \& Solution

## Section-1

1.(a) $\mathrm{S}=\mathrm{S}_{\mathrm{A}}-\mathrm{S}_{\mathrm{B}}$
$=\frac{1}{2} \mathrm{a} 10^{2}-\frac{1}{2} \mathrm{a} \times 9^{2}$
$=100-81=19 \mathrm{~m}$
2.(a) $F=\frac{\mathrm{vdm}}{\mathrm{dt}}=\frac{\mathrm{vn}}{\mathrm{t}} \mathrm{m}$

$$
=400 \times \frac{30}{60} \times 50 \times 10^{-3}=10 \mathrm{~N}
$$

3.(a) $\mathrm{v}=\sqrt{5 \mathrm{gr}}$
or, $\sqrt{2 \mathrm{gh}}=\sqrt{5 \mathrm{gr}}$
or, $\mathrm{h}=\frac{5 \mathrm{r}}{2}=\frac{5 \times 4}{2}=10 \mathrm{~m}$
4.(b) Young's modulus depends on nature of material.
5.(d) $\frac{\Delta l}{l}=\alpha \Delta \theta=0.2 \%$
$\frac{\Delta \mathrm{V}}{\mathrm{V}}=\gamma \Delta \theta=3 \alpha \Delta \theta=3 \times 0.2 \%=0.6 \%$
6.(b) $\quad \mathrm{P}=\sigma \mathrm{A}\left(\mathrm{T}^{4}-\mathrm{T}_{0}{ }^{4}\right)=\mathrm{m} \frac{\mathrm{d} \theta}{\mathrm{dt}}$
or, $\frac{\mathrm{d} \theta}{\mathrm{dt}}=\frac{\sigma \mathrm{A}\left(\mathrm{T}^{4}-\mathrm{T}_{0}{ }^{4}\right)}{\mathrm{ms}}$
Cube \& sphere of equal surface area then mass of sphere is more than cube so rate of coding is less.
7.(c) $\frac{\mathrm{f}_{1}}{\mathrm{f}_{2}}=\frac{1}{2 l} \sqrt{\frac{\mathrm{~T}_{1}}{\mathrm{~m}}} \times \frac{2 \times 2 l}{1} \sqrt{\frac{\mathrm{~m}}{\mathrm{~T}_{2}}}$
or, $\frac{100}{150}=2 \sqrt{\frac{\mathrm{~T}_{1}}{\mathrm{~T}_{2}}}$
or, $\frac{\mathrm{T}_{1}}{\mathrm{~T}_{2}}=\frac{1}{9}$
8.(c) $y_{1}=\operatorname{asin} \omega t$
$\mathrm{y}_{2}=\operatorname{acos} \omega \mathrm{t}=\operatorname{asin}\left(90^{\circ}+\omega \mathrm{t}\right)$
$\therefore \quad a_{R}=\sqrt{a^{2}+a^{2}}=\sqrt{2} a$
9.(a) $\mathrm{F}=\mathrm{K} \frac{2 \times 6}{\mathrm{r}^{2}}$.
$2^{\text {nd }}$ case
$\mathrm{F}^{\prime}=\mathrm{K} \frac{(2-4)(6-4)}{\mathrm{r}^{2}}=-\mathrm{K} \frac{4}{\mathrm{r}^{2}}$.
$\frac{\mathrm{F}^{\prime}}{\mathrm{F}}=-\frac{4 \mathrm{~K}}{\mathrm{r}^{2}} \times \frac{\mathrm{r}^{2}}{12 \mathrm{~K}}=-\frac{1}{3}$
$\therefore \quad \mathrm{F}^{\prime}=-\frac{1}{3} \times 12=-4 \mathrm{~N}$
10.(b) $\mathrm{F}=\mathrm{EQ}=\frac{\sigma}{\varepsilon_{0}} \mathrm{Q}$

If one plate is removed then
$\mathrm{F}^{\prime}=\mathrm{E}^{\prime} \mathrm{Q}$
$=\frac{\sigma}{2 \varepsilon_{0}} \mathrm{Q}=\frac{\mathrm{F}}{2}$
11.(c) $I=\frac{d Q}{d t}=10 t+3$
$\mathrm{t}=2 \mathrm{~s}, \mathrm{I}=10 \times 2+3=23 \mathrm{~A}$
12.(d) $\frac{\mathrm{V}^{2}}{\mathrm{R}} \times \mathrm{t}_{1}=\frac{\mathrm{V}_{2}{ }^{2}}{\mathrm{R}} \times \mathrm{t}_{2}$
or, $\mathrm{t}_{2}=\left(\frac{220}{110}\right)^{2} \times 5 \mathrm{~min}$

$$
=20 \mathrm{~min}
$$

13.(d) $B_{H}=B_{e} \cos \delta$
or, $B_{0}=B_{e} \cos 60^{\circ}$
$\therefore \quad B_{\mathrm{e}}=2 \mathrm{~B}_{0}$
14.(a) $\mathrm{m}=-\frac{1}{\mathrm{n}}=\frac{\mathrm{v}}{\mathrm{u}}$
or, $v=-\frac{u}{n}$
Now, $\frac{1}{\mathrm{f}}=\frac{1}{\mathrm{u}}+\frac{1}{\mathrm{v}}$
or, $-\frac{1}{\mathrm{f}}=\frac{1}{\mathrm{u}}-\frac{\mathrm{n}}{\mathrm{u}}$
or, $-\frac{1}{\mathrm{f}}=-\left(\frac{\mathrm{n}-1}{\mathrm{u}}\right)$
or, $u=(n-1) f$
15.(d) $\frac{\mathrm{I}_{1}}{0}=\frac{0}{\mathrm{I}_{2}}$
or, $\quad 0=\sqrt{\mathrm{I}_{1} \mathrm{I}_{2}}$
16.(b) $\mathrm{KE}_{\text {max }}=\mathrm{hf}-\phi$, depends on frequency.
17.(d) $\mathrm{I}_{\mathrm{z}}=\frac{20-5}{\mathrm{R}}$
or, $\mathrm{R}=\frac{15}{10 \times 10^{-3}}=1.5 \mathrm{~K} \Omega$

19.(a) $\mathrm{NH}_{3}+\mathrm{CaOCl}_{2} \rightarrow 3 \mathrm{CaCl}_{2}+3 \mathrm{H}_{2} \mathrm{O}+\mathrm{N}_{2}$
20.(a) Mg or Zn used in cathodic protection.
21.(b) Valency $=3$
$\mathrm{EW}=\frac{\text { Wt. of metal }}{\text { Wt. of oxygen }} \times 8=\frac{53}{47} \times 8=9.02$
$\mathrm{AW}=\mathrm{V} \times \mathrm{EW}=3 \times 9.02=27$
22.(b) Chloride and sulphate ion acts as a permanent hardness and bicarbonate acts as a temporary hardness.
23.(b)
24.(c) $18 \mathrm{~g}_{\text {of } \mathrm{H}_{2} \mathrm{O}=3 \times \mathrm{N}_{\mathrm{A}} \text { atoms }}$

6 g of $\mathrm{H}_{2} \mathrm{O}=\frac{3 \times \mathrm{N}_{\mathrm{A}} \times 6}{18}=\mathrm{N}_{\mathrm{A}}$ atoms
25.(b) $\mathrm{O}=\mathrm{C}=\mathrm{O}$ polar covalent bond.
26.(a) F can oxidesed O of $\mathrm{SiO}_{2}$ of glass.
27. (a) $100 \times 0.5=(100+x) \times 0.1$
$\mathrm{x}=400 \mathrm{~cm}^{3}$

PEA Association Pvt. Ltd. Thapathali, Kathmandu, Tel: 4245730, 4257187

## 2078-08-04 Hints \& Solution

28.(c) $\mathrm{CH}_{3} \mathrm{CaO}^{-}$ion is obtained from weak acid $\mathrm{CH}_{3} \mathrm{COOH}$
29.(b) $\quad \int_{0}^{1}|\sin \pi x| d x=\int_{0}^{1} \sin \pi x d x \mathrm{dx}$
$=\left[\frac{-\cos \pi x}{\pi}\right]_{0}^{1}=\frac{2}{\pi}$
30.(d) Maximum value of LHS is 5 .
31.(b) As usual
32.(c) $A \cap B=A \cap C \ldots . .1$
$\mathrm{AUB}=\mathrm{AUC} . . . . .2$
From (1) and (2) B = C
33.(c) $9 \times 10 \times 5=450$
34.(c) Coefficient of $T_{r+2}=$ coefficient of $T_{3 r} \Rightarrow$ $2 n_{c_{r+1}}=2 n_{c_{3 r-1}}$
$(\mathrm{r}+1)+(3 \mathrm{r}-1)=2 \mathrm{n}$
$4 \mathrm{r}=2 \mathrm{n} \Rightarrow \mathrm{n}=2 \mathrm{r}$
35.(d) $\left(1+\mathrm{w}-w^{2}\right)\left(1+w^{2}-\mathrm{w}\right)$
$=\left(-w^{2}-w^{2}\right)(-w-w)$
$=4 w^{3}=4$
36.(c) $s_{1}=9+16-12+24+3=40$
37.(d) $\left[\begin{array}{lll}\overrightarrow{\mathrm{a}} \times \vec{b} & \vec{b} \times \vec{c} & \vec{c} \times \overrightarrow{\mathrm{a}}\end{array}\right]=\left[\begin{array}{ll}\overrightarrow{\mathrm{a}} \vec{b} & ]^{2}=4^{2}=16\end{array}\right.$
38.(b)
39.(c) Since roots are $\alpha, \beta$
$(\mathrm{x}-\mathrm{a})(\mathrm{x}-\mathrm{b})-\mathrm{c}=(\mathrm{x}-\alpha)(\mathrm{x}-\beta)$
$(\mathrm{x}-\alpha)(\mathrm{x}-\beta)+\mathrm{c}=(\mathrm{x}-\mathrm{a})(\mathrm{x}-\mathrm{b})$
$\therefore \quad$ Roots are $\mathrm{a}, \mathrm{b}$
40.(d)
$\left(A^{2}-\mathrm{A}+\mathrm{I}\right) \mathrm{A}^{-1}=0 . \mathrm{A}^{-1}$
$\mathrm{A}^{-1}=\mathrm{I}-\mathrm{A}=\mathrm{A}\left(\mathrm{A} \cdot \mathrm{A}^{-1}\right)-\mathrm{AA}^{-1}+\mathrm{IA}^{-1}=0$
41.(b)
$D=\left|\begin{array}{ccc}1 & 1 & 1 \\ 1 & 1+\mathrm{x} & 1 \\ 1 & 1 & 1+\mathrm{y}\end{array}\right|$
Applying $C_{2} \rightarrow C_{2}-C_{1}$ and $C_{3} \rightarrow C_{3}-C_{1}$
$=\left|\begin{array}{lll}1 & 0 & 0 \\ 1 & \mathrm{x} & 0 \\ 1 & 0 & \mathrm{y}\end{array}\right|=\mathrm{xy}$
So, $D$ is aviable by both $x$ and $y$
42.(b) $\mathrm{n}(\mathrm{AUB})=\mathrm{n}(\mathrm{A})+\mathrm{n}(\mathrm{B})-\mathrm{n}(\mathrm{A} \cap B)$
$=400-\mathrm{n}(\mathrm{AnB})$
$=\max . n(A U B)=n(U)=360$
43.(b) A.M $\geq$ G.M $\Rightarrow \frac{x^{2}+\frac{1}{x^{2}}}{2} \geq \sqrt{x^{2} \times \frac{1}{x^{2}}}$
$\Rightarrow x^{2}+\frac{1}{x^{2}} \geq 2$
44.(d) $\mathrm{x}=-\mathrm{x}$ for $\mathrm{x}<0$

L HL $\lim _{x \rightarrow 0} \frac{-x}{x}=-1$
$\mathrm{x}=\mathrm{x}$ for $\mathrm{x}>0$
RHL $\lim { }_{x \rightarrow 0} \frac{x}{x}=1$
45.(a) $\quad \cos 1^{\circ} \cdot \cos 2^{\circ} \ldots \cos 89^{\circ} \cdot \cos 90^{\circ} \cdot \cos 91^{\circ} \ldots \cdot \cos 179^{\circ}$
$\left[\because \cos 90^{\circ}=0\right.$, Result $\left.=0\right]$
46.(a) Let third vertex c is at ( $\mathrm{h}, \mathrm{k}$ )

Then, coordinate of centroid
$\frac{2+(-2)+h}{3}, \frac{-3+1+k}{3}=\left(\frac{h}{3}, \frac{k-2}{3}\right)$
Lies on line
$2 x+3 y=1$
2. $\frac{h}{3}+3\left(\frac{k-2}{3}\right)=1$
$2 \mathrm{~h}+3 \mathrm{k}-6=3$
$2 \mathrm{~h}+3 \mathrm{k}=9$
47.(a) $2 \mathrm{ae}=2 \mathrm{~b}$ (given)

$$
\begin{aligned}
& =a^{2} e^{2}=a^{2}\left(1-e^{2}\right) \\
& =\mathrm{e}=1 / \sqrt{2}
\end{aligned}
$$

48.(b) $\cos ^{-1}(-1)-\sin ^{-1}(1)$
$=\cos ^{-1}(\cos \pi)-\sin ^{-1}\left(\sin \frac{\pi}{2}\right)$
$=\pi-\frac{\pi}{2}$
$=\frac{\pi}{2}$

## ENGLISH

49.(a) $\quad 50$. (a) $\quad 51 .(\mathrm{d}) \quad 52 .(\mathrm{a}) \quad 53 .(\mathrm{b}) \quad 54 .(\mathrm{b})$
55.(b) $56 .(\mathrm{b}) \quad 57 .(\mathrm{b}) \quad 58 .(\mathrm{b}) \quad 59 .(\mathrm{c}) \quad 60 .(\mathrm{a})$

## Section-II

61.(c)


Time taken to walk last 8 m is

$$
\mathrm{t}=\frac{8}{1}=8 \mathrm{~s}
$$

Remaining distance $=18-8=10 \mathrm{~m}$ In 14 s man move 2 m
Time taken to move 10 m is

$$
\mathrm{t}^{\prime}=\frac{14}{2} \times 10=70 \mathrm{~s}
$$

Total time $=70+8=78 \mathrm{~s}$
62.(a) $\mathrm{F}=\frac{\mathrm{dm}}{\mathrm{dt}}=0.2 \times 2=0.4 \mathrm{~N}$
63.(b) $\frac{\mathrm{g}_{\mathrm{d}}}{\mathrm{g}_{\mathrm{h}}}=\frac{\mathrm{g}\left(1-\frac{\mathrm{x}}{\mathrm{R}}\right)}{\mathrm{g}\left(\frac{\mathrm{R}}{\mathrm{R}+\mathrm{h}}\right)^{2}}=\frac{1-\frac{\mathrm{R}}{20 \mathrm{R}}}{\left(\frac{\mathrm{R}}{\mathrm{R}+\frac{\mathrm{R}}{20}}\right)^{2}}$
or, $\quad \mathrm{gd}=\frac{19}{20} \times \frac{441}{400} \times 9=9.43 \mathrm{~m} / \mathrm{s}^{2}$
64.(a) $d Q=\operatorname{msd} \theta$
$\mathrm{Q}=\int \mathrm{d} Q=\int_{0}^{10} \mathrm{~m} \times 0.6 \theta^{2} \mathrm{~d} \theta$

$$
\begin{aligned}
& =10 \times 0.6 \int_{0}^{10} \theta^{2} \mathrm{~d} \theta \\
& =6\left(\frac{\theta^{3}}{3}\right)_{0}^{10}=2\left(10^{3}-0^{3}\right)=2000 \mathrm{cal}
\end{aligned}
$$

65.(c) $\mathrm{V}=\mathrm{KT}^{2 / 3}$
$\Delta \mathrm{V}=\frac{2}{3} \mathrm{KT}^{2 / 3-1} \Delta \mathrm{~T}=\frac{2}{3} \mathrm{KT}^{-1 / 3} \Delta \mathrm{~T}$
$\therefore \quad \mathrm{W}=\mathrm{P} \Delta \mathrm{V}$

$$
\begin{aligned}
\mathrm{W} & =\frac{\mathrm{RT}}{\mathrm{~V}} \Delta \mathrm{~V}=\frac{\mathrm{RT}}{\mathrm{KT}^{2 / 3}} \times \frac{2}{3} \mathrm{KT}^{-1 / 3} \Delta \mathrm{~T} \\
& =\frac{2}{3} \mathrm{R} \Delta \mathrm{~T}=\frac{2}{3} \mathrm{R} \times 60=40 \mathrm{R}
\end{aligned}
$$

PEA Association Pvt. Ltd. Thapathali, Kathmandu, Tel: 4245730, 4257187
66.(b) $\frac{\mathrm{f}_{2}}{\mathrm{f}_{1}}=\sqrt{\frac{\mathrm{T}_{2}}{\mathrm{~T}_{1}}}=\sqrt{\frac{363}{300}}$
or, $\mathrm{f}_{2}=400 \times 1.1=440 \mathrm{~Hz}$
67.(a) $\quad W=\vec{F} . \vec{r}$

$$
\begin{aligned}
& =\mathrm{Q} \overrightarrow{\mathrm{E}} \cdot \overrightarrow{\mathrm{r}} \\
& =\mathrm{Q}\left(\mathrm{E}_{1} \hat{\mathrm{i}}+\mathrm{E}_{2} \hat{\mathrm{j}}\right) \cdot(\mathrm{ai} \hat{\mathrm{i}}+\mathrm{bj} \hat{\mathrm{j}}) \\
& =\mathrm{Q}\left(\mathrm{E}_{1} \mathrm{a}+\mathrm{E}_{2} \mathrm{~b}\right)
\end{aligned}
$$

68.(b) If potential of B and D are equal then
$\frac{\mathrm{R}_{\mathrm{AB}}}{\mathrm{R}_{\mathrm{BC}}}=\frac{\mathrm{R}_{\mathrm{AD}}}{\mathrm{R}_{\mathrm{DC}}}$
or, $\frac{6}{12}=\frac{\frac{12 x}{12+x}}{6}$
or, $3=\frac{12 \mathrm{x}}{12+\mathrm{x}}$
or, $36+3 x=12 x$
or, $x=\frac{36}{9}=4 \Omega$
69.(d) $B=B_{1}-B_{2}$

$$
\begin{gathered}
=\frac{\mu_{0} I_{1} N_{1}}{2 r_{1}}-\frac{\mu_{0} I_{2} N_{2}}{2 r_{2}} \\
=\frac{\mu_{0}}{2}\left(\frac{0.2 \times 10}{0.2}-\frac{0.3 \times 10}{0.4}\right) \\
=\frac{\mu_{0}}{2}\left(10-\frac{15}{2}\right)=\frac{\mu_{0}}{2} \times \frac{5}{2} \\
=\frac{5 \mu_{0}}{4}
\end{gathered}
$$

70.(b) $\mathrm{P}=\frac{\mathrm{V}^{2}}{\mathrm{R}}$
$\mathrm{R}=\frac{\mathrm{V}^{2}}{\mathrm{P}}=\frac{220^{2}}{100}=484 \Omega$
$\mathrm{I}=\frac{\mathrm{P}}{\mathrm{V}}=\frac{100}{220}=\frac{5}{11} \mathrm{~A}$
For 440V
$I=\frac{V}{Z}$
or, $Z=\frac{440}{5} \times 11=968 \Omega$
Now $\mathrm{Z}=\sqrt{\mathrm{R}^{2}+\mathrm{X}_{\mathrm{L}}{ }^{2}}$
or, $\mathrm{X}_{\mathrm{L}}=\sqrt{\mathrm{Z}^{2}-\mathrm{R}^{2}}$
or, $2 \pi \mathrm{fL}=\sqrt{968^{2}-484^{2}}$
or, $L=\frac{838.3}{2 \pi \times 50}=2.7 \mathrm{H}$
71.(d) $\frac{\beta^{\prime}}{\beta}=\frac{\frac{D \lambda^{\prime}}{d}}{\frac{D \lambda}{d}}=\frac{\lambda^{\prime}}{\lambda}=\frac{1}{\mu}$
$\therefore \quad \beta^{\prime}=\frac{\beta}{\mu}=\frac{0.4}{\frac{4}{3}}=0.3 \mathrm{~mm}$
72.(c)


For lens
$\mathrm{v}=\frac{\mathrm{fu}}{\mathrm{u}-\mathrm{f}}=\frac{20 \times 30}{30-20}=60 \mathrm{~cm}$
This image lies at cof convex mirror.
So $\mathrm{d}=\mathrm{v}-\mathrm{r}=60-10=50 \mathrm{~cm}$
73.(c) Energy of photon $(\mathrm{E})=\frac{\mathrm{hc}}{\lambda}$

$$
\begin{aligned}
& =\frac{6.62 \times 10^{-34} \times 3 \times 10^{8}}{50 \times 10^{-9}} \\
& =24.8 \mathrm{eV}
\end{aligned}
$$

Energy required to remove electron from hydrogen, $\mathrm{E}^{\prime}=0-\mathrm{E}_{1}$

$$
\begin{aligned}
& =0-(-13.6) \mathrm{eV} \\
& =13.6 \mathrm{eV}
\end{aligned}
$$

$K E$ of electron $K E=E-E^{\prime}$

$$
\begin{aligned}
& =24.8-13.6 \\
& =11.2 \mathrm{eV}
\end{aligned}
$$

74.(d) First case
$\frac{\mathrm{N}}{\mathrm{N}_{0}}=\left(\frac{1}{2}\right)^{t / \mathrm{T}_{1 / 2}}$
or, $\frac{1}{4}=\left(\frac{1}{2}\right)^{t / T_{1 / 2}}$
or, $\left(\frac{1}{2}\right)^{2}=\left(\frac{1}{2}\right)^{t / T_{1 / 2}}$
or, $\quad 2=\frac{\mathrm{t}}{\mathrm{T}_{1 / 2}}$
or, $\mathrm{T}_{1 / 2}=\frac{\mathrm{t}}{2}=\frac{\frac{3}{4}}{2}=\frac{3}{8} \mathrm{~s}$
75.(b) $\mathrm{Cu}+$ conc $^{\mathrm{n}} \mathrm{H}_{2} \mathrm{SO}_{4} \rightarrow \mathrm{CuSO}_{4}+\mathrm{SO}_{2}+\mathrm{H}_{2} \mathrm{O}$
$\mathrm{SO}_{2}+2 \mathrm{H}_{2} \mathrm{~S} \rightarrow 3 \mathrm{~S}+2 \mathrm{H}_{2} \mathrm{O}$
O.A. R.A.
76.(a) $\mathrm{Al}_{4} \mathrm{C}_{3}+\mathrm{H}_{2} \mathrm{O} \rightarrow \mathrm{CH}_{4}+\mathrm{Al}(\mathrm{OH})_{3}$
$\mathrm{CH}_{4}+\mathrm{Cl}_{2} \rightarrow \mathrm{CH}_{3}-\mathrm{Cl}+\mathrm{HCl}$
77.(a) 22400 cc of $\mathrm{O}_{2}$ at $\mathrm{NTP}=32 \mathrm{~g}$

140 cc of $\mathrm{O}_{2}$ at $\mathrm{NTP}=\frac{32 \times 140}{22400}=0.2$
EW of metal $=\frac{\text { Wt. of metal }}{\text { Wt. of } \mathrm{O}_{2} \mathrm{gas}} \times 8$

$$
=\frac{0.5}{0.2} \times 8=20
$$

78.(b) $\mathrm{pH}=11$
$\mathrm{H}^{+}=10^{-11}$
$\mathrm{OH}^{-}=10^{-3}$
In 1000 ml no. of moles of $\mathrm{OH}^{-}=10^{-3}$ moles
100 ml no. of moles of $\mathrm{OH}^{-}=\frac{10^{-3}}{1000} \times 100$

$$
\begin{aligned}
& \quad=10^{-4} \text { moles } \\
& =10^{-4} \times 6.023 \times 10^{23} \\
& =6.023 \times 10^{19}
\end{aligned}
$$

## PEA Association Pvt. Ltd. Thapathali, Kathmandu, Tel: 4245730, 4257187

## 2078-08-04 Hints \& Solution

79.(b)
80.(b) In S, $l=0$

$$
=\frac{\mathrm{h}}{2 \pi} \sqrt{0(0+1)}=0
$$

81.(d) $\mathrm{Br}^{-}=\frac{\mathrm{K}_{\mathrm{sp}}}{\left[\mathrm{Ag}^{+}\right]}=\frac{5.0 \times 10^{-13}}{0.05}=10^{-11} \mathrm{M}$

Thus the amount of KBr to be added

$$
=10^{-11} \mathrm{~mole}
$$

$$
=10^{-11} \times 120 \mathrm{~g}=1.2 \times 10^{-9} \mathrm{~g}
$$

82.(b) $\int \sin x \cdot \cos x \cdot \cos 2 x \cdot \cos 4 x \cdot \cos x \cdot \cos 16 x d x$
$=\frac{1}{32} \int \sin 32 x \mathrm{dx}=\frac{\cos 32 x}{1024}+\mathrm{c}$
83.(d) $\quad I_{n+1}=\int_{0}^{\frac{\pi}{4}} \tan ^{n+1} x d x=\int_{0}^{\frac{\pi}{4}} \tan ^{n-1} \times\left(\sec ^{2} \mathrm{x}-\right.$ 1) $d x$

$$
\begin{aligned}
&=\int_{0}^{\frac{\pi}{4}} \tan ^{n-1} \sec ^{2} \mathrm{xdx}-\int_{0}^{\frac{\pi}{4}} \tan ^{n-1} \mathrm{xdx} \\
&=\left[\frac{\tan ^{n x}}{n}\right]_{0}^{\pi / 4}-I_{n_{-1}}=\frac{1}{n}-I_{n_{-1}} \\
& \therefore I_{n_{+1}}+I_{n_{-1}}=\frac{1}{n}
\end{aligned}
$$

84.(c) $\mathrm{x}=e^{y+x}$
$\log x=(y+x) \operatorname{loge}=y+x$

$$
=\frac{d y}{d x}=\frac{1-x}{x}
$$

85.(d) $f^{\prime}(\mathrm{x})=\frac{x^{2}}{1+x^{2}} \geq 0$

Hence $f(x)$ is increasing for all $x$.
86.(b) $\lim _{x \rightarrow 1} \frac{-1+\sqrt{f(x)}}{\sqrt{x}-1}\left(\frac{0}{0}\right.$ form $)$

Using L - HOSPITAL rule
$\lim _{x \rightarrow 1} \frac{1}{\frac{1 / \bar{f}(x)}{\frac{1}{2 \sqrt{x}}}} * f^{\prime(x)}$
$=\frac{f^{1}(1)}{\sqrt{f(1)}}=\frac{2}{1}=2$
87.(a) $f(x)$ will be continuous when $x=-x \Rightarrow 2 x=0$ $\Rightarrow \quad \mathrm{x}=0$ at $\mathrm{x}=0$ LHL $=$ RHL $=\mathrm{f}(0)=0$
88.(c) $\mathrm{f}(\mathrm{x})=\log \left(\mathrm{x}+\sqrt{x^{2}+1}\right)$
$f(-x)=\log \left(-x+\sqrt{(-x)^{2}+1}\right.$
$\mathrm{f}(\mathrm{x})+\mathrm{f}(-\mathrm{x})=\log 1=0$
89.(c) $\tan y=\tan \left(\frac{\pi}{4}+2 x\right)$
$y=\frac{\pi}{4}+2 x$
$\therefore \quad \frac{d y}{d x}=2$
90.(d)


There is no boundary region
91.(c) $n_{c_{r+1}}+n_{c_{r-1}}+2 . n_{c_{r}}$
$\left(n_{c_{r-1}}+n_{c_{r}}\right)+\left(n_{c_{r}}+\mathrm{n}_{c_{r+1}}\right)=\mathrm{n}+2_{c_{r+1}}$
92.(b) $\mathrm{a}+\mathrm{b}+\mathrm{c}^{2}=a^{2}+b^{2}+c^{2}+2[\mathrm{a} . \mathrm{b}+\mathrm{b} . \mathrm{c}+\mathrm{c} . \mathrm{a}]$
$=1+1+1+0=3$
93.(a) $\mathrm{Z}-2 \geq \mathrm{Z}-4$
$(x-2)^{2}+y^{2} \geq(x-4)^{2}+y^{2}=x \geq 3$
$\therefore \quad R(Z) \geq 3$
94.(c) $\frac{\mathrm{a}}{1-\mathrm{r}}=20$
$\mathrm{S}_{\infty}=$ Similarly $\frac{\mathrm{a}^{2}}{1-\mathrm{r}^{2}}=100$
$\Rightarrow \mathrm{r}=\frac{3}{5}$
95.(b) $\mathrm{r}-3<\sqrt{9+16}<\mathrm{r}+3$
$\mathrm{r}-3<5<\mathrm{r}+3=2<r<8$
96.(d) The perpendicular tangents always intersect on directrix
$Y=-a \Rightarrow y=-3$
97.(b) 98.(a) 99.(c) 100.(c)

