PEA Association Pvt. Ltd. Thapathali, Kathmandu, Tel: 4245730, 4257187 2078-08-04 Hints & Solution Section – I 12 1.(a) $S = S_A - S_B$

$$= \frac{1}{2} a \ 10^2 - \frac{1}{2} a \times 9^2$$

$$= 100 - 81 = 19 \text{ m}$$

2.(a) $F = \frac{vdm}{dt} = \frac{vn}{t} \text{ m}$

$$= 400 \times \frac{30}{60} \times 50 \times 10^{-3} = 10 \text{ N}$$

3.(a) $v = \sqrt{5gr}$
or, $\sqrt{2gh} = \sqrt{5gr}$
or, $\sqrt{2gh} = \sqrt{5gr}$
or, $h = \frac{5r}{2} = \frac{5 \times 4}{2} = 10 \text{ m}$
4.(b) Young's modulus depends on nature of material.
5.(d) $\frac{\Delta l}{l} = \alpha \Delta \theta = 0.2\%$
 $\frac{\Delta V}{V} = \gamma \Delta \theta = 3\alpha \Delta \theta = 3 \times 0.2\% = 0.6\%$
6.(b) $P = \sigma A (T^4 - T_0^4) = ms \frac{d\theta}{dt}$

dt or, $\frac{d\theta}{dt} = \frac{\sigma A (T^4 - T_0^4)}{ms}$ Cube & sphere of equal surface area then mass

of sphere is more than cube so rate of coding is less.

7.(c)
$$\frac{f_1}{f_2} = \frac{1}{2l} \sqrt{\frac{T_1}{m}} \times \frac{2 \times 2l}{1} \sqrt{\frac{m}{T_2}}$$

or, $\frac{100}{150} = 2\sqrt{\frac{T_1}{T_2}}$
or, $\frac{T_1}{T_2} = \frac{1}{9}$

8.(c)
$$y_1 = \operatorname{asinot}$$

 $y_2 = \operatorname{acosot} = \operatorname{asin}(90^\circ + \operatorname{ot})$
 $\therefore \quad a_R = \sqrt{a^2 + a^2} = \sqrt{2} a$
9.(a) $F = V \frac{2 \times 6}{2}$ (1)

9.(a)
$$F = K \frac{r^2}{r^2} \dots (1)$$

 2^{nd} case
 $F' = K \frac{(2-4)(6-4)}{r^2} = -K \frac{4}{r^2} \dots (2)$
 $\frac{F'}{F} = -\frac{4K}{r^2} \times \frac{r^2}{12K} = -\frac{1}{3}$
 $\therefore F' = -\frac{1}{3} \times 12 = -4N$

10.(b)
$$F = EQ = \frac{\sigma}{\varepsilon_0} Q$$

If one plate is removed then
 $F' = E'Q$
 $= \frac{\sigma}{2\varepsilon_0} Q = \frac{F}{2}$
11.(c) $I = \frac{dQ}{dt} = 10t + 3$

$$t = 2s, I = 10 \times 2 + 3 = 23 \text{ A}$$

12.(d)
$$\frac{V^2}{R} \times t_1 = \frac{V_2^2}{R} \times t_2$$

or, $t_2 = \left(\frac{220}{110}\right)^2 \times 5 \min$
 $= 20 \min$
13.(d) $B_H = B_e \cos \delta$
or, $B_0 = B_e \cos 60^\circ$
 $\therefore B_e = 2B_0$
14.(a) $m = -\frac{1}{n} = \frac{v}{u}$
or, $v = -\frac{u}{n}$
Now, $\frac{1}{f} = \frac{1}{u} + \frac{1}{v}$
or, $-\frac{1}{f} = \frac{1}{u} - \frac{n}{u}$
or, $-\frac{1}{f} = -\left(\frac{n-1}{u}\right)$
or, $u = (n-1) f$
15.(d) $\frac{I_1}{0} = \frac{0}{I_2}$
or, $0 = \sqrt{I_1 I_2}$
16.(b) $KE_{max} = hf - \phi$, depends on frequency.
17.(d) $I_z = \frac{20-5}{R}$
or, $R = \frac{15}{10 \times 10^{-3}} = 1.5 \text{ K}\Omega$
 R
 $I_z = \frac{15}{20V}$
18.(b) $C_2O_4^{-1} - 2e^- \rightarrow 2CO_2$
19.(a) $NH_3 + CaOCI_2 \rightarrow 3CaCI_2 + 3H_2O + N_2$
20.(a) Mg or Zn used in cathodic protection.
21.(b) Valency = 3

$$EW = \frac{Wt. \text{ of metal}}{Wt. \text{ of oxygen}} \times 8 = \frac{53}{47} \times 8 = 9.02$$
$$AW = V \times EW = 3 \times 9.02 = 27$$
(b) Chloride and sulphate ion acts as a perm

22.(b) Chloride and sulphate ion acts as a permanent hardness and bicarbonate acts as a temporary hardness. 23.(b)

24.(c) 18g of H₂O = 3 × N_A atoms
6g of H₂O =
$$\frac{3 × N_A × 6}{18}$$
 = N_A atoms

5.(b)
$$O = C = O$$
 polar covalent bond.

25.(b)
$$O = C = O$$
 polar covalent bond.
26.(a) F can oxidesed O of SiO₂ of glass.
27.(a) $100 \times 0.5 = (100 + x) \times 0.1$

7.(a)
$$100 \times 0.5 = (100 + x) \times 0.1$$

 $x = 400 \text{ cm}^3$

PEA Association Pvt. Ltd. Thapathali, Kathmandu, Tel: 4245730, 4257187 2078-08-04 Hints & Solution					
28.(c)	CH ₃ CaO ⁻ ion is obtained from weak acid		2x + 3y = 1		
29.(b)	$\int_{0}^{1} \sin \pi x dx = \int_{0}^{1} \sin \pi x dx dx$		$2 \cdot \frac{1}{3} + 3(\frac{1}{3}) = 1$ 2h + 3k - 6 = 3 2h + 2k - 0		
30.(d)	$= \left[\frac{1}{\pi}\right]_{0}^{T} = \frac{1}{\pi}$ Maximum value of LHS is 5.	47.(a)	2a = 2b (given) = $a^2e^2 = a^2(1 - e^2)$		
31.(0) 32.(c)	As usual $A \cap B = A \cap C \dots 1$ $AUB = AUC \dots 2$	48 (b)	$= e = \frac{1}{\sqrt{2}}$		
33.(c) 34 (c)	From (1) and (2) $B = C$ $9 \times 10 \times 5 = 450$ Coefficient of $T_{ave} \Rightarrow$	40.(0)	$= \cos^{-1}(\cos \pi) - \sin^{-1}(\sin \frac{\pi}{2}) = \pi - \frac{\pi}{2}$		
51.(0)	$2n_{c_{r+1}} = 2n_{c_{3r-1}}$ $(r+1) + (3r-1) = 2n$	ENGL	$=\frac{\pi}{2}^{2}$		
35.(d)	$4r = 2n \Rightarrow n = 2r$ $(1 + w - w^2) (1 + w^2 - w)$	49.(a) 55.(b)	50.(a) 51.(d) 52.(a) 53.(b) 54.(b) 56.(b) 57.(b) 58.(b) 59.(c) 60.(a)		
	$= (-w^2 - w^2) (-w-w)$ = 4 w ³ = 4		Section – II		
36.(c) 37.(d)	$s_1 = 9 + 16 - 12 + 24 + 3 = 40$ $[\overrightarrow{a} \times \overrightarrow{b} \ \overrightarrow{b} \times \overrightarrow{c} \ \overrightarrow{c} \times \overrightarrow{a}] = [\overrightarrow{a} \ \overrightarrow{b} \ \overrightarrow{c}]^2 = 4^2 = 16$	61.(c)	\dot{A} \dot{C} 8 m \dot{B}_{pit} Time taken to walk last 8 m is		
38.(b) 39.(c)	Since roots are α , β (x-a) (x-b)-c = (x - α) (x- β)		$t = \frac{8}{1} = 8s$ Remaining distance = 18 - 8 = 10m		
40.(d)	(x - α) (x-β) + c = (x-a) (x-b) ∴ Roots are a, b $(A^2-A + I) A^{-1} = 0.A^{-1}$		In 14s man move 2 m Time taken to move 10 m is $t' = \frac{14}{2} \times 10 = 70s$		
41 (b)	$= A(A, A^{-1}) - AA^{-1} + IA^{-1} = 0$ $A^{-1} = I - A$ $D = \begin{vmatrix} 1 & 1 & 1 \\ 1 & 1 + x & 1 \end{vmatrix}$	62.(a)	Total time = 70 + 8 = 78s $F = v \frac{dm}{dt} = 0.2 \times 2 = 0.4 \text{ N}$		
41.(0)	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	63 (b)	$\frac{g_{d}}{g_{d}} = \frac{g\left(1 - \frac{x}{R}\right)}{g\left(1 - \frac{x}{R}\right)} = \frac{1 - \frac{R}{20R}}{1 - \frac{R}{20R}}$		
	$ \begin{vmatrix} 1 & x & 0 \\ 1 & 0 & y \end{vmatrix} = xy $ So D is aviable by both x and y	00.(0)	$g_h = g\left(\frac{R}{R+h}\right)^2 = \left(\frac{R}{R+\frac{R}{20}}\right)^2$		
42.(b)	$n (AUB) = n (A) + n(B) - n (A \cap B)$ $= 400 - n (AnB)$		or, $gd = \frac{19}{20} \times \frac{441}{400} \times 9 = 9.43 \text{ m/s}^2$		
43.(b)	$= \max .n (AUB) = n (U) = 360$ $A.M > G.M \Rightarrow \frac{x^2 + \frac{1}{x^2}}{x^2} > \sqrt{x^2 \times \frac{1}{x^2}}$	64.(a)	$dQ = msd\theta$ $Q = \int dQ = \int_{-\infty}^{10} m \times 0.6\theta^2 d\theta$		
	$\Rightarrow x^2 + \frac{1}{x^2} \ge 2$		$= 10 \times 0.6 \int_{0}^{10} \theta^2 d\theta$		
44.(d)	x = -x for x < 0 L HL $\lim_{x \to 0} \frac{-x}{x} = -1$	(5 (a)	$= 6\left(\frac{\theta^3}{3}\right)_0^{10} = 2(10^3 - 0^3) = 2000 \text{ cal}$		
	x = x for x > 0 RHL $\lim_{x \to 0} \frac{x}{x} = 1$	65.(C)	$\nabla = K T^{-1/3} \Delta T = \frac{2}{3} K T^{-1/3} \Delta T$		
45.(a)	$\cos 1^\circ .\cos 2^\circ \cos 89^\circ .\cos 90^\circ .\cos 91^\circ \cos 179^\circ$ [:: $\cos 90^\circ = 0$, Result = 0] Let third vertex e is at ($h_{-}k_{-}$)		$\therefore W = P\Delta V$ $W = \frac{RT}{2} \Delta V = \frac{RT}{2} \frac{2}{VT^{-1/3}} \Delta T$		
40.(a)	Then, coordinate of centroid $\frac{2+(-2)+h}{3}, \frac{-3+1+k}{3} = (\frac{h}{3}, \frac{k-2}{3})$		$w = \frac{1}{V} \Delta v = \frac{1}{KT^{2/3}} \times \frac{1}{3} K \Gamma^{1/3} \Delta \Gamma$ $= \frac{2}{3} R \Delta T = \frac{2}{3} R \times 60 = 40 R$		
	Lies on line				

FEA Association Pvt. Ltd. Thapathali, Kathmandu, Tel: 4245730, 4257187 2078-08-04 Hints & Solution						
66.(b)	$\frac{f_2}{f_1} = \sqrt{\frac{T_2}{T_1}} = \sqrt{\frac{363}{300}}$ or, $f_2 = 400 \times 1.1 = 440$ Hz	72.(c)				
67.(a)	$W = \vec{F} \cdot \vec{r}$		$v = \frac{fu}{u - f} = \frac{20 \times 30}{30 - 20} = 60 \text{ cm}$			
68.(b)	= QE. r = Q(E ₁ î + E ₂ ĵ).(aî + bĵ) = Q(E ₁ a + E ₂ b) If potential of B and D are equal then $\frac{R_{AB}}{R_{BC}} = \frac{R_{AD}}{R_{DC}}$ $\frac{12x}{12x}$	73.(c)	This image lies at c of convex mirror. So d= v - r = 60 - 10 = 50 cm Energy of photon (E) = $\frac{hc}{\lambda}$ = $\frac{6.62 \times 10^{-34} \times 3 \times 10^8}{50 \times 10^{-9}}$ = 24.8 eV			
	or, $\frac{6}{12} = \frac{12 + x}{6}$ or, $3 = \frac{12x}{12 + x}$ or, $36 + 3x = 12x$ or, $x = \frac{36}{9} = 4\Omega$		Energy required to remove electron from hydrogen, $E' = 0 - E_1$ = 0 - (-13.6) eV = 13.6 eV KE of electron KE = E - E' = 24.8 - 13.6 = 11.2 eV			
69.(d)	$B = B_1 - B_2$ = $\frac{\mu_0 I_1 N_1}{2r_1} - \frac{\mu_0 I_2 N_2}{2r_2}$ = $\frac{\mu_0}{2} \left(\frac{0.2 \times 10}{0.2} - \frac{0.3 \times 10}{0.4} \right)$ = $\frac{\mu_0}{2} \left(10 - \frac{15}{2} \right) = \frac{\mu_0}{2} \times \frac{5}{2}$ = $\frac{5\mu_0}{4}$	74.(d)	First case $\frac{N}{N_0} = \left(\frac{1}{2}\right)^{t/T_{1/2}}$ or, $\frac{1}{4} = \left(\frac{1}{2}\right)^{t/T_{1/2}}$ or, $\left(\frac{1}{2}\right)^2 = \left(\frac{1}{2}\right)^{t/T_{1/2}}$ or, $2 = \frac{t}{T_{r_0}}$			
70.(b)	$P = \frac{V^2}{R}$ $R = \frac{V^2}{P} = \frac{220^2}{100} = 484 \ \Omega$ $I = \frac{P}{V} = \frac{100}{220} = \frac{5}{11} \ A$	o: 75.(b)	$r_{1/2} = \frac{\frac{3}{4}}{\frac{1}{2}} = \frac{3}{8} s$ $Cu + conc^{n} H_{2}SO_{4} \rightarrow CuSO_{4} + SO_{2} + H_{2}O$ $SO_{2} + 2H_{2}S \rightarrow 3S + 2H_{2}O$			
	For 440V $I = \frac{V}{Z}$	76.(a) 77.(a)	O.A. K.A. $Al_4C_3 + H_2O \rightarrow CH_4 + Al(OH)_3$ $CH_4 + Cl_2 \rightarrow CH_3 - Cl + HCl$ 22400 cc of O_2 at NTP = 32g			
	Now $Z = \sqrt{R^2 + X_L^2}$ or, $X_L = \sqrt{Z^2 - R^2}$ or, $2\pi fL = \sqrt{968^2 - 484^2}$ or, $L = \frac{838.3}{2} = 2.7H$		140 cc of O ₂ at NTP = $\frac{32 \times 140}{22400}$ = 0.2 EW of metal = $\frac{\text{Wt. of metal}}{\text{Wt. of O}_2 \text{ gas}} \times 8$ = $\frac{0.5}{0.2} \times 8 = 20$			
71.(d)	$\frac{\beta'}{\beta} = \frac{\frac{D\lambda'}{d}}{\frac{D\lambda}{d}} = \frac{\lambda'}{\lambda} = \frac{1}{\mu}$	78.(b)	pH = 11 $H^+ = 10^{-11}$ $OH^- = 10^{-3}$ In 1000 ml no. of moles of $OH^- = 10^{-3}$ moles 100 ml no. of moles of $OH^- = \frac{10^{-3}}{2} \times 100$			
	$\therefore \beta' = \frac{p}{\mu} = \frac{0.4}{\frac{4}{3}} = 0.3 \text{ mm}$	2	$= 10^{-4} \text{ moles}$ $= 10^{-4} \text{ moles}$ $= 10^{-4} \times 6.023 \times 10^{23}$ $= 6.023 \times 10^{19}$			
3						

PEA Association Pvt. Ltd. Thapathali, Kathmandu, Tel: 4245730, 4257187 2078-08-04 Hints & Solution						
79.(b) 80.(b)	In S, $l = 0$ = $\frac{h}{2\pi}\sqrt{0(0+1)} = 0$	90.(d)	$y = \frac{\pi}{4} + 2x$ $\therefore \frac{dy}{dx} = 2$			
81.(d)	$Br^{-} = \frac{K_{sp}}{[Ag^{+}]} = \frac{5.0 \times 10^{-13}}{0.05} = 10^{-11} M$ Thus the amount of KBr to be added = 10^{-11} mole = $10^{-11} \times 120g = 1.2 \times 10^{-9}g$					
82.(b)	$\int \sin x \cdot \cos x \cdot \cos 2x \cdot \cos 4x \cdot \cos x \cdot \cos 16x dx$ = $\frac{1}{32} \int \sin 32x dx = \frac{\cos 32x}{1024} + c$		0 1 2 3			
83.(d)	$I_{n+1} = \int_{0}^{\frac{\pi}{4}} tan^{n+1} x dx = \int_{0}^{\frac{\pi}{4}} tan^{n-1} x (\sec^2 x - 1) dx$ $= \int_{0}^{\frac{\pi}{4}} tan^{n-1} \sec^2 x dx - \int_{0}^{\frac{\pi}{4}} tan^{n-1} x dx$ $= [\frac{tan^{n_x}}{n}]_{0}^{\frac{\pi}{4}} - I_{n-1} = \frac{1}{n} - I_{n-1}$ $\therefore I_{n+1} = \frac{1}{2}$	91.(c) 92.(b)	$n_{c_{r+1}} + n_{c_{r-1}} + 2. n_{c_r}$ $(n_{c_{r-1}} + n_{c_r}) + (n_{c_r} + n_{c_{r+1}}) = n + 2_{c_{r+1}}$ $a + b + c^{-2} = a^2 + b^2 + c^2 + 2 [a.b + b.c + c.a]$ $= 1 + 1 + 1 + 0 = 3$			
84.(c)	$x = e^{y+x}$ $x = e^{y+x}$ $x = (y+x) \log e = y + x$ $= \frac{dy}{dx} = \frac{1-x}{x}$	93.(a)	Z-2 ≥ Z-4 $(x-2)^2 + y^2 \ge (x-4)^2 + y^2 = x \ge 3$ ∴ R(Z) ≥ 3			
85.(d)	$f'(x) = \frac{x^2}{1+x^2} \ge 0$ Hence f(x) is increasing for all x.	94.(c)	$\frac{a}{1-r} = 20$			
86.(b)	$\lim_{x \to 1} \frac{-1 + \sqrt{f(x)}}{\sqrt{x} - 1} \left(\frac{0}{0} \text{ form} \right)$ Using L – HOSPITAL rule $\lim_{x \to 1} \frac{1}{\frac{2\sqrt{f(x)}}{\frac{1}{2\sqrt{x}}}} * f'^{(x)}$ $= \frac{f^{1}(1)}{\sqrt{f(1)}} = \frac{2}{1} = 2$	95.(b)	$S_{\infty} = \text{Similarly} \frac{a^2}{1 - r^2} = 100$ $\Rightarrow r = \frac{3}{5}$ $r - 3 < \sqrt{9 + 16} < r + 3$			
87.(a)	f (x) will be continuous when $x = -x \implies 2x = 0$ $\implies x = 0$ at $x = 0$ LHL = RHL = f(0) = 0	96.(d)	r-3 < 5 < r+3 = 2 < r < 8 The perpendicular tangents always intersect on			
88.(c)	$f(x) = \log (x + \sqrt{x^2 + 1})$ $f(-x) = \log (-x + \sqrt{(-x)^2 + 1})$ $f(x) + f(-x) = \log 1 = 0$	20.(u)	directrix $Y = -a \Rightarrow y = -3$			
89.(c)	$\tan y = \tan(\frac{\pi}{4} + 2x)$	97.(b)	98.(a) 99.(c) 100.(c)			

...Best of Luck...