PEA Association Pvt. Ltd. Thapathali, Kathmandu, Tel: 4245730, 4257187

2079-8-17 Hints \& Solution

Section - I

1.(d) Using parallel axis theorem,
$\mathrm{I}=\frac{2}{5} \mathrm{MR}^{2}+\mathrm{MR}^{2}=\frac{7}{5} \mathrm{MR}^{2}$
2.(b) We have, for simple pendulum
$\mathrm{T}=2 \pi \sqrt{\frac{l}{\mathrm{~g}}}$
$\mathrm{T}^{2}=4 \pi^{2} \cdot \frac{l}{\mathrm{~g}}$
$\mathrm{T}^{2} \propto l \rightarrow$ parabola
3.(a) $\vec{L}=\vec{r} \times \mathrm{m} \vec{v}$ about origin
$\mathrm{L}=0$
4.(a) $\cos \phi=\frac{\mathrm{R}}{\mathrm{Z}}$
for highly inductive circuit, Z is more, so $\cos \phi$ is less.
5.(c) $\quad \mathrm{P}=\frac{\mathrm{V}^{2}}{\mathrm{R}}$

If cut in two equal parts, then
$R^{\prime}=\frac{R}{2}$
$\mathrm{P}^{\prime}=\frac{\mathrm{v}^{2}}{\frac{\mathrm{R}}{2}}=2 \mathrm{P}$
6.(b) $\mathrm{f}_{\mathrm{b}}=258-256=2 \mathrm{~Hz}$
$\mathrm{T}=\frac{1}{\mathrm{f}_{\mathrm{b}}}=\frac{1}{2}=0.5 \mathrm{sec}$
7.(d) $\vec{F}=\mathrm{q}(\vec{V} \times \vec{B})=\mathrm{q}(\vec{k} \times \vec{\jmath})=-\vec{\imath}($ west $)$
8.(a) $\quad \eta=\left(1-\frac{T_{2}}{T_{1}}\right)$

If T_{1} increases, η increases.
9.(b) $\frac{1}{\mathrm{f}}=\frac{1}{\mathrm{f}+\mathrm{x}}+\frac{1}{\mathrm{f}+\mathrm{y}}$
on solving, $\mathrm{f}^{2}=\mathrm{xy}$
10.(a) $\quad \frac{\mathrm{r}}{2 \mathrm{r}}=\left(\frac{\mathrm{A}_{2}}{\mathrm{~A}_{1}}\right)^{1 / 3}$
$\frac{1}{8}=\frac{\mathrm{A}_{2}}{56}$
$\mathrm{A}_{2}=7$
11.(a) Change in wt. $=$ Change in upthrust
or, $\mathrm{mg}=(\Delta \mathrm{v}) \sigma \mathrm{g}$
or, $\mathrm{m}=(3 \times 2) \times 0.01 \times 1000$
$=60 \mathrm{~kg}$
12.(c) $\mathrm{W}=\mathrm{nRdT}$
$\mathrm{du}=\mathrm{nC}_{\mathrm{v}} \mathrm{dT}=\mathrm{n} \times \frac{3}{2} \mathrm{RdT}=\frac{3 \mathrm{~W}}{2}$
13.(c) $\mathrm{f}_{0}=\frac{\mathrm{v}}{2 l_{0}}$
$\mathrm{f}_{0}{ }^{\prime}=\frac{\mathrm{v}}{4 \times \frac{l_{0}}{2}}=\frac{\mathrm{v}}{2 l_{0}}=\mathrm{f}_{0}$
14.(c) Charge at corner contribute one eighth to cube so
flux $(\phi)=\frac{1}{8} \frac{\mathrm{Q}}{\epsilon_{0}}=\frac{\mathrm{Q}}{8 \epsilon_{0}}$
15.(b)
$\mathrm{P}=\frac{\mathrm{V}^{2}}{\mathrm{R}}$
$R \propto \frac{1}{P}$
In series, $\mathrm{P}^{\prime}=\mathrm{I}^{2} \mathrm{R}$
So, $\mathrm{R}_{25}>\mathrm{R}_{100}$ so, $\mathrm{P}^{\prime}{ }_{25}>\mathrm{P}^{\prime}{ }_{100}$ i.e. brightness of 25 W will be more than 100 W
16.(a)

$\mathrm{M}=\sqrt{\mathrm{M}^{2}+2 \mathrm{M}^{2} \cos 120^{\circ}+\mathrm{M}^{2}}$

$$
=\sqrt{M^{2}+2 M^{2}\left(-\frac{1}{2}\right)+M^{2}}
$$

$$
=\mathrm{M}
$$

17.(c) $\beta=60$

Voltage gain $=\frac{V_{\text {out }}}{V_{\text {in }}}=\frac{I_{c} R_{\text {out }}}{I_{b} R_{\text {in }}}$

$$
\begin{aligned}
& =\beta \times \frac{5000}{500} \\
& =600
\end{aligned}
$$

18.(a)
20.(a)
22.(c)

PEA Association Pvt. Ltd. Thapathali, Kathmandu, Tel: 4245730, 4257187

2079-8-17 Hints \& Solution

PEA Association Pvt. Ltd. Thapathali, Kathmandu, Tel: 4245730, 4257187

2079-8-17 Hints \& Solution

83.(d) $-1+1-1+1 \ldots$ to $(2 n+1)$ terms
$=-1(\because$ no. of terms is odd $)$
84.(c) We have, $\left|\begin{array}{ccc}1 & 1 & 1 \\ a & b & c \\ a^{3} & b^{3} & c^{3}\end{array}\right|$ apply $\mathrm{C}_{2}: \mathrm{C}_{2}-\mathrm{C}_{1}, \mathrm{C}_{3}: \mathrm{C}_{3}-\mathrm{C}_{1}$
$=\left|\begin{array}{ccc}1 & 1 & a \\ a & b-a & c-a \\ a^{3} & b^{3}-a^{3} & c^{3}-a^{3}\end{array}\right|$
$=(\mathrm{b}-\mathrm{a})(\mathrm{c}-\mathrm{a})\left|\begin{array}{ccc}1 & 0 & 0 \\ a & 1 & 1 \\ a^{3} & b^{2}+\mathrm{ab}+a^{2} & c^{2}+\mathrm{ac}+a^{2}\end{array}\right|$
Apply C_{3} : $\mathrm{C}_{3}-\mathrm{C}_{2}$ we get
$=(\mathrm{b}-\mathrm{a})(\mathrm{c}-\mathrm{a})\left|\begin{array}{ccc}1 & 0 & 0 \\ a & 1 & 1 \\ a^{3} & b^{2}+\mathrm{ab}+a^{2} & c^{2}-b^{2}+\mathrm{ac}-\mathrm{ab}\end{array}\right|$
$=(b-a)(c-a)\left(c^{2}-b^{2}+a c-a b\right)$
$=(\mathrm{b}-\mathrm{a})(\mathrm{c}-\mathrm{a})(\mathrm{c}-\mathrm{b})(\mathrm{a}+\mathrm{b}+\mathrm{c})$
85.(b) By using section formula, we get, $\vec{a}=\frac{2 \vec{c}+(\vec{a}+2 \vec{b}) \cdot 3}{2+3}$
$2 \vec{c}+3 \vec{a}=6 \vec{b}=5 \vec{a}$

$$
\vec{c}=\vec{a}-3 \vec{b}
$$

86.(b) We have to formed at most three different digits from the integers $1,2,3,4,5,6$.
Here the single digits can be formed by 6 ways, the double digits is formed by $6 \times 5=30$ ways. The triple digits can be formed by $6 \times 5 \times 4=120$ ways.
Thus required number is $6+30+120=150$ ways.
87.(c) $t_{n}=(2 n-1)^{3}$
and $\mathrm{S}_{\mathrm{n}}=(2 \mathrm{n}-1)^{3}$
$=\sum 8 n^{3}-\sum 12 n^{2}+\sum 6 n-\sum 1$
$=8 \Sigma \mathrm{n}^{3}-12 \sum \mathrm{n}^{2}+6 \sum \mathrm{n}-\Sigma 1$
$=8\left[\frac{n(n+1)}{2}\right]^{2}-12 \frac{n(n+1)(2 n+1)}{6}+6 \frac{n(n+1)}{2}$
$=n^{2}\left(2 n^{2}-1\right)$
88.(a) Use the fact that the equation of the common tangent of the parabolas $y^{2}=4 a x$ and $x^{2}=4 b y$ is $a^{1 / 3} x+b^{1 / 3} y+a^{2 / 3} b^{2 / 3}=0$
89.(c) For the hyperbola $\frac{x^{2}}{\frac{144}{25}}-\frac{y^{2}}{\frac{81}{25}}=1$
$a=12 / 5$ and $b=9 / 5$. The eccentricity e is given by $b^{2}=a^{2}\left(e^{1}-1\right)$
$81 / 25=144 / 25\left(\mathrm{e}^{2}-1\right)$
$\mathrm{e}^{2}=225 / 144$
e=15/12
So, the focus is $(\mathrm{ae}, 0)=(12 / 5 * 15 / 12,0)=(3,0)$

For the ellipse $\mathrm{a}=4$ and $\mathrm{ae}=3$
So, $b^{2}=a^{2}\left(1-e^{2}\right)=16-9=7$
90.(a) $-x^{2}+y^{2}=0$
91.(d)
92.(b) The length of perpendicular from the given point $(2,5,7)$ to the plane $6 x+6 y+3 z=11$ is
$\mathrm{P}=\left|\frac{\mathrm{ax}_{1}+\mathrm{by}_{1}+\mathrm{cz}_{1}+d}{\sqrt{a^{2}+b^{2}+c}}\right|=\left|\frac{6.2+6.5+3.7-11}{\sqrt{6^{2}+6^{2}+3}}\right|=\frac{52}{9}$
93.(c) Taking:
$\frac{r_{1}}{(s-b)(s-c)}=\frac{\Delta}{(s-a)(s-b)(s-c)} \cdot \frac{s}{s}$
$=\frac{\Delta . S}{\Delta^{2}}$
$=\frac{1}{\frac{\Delta}{s}}=\frac{1}{r}$
We have, $\frac{r_{1}}{(s-c)(s-b)}+\frac{r_{2}}{(s-c)(s-a)}+\frac{r_{3}}{(s-b)(s-a)}$
$=\frac{1}{r}+\frac{1}{r}+\frac{1}{r}=\frac{3}{r}$
94.(b)
$\frac{6^{x}-3^{x}-2^{x}+1}{x^{2}}$
$=\frac{2^{x} \cdot 3^{x}-3^{x}-2^{x}+1}{x^{2}}$
$=\frac{(3 \mid x-1)\left(2^{x}-1\right)}{x^{2}}=\frac{(3 \mid x-1)}{x} \cdot \frac{\left(2^{x}-1\right)}{x}$
$=(\log 3)(\log 2)$
95.(b)

Here, $f(x)=(x+1)^{\frac{1}{3}}-(x-1)^{\frac{1}{3}}$
$f^{\prime}(x)=\frac{1}{3}\left[(x+1)^{\frac{-2}{3}}-(x-1)^{\frac{-2}{3}}\right]=\frac{1}{3}$
Since $f^{\prime}(x)$ does not exists at $x=1$
But $\mathrm{f}^{\prime}(x)=0 \Rightarrow(x-1)^{\frac{2}{3}}=(x+1)^{\frac{2}{3}}$
$x=0$
Thus $f^{\prime}(x) 0$ for any other value of $x[0,1]$
The value of $\mathrm{f}(x)$ at $x=2$ is
$f(2)=1+1=2$
Hence the greatest value of $f(x)$ is 1 .
97.(a)
98.(c) 99.(b)
100.(b)

