	PEA Association Pvt. Ltd. Thapathali, Kathmandu, Tel: 4245730, 4257187 2079-8-17 Hints & Solution				
	Section – I	0	r, m = $(3 \times 2) \times 0.01 \times 1000$		
1.(d)	Using parallel axis theorem,	12 (c)	= 60 kg W = nRdT		
	$I = \frac{2}{5}MR^2 + MR^2 = \frac{7}{5}MR^2$	12.(0)	$du = nC_v dT = n \times \frac{3}{2} R dT = \frac{3W}{2}$		
2.(b)	We have, for simple pendulum	13.(c)	$f_0 = \frac{V}{2L}$		
	$T = 2\pi \sqrt{\frac{l}{g}}$		$f_0' = \frac{V}{L} = \frac{V}{2L} = f_0$		
	$T^2 = 4\pi^2 \cdot \frac{l}{g}$	4	$4 \times \frac{\iota_0}{2} \qquad 2\iota_0$		
	$T^2 \propto l \rightarrow \text{parabola}$	14.(c)	Charge at corner contribute one eighth to cube so 1.0		
3.(a)	$L = \vec{r} \times m\vec{v}$ about origin L = 0		$flux(\phi) = \frac{1}{8} \frac{Q}{\epsilon_0} = \frac{Q}{8\epsilon_0}$		
4.(a)	$\cos\phi = \frac{R}{Z}$	15.(b)	$P = \frac{V}{R}$		
	for highly inductive circuit, Z is more, so $\cos\phi$ is less.		$R \propto \frac{1}{p}$		
5.(c)	$P = \frac{V^2}{R}$		In series, $P' = I^2 R$		
	If cut in two equal parts, then		so, $R_{25} > R_{100}$ so, $P_{25} > P_{100}$ i.e. Digittless of 25W will be more than 100W		
	$R' = \frac{R}{2}$	16.(a)	N		
	$P' = \frac{v^2}{\frac{R}{2}} = 2P$		s d		
6.(b)	$f_b = 258 - 256 = 2$ Hz $T = \frac{1}{6} = \frac{1}{2} = 0.5$ sec		N S $M = \sqrt{M^2 + 2M^2 \cos 120^\circ + M^2}$		
7.(d)	$\vec{F} = q(\vec{V} \times \vec{B}) = q(\vec{k} \times \vec{j}) = -\vec{i} \text{ (west)}$		$=\sqrt{M^2 + 2M^2(-\frac{1}{2}) + M^2}$		
			= M		
8.(a)	$\eta = \left(1 - \frac{T_2}{T_1}\right)$	17.(c)	$\beta = 60$		
0.(h)	If T_1 increases, η increases. $\frac{1}{2} = \frac{1}{2} + \frac{1}{2}$		Voltage gain $= \frac{V_{out}}{V_{in}} = \frac{I_c R_{out}}{I_b R_{in}}$		
9.(0)	f = f + x + f + y on solving, $f^2 = xy$		$=\beta\times\frac{5000}{500}$		
10 (a)	$\frac{\mathbf{r}}{\mathbf{r}} = (\underline{\mathbf{A}}_2)^{1/3}$		= 600		
10.(u)	$2\mathbf{r}$ (A ₁)	18.(a)			
	$\frac{1}{8} = \frac{A_2}{56}$	19.(b)			
	$A_2 = 7$	20.(a)			
11.(a)	Change in wt. = Change in upthrust	21.(b)			
	or, mg = $(\Delta v)\sigma g$	22.(c)			

PEA Association Pvt. Ltd. Thapathali, Kathmandu, Tel: 4245730, 4257187 2079-8-17 Hints & Solution				
23.(d)	or, $2a + 2c = 4b$			
24.(a)	a + c = 2b			
25.(d)	41.(b)			
26.(c)	42.(b)			
27.(c)	43.(b)			
28.(c)	44.(b) Vectors (p, q) and (5, 1) are parallel	el if (p, q) =		
29.(a)	(5, 1)			
30.(d)	i.e. $p = 5\lambda$ and $q = 1$			
31.(b)	$\therefore p = 5q$			
32.(a)	45.(b) $2R \sin A \cos B - 2R \sin B \cos A = 0$			
33.(b)	$\Rightarrow \sin(A-B) = 0$			
34.(d)	$\mathbf{A} - \mathbf{B} = 0$			
35.(d)	a-b=0	a.		
36.(a)	46.(b)			
$37.(c) \vec{a} + \vec{b} = \vec{c}$	47.(a)			
$(\vec{a}+\vec{b})^2 = -\vec{c}^2$	48.(c) 49 (c) 50 (a) 51 (b) 52 (a) 53 (b)) 54.(d)		
$\therefore \vec{a}^2 + 2 \ \vec{a} \cdot \vec{b} + \vec{b}^2 = \vec{c}^2$	55.(a) 56.(b) 57.(c) 58.(d) 59.(d)	60.(c)		
i.e $9 + 2*3*5\cos\theta + 25 = 49$	Section – II			
or, $30 \cos \theta = 15$	61.(c) From work-energy theorem			
$\theta = \pi/3$	$\frac{1}{2m}\left[v^2 - \left(\frac{19v}{20}\right)^2\right]$			
38.(a)	$\frac{1}{1} \frac{1}{m(y^2 - 0)} = \frac{F \times S}{F \times nS}$			
39.(b) Let, $a = x^2 + x + 1$, $b = x^2 - 1$, $c = 2x + 1$	2(, , , ,			
For $x = 1$, $a = 3$, $b = 0$, $c = 3$ (Impossible)	$1 - \frac{361}{400} = \frac{1}{n}$			
For $x = 2$, $a = 7$, $b = 3$, $c = 5$	$n = \frac{400}{39}$			
A is the largest angle.	$n \approx 11$			
$\cos A = \frac{b^2 + c^2 - a^2}{2bc}$				
A = 120°	$62.(a) \qquad \text{wt} = \text{upthrust}$			
40.(b) Given, $r_1 = 2r_2 = 3r_3$	$6g = \frac{v}{3} \sigma g$			
$\frac{\Delta}{s-a} = \frac{2\Delta}{s-b} = \frac{3\Delta}{s-c}$	$V = \frac{18}{\sigma}$			
$\Rightarrow \frac{1}{a-c} = \frac{2}{a-b} = \frac{3}{a-c}$	Second case: (6 + m) = V = -			
s - a $s - b$ $s - cs-b = 2s-2a and 3(s-b) = 2(s-c)$	$(\sigma + m)g = v \sigma g$ 18			
$ie_{1} = 2a - b$ and $s = 3b - 2c$	$6 + m = \frac{2\pi}{\sigma} \cdot \sigma$			
or, $2a - b = 3b - 2c$	m = 12 kg			

69.(c) $I = \frac{\Delta V}{R} = \frac{3-1}{100} = 20 \text{ mA}$ 63.(b) Here, 0 = 9 - 2tt = 4.5 sec70.(d) $\frac{\epsilon_0 A}{d} = \frac{\epsilon_0 A}{d - t(1 - \frac{1}{\epsilon_r}) + 1.6}$ Body will come to rest after 4.5s and starts to move west. Distance covered in 0.5 sec = $S_{4.5sec}$ - S_{4sec} $d = d - 2(1 - \frac{1}{c_r}) + 1.6$ $= 9 \times 4.5 - \frac{1}{2} \times 2(4.5)^2 - \{9 \times 4 - \frac{1}{2} \times 2 \times 4^2\}$ $2(1-\frac{1}{\epsilon_r}) = 1.6$ S' = 0.25 m $\epsilon_r = 5$ After 4.5 sec, distance moved in 0.5 sec is 71.(b) $f_{27} = 300 \text{ Hz}$ S'' = $\frac{1}{2}$ at² = $\frac{1}{2} \times 2 \times (0.5)^2 = 0.25$ m $\frac{f_0}{f_{27}} = \sqrt{\frac{T_0}{T_{27}}} = \sqrt{\frac{273}{300}}$ Distance covered in $5^{\text{th}} \sec = S' + S'' = 0.25 + 0.25$ =0.5 m $f_0 = 286 \text{ Hz}$ 64.(b) $\Delta P.E. = \left\{ -\frac{GMm}{R+R} - \left(-\frac{GMm}{R} \right) \right\}$ $f_b = 300 - 286 = 14 \text{ Hz}$ 72.(d) $Q = \frac{k_1 A d\theta}{l} \times t_1 = \frac{k_2 A d\theta}{l} \times t_2$ $=\frac{GMm}{R}(1-\frac{1}{2})=\frac{gR^2.m}{R}\cdot\frac{1}{2}=\frac{mgR}{2}$ $k_1 t_1 = k_2 t_2$ 65.(b) $\frac{\delta_{w}}{\delta_{a}} = \frac{(w_{\mu_{g}}-1)A}{(\mu_{g}-1)A} = \frac{(\frac{\mu_{g}}{\mu_{w}}-1)}{\mu_{g}-1} = \frac{\frac{3}{2}}{\frac{4}{3}} -1$ $\frac{\mathbf{k}_1}{\mathbf{k}_2} = \frac{\mathbf{t}_2}{\mathbf{t}_1} = \frac{40}{20} = 2:1$ 73.(a) $I = \frac{10-6}{10} = 0.4 A$ 66.(c) $T_2 V_2^{\gamma-1} = T_1 V_1^{\gamma-1}$ For 10 V cell, V = E -Ir = 10 - $\frac{2}{5} \times 5 = 8$ V $T_2 = 300 \left(\frac{V}{2V}\right) 5/3-1$ For 6 V cell, V = E + Ir = $6 + \frac{2}{5} \times 3 = 7.2$ V = 188.9K $W = nC_v(T_1 - T_2)$ 74.(a) $l = 2\pi r$ $r = \frac{l}{2\pi}$ $= 2 \times \frac{3}{2} R(300-188.9) = 2769 J$ M = IA = I (πr^2) = I π . $\left(\frac{l}{2\pi}\right)^2 = \frac{Il^2}{4\pi}$ 67.(d) $B = \frac{\mu_0 qf}{2R}$

PEA Association Pvt. Ltd. Thapathali, Kathmandu, Tel: 4245730, 4257187 2079-8-17 Hints & Solution

$$R = \frac{\mu_0 qf}{2B} = \frac{4\pi \times 10^{-7} \times 2 \times 10^{-6} \times 6.25 \times 10^{12}}{2 \times 6.28}$$

$$= 1.25 \text{ m}$$

$$\frac{N}{N_0} = \left(\frac{1}{2}\right)^{t/t_{1/2}}$$

$$\frac{25}{100} = \left(\frac{1}{2}\right)^{32/t_{1/2}}$$

$$T_{1/2} = 16 \text{ min}$$

$$Again, \frac{N'}{N_0} = \left(\frac{1}{2}\right)^{t'/t_{1/2}}$$

$$\frac{1}{2} = \left(\frac{1}{2}\right)^{t'/16}$$

$$t' = 16 \text{ min}$$

$$T_{1/2} = 16 \text{ min}$$

$$T_{1$$

68.(b)

 $\mathbf{C})) = \mathbf{A} \times (\mathbf{B} \cap \mathbf{C})$

PEA Association Pvt. Ltd. Thapathali, Kathmandu, Tel: 4245730, 4257187 2079-8-17 Hints & Solution

- 83.(d) $-1 + 1 1 + 1 \dots$ to (2n + 1) terms = -1 (: no. of terms is odd) 84.(c) We have, $\begin{vmatrix} 1 & 1 & 1 \\ a & b & c \\ a^3 & b^3 & c^3 \end{vmatrix}$ apply C₂: C₂ - C₁, C₃: C₃ - C₁ $= \begin{vmatrix} 1 & 1 & a \\ a & b-a & c-a \\ a^3 & b^3-a^3 & c^3-a^3 \end{vmatrix}$ $= (b-a)(c-a)\begin{vmatrix} 1 & 0 & 0\\ a & 1 & 1\\ a^3 & b^2 + ab + a^2 & c^2 + ac + a^2 \end{vmatrix}$ Apply C_3 : $C_3 - C_2$ we get = (b-a) (c-a) $\begin{vmatrix} 1 & 0 \\ a & 1 \\ a^3 & b^2 + ab + a^2 & c^2 - \end{vmatrix}$ = (b-a) (c-a) (c² - b² +ac -ab) = (b-a) (c-a) (c-b) (a+b+c) 85.(b) By using section formula, we get, $\vec{a} = \frac{2\vec{c} + (\vec{a} + 2\vec{b}).3}{2 \cdot 2}$ $2\vec{c} + 3\vec{a} = 6\vec{b} = 5\vec{a}$ $\vec{c} = \vec{a} - 3\vec{b}$ 86.(b) We have to formed at most three different digits from the integers 1,2,3,4,5,6. Here the single digits can be formed by 6 ways, the double digits is formed by $6 \times 5=30$ ways. The triple digits can be formed by $6 \times 5 \times 4 = 120$ wavs Thus required number is 6+30+120 = 150 ways. 87.(c) $t_n = (2n-1)^3$ and $S_n = (2n-1)^3$ $= \sum 8n^3 - \sum 12n^2 + \sum 6n - \sum 1$ $=8\Sigma n^{3}-12\Sigma n^{2}+6\Sigma n-\Sigma 1$ $=8\left[\frac{n(n+1)}{2}\right]^2 - 12\frac{n(n+1)(2n+1)}{6} + 6\frac{n(n+1)}{2}$ $= n^{2} (2n^{2} - 1)$ 88.(a) Use the fact that the equation of the common
- tangent of the parabolas $y^2 = 4ax$ and $x^2 = 4by$ is $a^{1/3}x + b^{1/3}y + a^{2/3}b^{2/3} = 0$ 89.(c) For the hyperbola $\frac{x^2}{\frac{144}{25}} - \frac{y^2}{\frac{81}{25}} = 1$ a = 12/5 and b = 9/5. The eccentricity e is given by $b^2 = a^2(e^1 - 1)$ $81/25 = 144/25(e^2 - 1)$ $e^2 = 225/144$ e = 15/12So, the focus is (ae, 0) = (12/5*15/12, 0) = (3,0)

For the ellipse a = 4 and ae = 3So, $b^2 = a^2(1-e^2) = 16-9 = 7$ $-x^2 + y^2 = 0$ 90.(a) 91.(d) 92.(b) The length of perpendicular from the given point (2,5,7) to the plane 6x + 6y + 3z = 11 is $P = \left| \frac{ax_1 + by_1 + cz_1 + d}{\sqrt{a^2 + b^2 + c}} \right| = \left| \frac{6.2 + 6.5 + 3.7 - 11}{\sqrt{6^2 + 6^2 + 3}} \right| = \frac{52}{9}$ 93.(c) Taking: $\frac{r_1}{(s-b)(s-c)} = \frac{\Delta}{(s-a)(s-b)(s-c)} \cdot \frac{s}{s}$ $= \Delta s$ We have, $\frac{r_1}{(s-c)(s-b)} + \frac{r_2}{(s-c)(s-a)} + \frac{r_2}{(s-c)(s-a)}$ (s-b)(s-a) $-3^{x}-2^{3}$ 94.(b) x^2 $2^{x} \cdot 3^{x} - 3^{x} - 2^{x}$ $\frac{(3|x-1)(2^x-1)}{x^2} = \frac{(3|x-1)}{x} \cdot \frac{(2^x-1)}{x}$ $= (\log 3)(\log 2)$ $\int_{0}^{\frac{\pi}{2}} \frac{\cos x dx}{2-1+\sin^{2} x} = \int_{0}^{1} \frac{dy}{1+y^{2}} i f y = \sin x$ 95.(b) $[\tan^{-1}v]_0^1 = \pi/4$ 96.(a) Here, $f(x) = (x + 1)^{\frac{1}{3}} - (x - 1)^{\frac{1}{3}}$ $f'(x) = \frac{1}{2} \left[(x+1)^{\frac{-2}{3}} - (x-1)^{\frac{-2}{3}} \right] = \frac{1}{2}$ Since f'(x) does not exists at x = 1But f'(x) = 0 $\Rightarrow (x - 1)^{\frac{2}{3}} = (x + 1)^{\frac{2}{3}}$ x = 0Thus f'(x) = 0 for any other value of x[0, 1]The value of f(x) at x = 2 is f(2) = 1+1=2Hence the greatest value of f(x) is 1. 97.(a) 98.(c) 99.(b) 100.(b)

...Best of Luck...