PEA Association Pvt. Ltd. Thapathali, Kathmandu, Tel: 4245730, 4257187 2079-7-19 Hints \& Solution

Section - 1

1.(d) The distance covered by particle is zero means particle is at rest so displacement is also zero.
2.(b) The resultant of 3 vectors acting on a body in a plane must be zero.
3.(c) $t=\sqrt{\frac{2 h}{g}}$, remain same
4.(d) Modulus of elasticity depends on nature of matter.
5.(b) $\frac{\Delta l}{l}=\alpha \Delta \theta=1 \%$
$\frac{\Delta \mathrm{A}}{\mathrm{A}}=\beta \Delta \theta=2 \alpha \Delta \theta=2 \times 1 \%=2 \%$
6.(c) $d Q=d u+d \omega$
or, $\quad \gamma d u=d u+P d v$ or, $\quad \mathrm{du}=\frac{\mathrm{PV}}{\gamma-1}$
7.(a) $d Q=d u+d w$, Here $d w=0 \& d Q<0$ means ve so du is also negative i.e. internal energy decreased.
8.(a) $v \propto T^{1 / 2}$
or, $\frac{\Delta \mathrm{v}}{\mathrm{v}}=\frac{1}{2} \frac{\Delta \mathrm{~T}}{\mathrm{~T}}$ or, $\Delta \mathrm{T}=\frac{1}{100} \times 2 \times 273=5.5^{\circ} \mathrm{C}$
9.(b) Here $\mathrm{kx}=\frac{2 \pi \mathrm{x}}{3}$
or, $\frac{2 \pi \mathrm{x}}{\lambda}=\frac{2 \pi \mathrm{x}}{3} \quad$ or, $\lambda=3 \mathrm{~cm}$
Distance between nodes $=\frac{\lambda}{2}=1.5 \mathrm{~cm}$
10.(c)
$\mathrm{H}=\frac{1}{2} \mathrm{cv}^{2}=\frac{1}{2} \times 2 \times 10^{-6} \times 100^{2}=0.01 \mathrm{~J}$
11.(d) $\mathrm{I}=\mathrm{venA}=\mathrm{v}^{\prime} \mathrm{e} \mathrm{nA}^{\prime}$
or, $v \times \pi r^{2}=v^{\prime} \pi(2 r)^{2} \quad$ or, $v^{\prime}=\frac{v}{4}$
12.(b) Potential gradient $=\frac{\mathrm{V}_{\mathrm{P}}}{l}=\frac{\mathrm{IR}_{\mathrm{P}}}{l}$
$r=$ resistance per unit length
If emf is tripled then current become three times so the potential gradient also become three times.
13.(d) $\mathrm{L}=2 \pi \mathrm{R} \quad \mathrm{R}=\frac{\mathrm{L}}{2 \pi}$
$\mathrm{M}=\mathrm{IA}=\mathrm{I} \pi \mathrm{R}^{2}=\mathrm{I} \pi\left(\frac{\mathrm{L}}{2 \pi}\right)^{2}=\frac{\mathrm{IL}^{2}}{4 \pi}$
14.(b) $\beta=\frac{D \lambda}{d}$
β increases if ' d ' decreases
$\mathrm{m}=-2=\frac{\mathrm{v}}{4} \quad \mathrm{v}=-24$
Now, $\frac{1}{\mathrm{f}}=\frac{1}{\mathrm{u}}+\frac{1}{\mathrm{v}}$
or, $\frac{1}{10}=\frac{1}{\mathrm{u}}-\frac{1}{2 \mathrm{u}}=\frac{2-1}{2 \mathrm{u}}$
or, $\mathrm{u}=\frac{10}{2}=5 \mathrm{~cm}$
16.(d) $\quad \mathrm{Bqv}=\frac{\mathrm{mv}^{2}}{\mathrm{r}} \quad$ or, $\mathrm{P}=\mathrm{Bqr}$
17.(b) Resistance is high then no current flows so act as capacitor.
18.(b) The energy is given by $(\mathrm{n}+l)$ value and if ($\mathrm{n}+$ l) is same then orbital with lower n value have less energy.
19.(d) In $\mathrm{NH}_{4} \mathrm{Cl}$ there is ionic bond between NH_{4}^{+}and Cl^{-}and covalent and co-ordinate covalent bond in $\mathrm{NH}_{4}{ }^{+}$.
20.(a) All the species are isoelectronic and species with least nuclear charge have largest size. So, the order of size is
$\mathrm{S}^{--}>\mathrm{Cl}^{-}>\mathrm{K}^{+}>\mathrm{Ca}^{++}$
21.(c) In $\mathrm{Fe}(\mathrm{CO})_{5}$ O.N. of iron is zero so it has least O.N.
22.(d) $\mathrm{H}_{3} \mathrm{O}^{+}$is positive ion so it is lewis acid and can donate proton so it is Bronsted acid but being ion it is not Arhhenius acid.
23.(c) HCO_{3}^{-}and OH^{-}-ion cann't exist together because they react as $\mathrm{HCO}_{3}{ }^{-}+\mathrm{OH}^{-} \rightarrow \mathrm{CO}_{3}^{-}$ $-\mathrm{H}_{2} \mathrm{O}$
24.(b) Mg and Mn are only metals that gives H_{2} gas with dilute HNO_{3}
25.(b) Zn^{++}ion lies in group IIIB metal ions and can give precipitate only in alkaline medium.
26.(c) All metal nitrates are soluble in water.
27.(b) The structure of glyoxal is

28.(c) The reaction of sodium alkoxide with alkylhalide to give ether is called Williamson's reaction.
29.(d) $y=\log _{x^{1 / 2}} x=\frac{1}{\frac{1}{2}} \log _{x} x$
$y=2.1$
$\frac{d y}{d x}=0$
30.(a) $1+1+1=3$
$1+1+3=5$
$1+3+5=9$
$3+5+9=17$
31.(d) $\lim _{x \rightarrow 0} \frac{a^{x}-1}{x}+\lim _{x \rightarrow 0} \frac{b^{x}-1}{x}+\lim _{x \rightarrow 0} \frac{c^{x}-1}{x}$ $=\log a+\log b+\log c=\log (a b c)$
32.(b) $\int_{0}^{a} a^{2} d x-\int_{0}^{a} x^{2} d x$
$=\mathrm{a}^{2}(\mathrm{x})_{0}{ }^{\mathrm{a}}=\left(\frac{\mathrm{x}^{3}}{3}\right)_{0}^{\mathrm{a}}$
$=\mathrm{a}^{2}(\mathrm{a}-0)-\left(\frac{\mathrm{a}^{3}}{3}-0\right)=\frac{2 \mathrm{a}^{3}}{3}$

PEA Association Pvt. Ltd. Thapathali, Kathmandu, Tel: 4245730, 4257187 2079-7-19 Hints \& Solution

33.(b) | $2^{\mathrm{x}}=\mathrm{e}^{\mathrm{kx}}$ |
| :--- |
| |
| $\mathrm{e}^{\log 2^{x}}=\mathrm{e}^{\mathrm{kx}}$ |
| |
| $\mathrm{e}^{\mathrm{x} \log 2}=\mathrm{e}^{\mathrm{kx}}$ |
| $\mathrm{k}=\log _{\mathrm{e}} 2$ |

34.(d) $\quad \mathrm{O}(\mathrm{A} \times \mathrm{B})=\mathrm{mn}$
35.(a) $n=18$

For the greatest coeff. $\mathrm{r}=\frac{\mathrm{n}}{2}=\frac{18}{2}=9$
Greatest coefficient $=C(n, r)=C(18,9)$
36.(a) Squaring and adding, we get
$x^{2}+y=a^{2}$ (circle)
37.(a) It is obvious.
38.(d) Length at major axis $=2 \mathrm{a}$

$$
=2 \times 5=10
$$

39.(d) $(\vec{i}+\vec{j}+\vec{k}) \cdot \frac{2 \vec{i}+\vec{j}+\vec{k}}{\sqrt{6}}=\frac{2+1+1}{\sqrt{6}}$
40.(b) $a=2 b\left(\frac{a^{2}+b^{2}-c^{2}}{2 a b}\right)$
$c^{2}=b^{2}$
$\mathrm{c}=\mathrm{b}$
41.(b) $\mathrm{A}=2 \mathrm{ab}$

$$
\begin{aligned}
& =24.3 \\
& =24 \text { sq. units }
\end{aligned}
$$

42.(c) $\cos ^{2} \theta+\sec ^{2} \theta=(\cos \theta-\sec \theta)^{2}+2 \cos \theta \sec \theta$

$$
=(\cos \theta-\sec \theta)^{2}+2 \geq 2
$$

43.(d) Put $\cot ^{-1} x=\theta$
$\cot \theta=\frac{\mathrm{x}}{1}=\frac{\mathrm{b}}{\mathrm{p}}$
$\mathrm{h}=\sqrt{1+\mathrm{x}^{2}}$
Now, $\sin \theta=\frac{1}{\sqrt{1+\mathrm{x}^{2}}}$
44.(d) Obvious
45.(b) $\mathrm{PQ}=\sqrt{(5-7)^{2}+(-3+5)^{2}+(8-9)^{2}}=3$
d.c's of line are $\frac{5-7}{3},-\frac{3+5}{3}, \frac{8-9}{3}$
i.e. $-\frac{2}{3}, \frac{2}{3},-\frac{1}{3}$
46.(c) The equation of the plane is
$\frac{x}{a}+\frac{y}{b}+\frac{z}{c}=1$
$\frac{x}{2}+\frac{y}{-3}+\frac{z}{4}=1$
$6 x-4 y+3 z=12$
47.(c) $\mathrm{r}+\mathrm{r}+2=2 \mathrm{n}$
$\mathrm{r}=(\mathrm{n}-1)$
48.(c) It is obvious.
49.(a) $\quad 50 .(\mathrm{c}) \quad 51 .(\mathrm{d}) \quad 52 .(\mathrm{c}) \quad 53 .(\mathrm{d}) \quad 54 .(\mathrm{c})$
55.(d) $56 .(\mathrm{a}) \quad 57 .(\mathrm{c}) \quad 58 .(\mathrm{b}) \quad 59 .(\mathrm{a}) \quad 60 .(\mathrm{c})$

Section - II

61.(c) $\mathrm{v}=\mathrm{at}=1.25 \times 8=10 \mathrm{~m} / \mathrm{s}$
$\mathrm{h}=\frac{1}{2} \mathrm{at}^{2}=\frac{1}{2} \times 1.25 \times 8^{2}=40 \mathrm{~m}$
When released
$\mathrm{h}=-\mathrm{ut}+\frac{1}{2} \mathrm{gt}^{2}$
or, $40=-10 t+\frac{1}{2} \times \cot ^{2}$
or, $5 \mathrm{t}^{2}-10 \mathrm{t}-40=0$
or, $t^{2}-2 t-8=0$
or, $t^{2}-4 t+2 t-8=0$
or, $t(t-4)+2(t-4)=0$
or, $\quad(\mathrm{t}-4)(\mathrm{t}+2)=0$
$\therefore \quad \mathrm{t}=4 \mathrm{~s}$
62.(a)

Wt. of hanging part
$=$ frictional force
or, $\quad \mathrm{x} . \mathrm{mg}=\mu(l-\mathrm{x}) \mathrm{mg}$
or, $\frac{l-\mathrm{x}}{\mathrm{x}}=\frac{1}{\mu}$
or, $\frac{l}{x}=\frac{1+\mu}{\mu}$
or, $\frac{\mathrm{x}}{l}=\frac{\mu}{\mu+1}$
$\%=\frac{x}{l} \times 100 \%=\frac{\mu}{\mu+1} \times 100 \%$

$$
=\frac{0.25}{0.25} \times 100 \%=20 \%
$$

63.(d) $f=m a$
or, $a=\frac{\sqrt{4^{2}+3^{2}}}{10}=0.5 \mathrm{~m} / \mathrm{s}^{2}$
$\mathrm{v}=\mathrm{at}=0.5 \times 10=5 \mathrm{~m} / \mathrm{s}$
$\therefore \quad \mathrm{KE}=\frac{1}{2} \mathrm{mv}^{2}=\frac{1}{2} \times 10 \times 5^{2}=125 \mathrm{~J}$
64.(a)
$v=\sqrt{\frac{\mathrm{GM}}{\mathrm{r}}}=\sqrt{\frac{\mathrm{GM}}{\mathrm{R}+\mathrm{R}}}=\sqrt{\frac{\mathrm{GM}}{2 \mathrm{R}}}$
$\therefore \quad \mathrm{KE}=\frac{1}{2} \mathrm{mv}^{2}=\frac{1}{2} \mathrm{~m} \frac{\mathrm{gR}^{2}}{2 \mathrm{R}}=\frac{1}{4} \mathrm{mgR}$
65.(c) $\mathrm{d} \omega=\operatorname{Pdv}$

$$
\begin{aligned}
& =10^{5}(1671-1) \times 10^{-6} \\
& =167 \mathrm{~J}=40 \mathrm{cals}
\end{aligned}
$$

$\therefore \quad \mathrm{du}=\mathrm{dQ}-\mathrm{d} \omega$

$$
=540-40=500 \mathrm{cals}
$$

66.(a)

$$
\begin{aligned}
\mathrm{Q}=\int_{0}^{10} \mathrm{dQ} & =\int_{0}^{10} \mathrm{msd} \theta \\
& =\int_{0}^{10} \times 0.6 \theta^{2} \mathrm{~d} \theta \\
& =6\left(\frac{\theta^{3}}{3}\right)^{10}=2\left(10^{3}-0^{3}\right) \\
& =2000 \mathrm{cal}
\end{aligned}
$$

PEA Association Pvt. Ltd. Thapathali, Kathmandu, Tel: 4245730, 4257187

 2079-7-19 Hints \& Solution67.(a) $y=r \sin \omega t$
or, $\frac{\mathrm{r}}{2}=\mathrm{rsin} \omega \mathrm{t}$
or, $\sin 30=\sin \omega t$
or, $30 \times \frac{\pi}{180}=\frac{2 \pi}{\mathrm{~T}} . \mathrm{t}$
or, $\mathrm{t}=\frac{\mathrm{T}}{12}=\frac{12}{12}=1 \mathrm{~s}$
68.(b) $\mathrm{C}=\mathrm{C}^{\prime}$
or, $\frac{\varepsilon_{0} \mathrm{~A}}{\mathrm{~d}}=\frac{\varepsilon_{0} \mathrm{~A}}{\mathrm{~d}-\mathrm{t}\left(1-\frac{1}{\varepsilon_{r}}\right)+3.5 \times 10^{-5}}$
or, $\mathrm{d}=\mathrm{d}-4 \times 10^{-5}\left(1-\frac{1}{\varepsilon_{\mathrm{r}}}\right)+3.5 \times 10^{-5}$
or, $4 \times 10^{-5}\left(1-\frac{1}{\varepsilon_{\mathrm{r}}}\right)=3.5 \times 10^{-5}$
or, $4-\frac{4}{\varepsilon_{\mathrm{r}}}=3.5$
or, $\frac{4}{\varepsilon_{\mathrm{r}}}=0.5$
or, $\varepsilon_{\mathrm{r}}=\frac{4}{0.5}=8$
69.(b) $I=\frac{2 E}{3+2 r}=\frac{E}{3+\frac{r}{2}}$
or, $\frac{2}{3+2 \mathrm{r}}=\frac{1}{3+\frac{\mathrm{r}}{2}}$
or, $6+r=3+2 r$
or, $r=3 \Omega$
70.(b) $\quad \begin{aligned} & \text { or, } \mathrm{r}=3 \Omega \\ & \frac{\mathrm{~V}^{2}}{\mathrm{R}}=\mathrm{mL}_{\mathrm{f}}\end{aligned}$
or, $\mathrm{m}=\frac{210^{2}}{50 \times 80 \times 4200}$

$$
=2.6 \times 10^{-3} \mathrm{~kg}=2.6 \mathrm{~g}
$$

71.(a) $B_{a}=\frac{1}{8} \quad B_{c}$
or, $\frac{\mu_{0} \mathrm{NIR}^{2}}{2\left(\mathrm{R}^{2}+\mathrm{x}^{2}\right)^{3 / 2}}=\frac{1}{8} \times \frac{\mu_{0} \mathrm{NI}}{2 \mathrm{R}}$
or, $8 \mathrm{R}^{3}=\left(\mathrm{R}^{2}+\mathrm{x}^{2}\right)^{3 / 2}$
or, $2 R=\left(R^{2}+x^{2}\right)^{1 / 2}$
or, $4 R^{2}=R^{2}+x^{2}$
or, $x^{2}=3 R^{2}$
or, $x=\sqrt{3} R$
72.(b) $x=1.5 \beta=1.5 \frac{\mathrm{D} \lambda}{\mathrm{d}}$

$$
\begin{aligned}
& =\frac{1.5 \times 1 \times 6.5 \times 10^{-7}}{10^{-3}} \\
& =9.75 \times 10^{-4} \mathrm{~m}=0.975 \mathrm{~mm}
\end{aligned}
$$

73.(c) $\mathrm{E}=\frac{\mathrm{hc}}{\lambda}=\frac{6.62 \times 10^{-34} \times 3 \times 10^{8}}{975 \times 10^{-10}}=12.73 \mathrm{eV}$

Here $\mathrm{E}_{\mathrm{n}}=\mathrm{E}_{1}+\mathrm{E}$

$$
\begin{aligned}
& =-13.6+12.73=-0.87 \mathrm{eV} \\
& =\mathrm{L}_{1}
\end{aligned}
$$

Now, $\mathrm{E}_{\mathrm{n}}=\frac{13.6}{\mathrm{n}^{2}}$
or, $\mathrm{n}=\sqrt{\frac{13.6}{0.87}}=4$
74.(d) 206 g of Pb^{206} is formed from 238 g

3 xg of Pb^{206} is formed from $=\frac{238}{206} \times 3 \mathrm{x}$

$$
=3.47 \mathrm{x}
$$

Total mass $\left(\mathrm{m}_{0}\right)=4 \mathrm{x}+3.47 \mathrm{x}$

$$
=7.47 \mathrm{x}
$$

Now $\frac{m}{m_{0}}=\left(\frac{1}{2}\right)^{\frac{t}{T_{1 / 2}}}$
or, $\frac{4}{7.47}=\left(\frac{1}{2}\right)^{\frac{\mathrm{t}}{\mathrm{T}_{1 / 2}}}$
or, $\mathrm{t}=\frac{\ln \left(\frac{4}{747}\right)}{\ln \left(\frac{1}{2}\right)} \times 4.5 \times 10^{9}$

$$
=4 \times 10^{9} \text { years }
$$

75.(c) 16 g of $\mathrm{CH}_{4}=4 \mathrm{~g}$ of $\mathrm{H}_{2}=36 \mathrm{~g}$ of $\mathrm{H}_{2} \mathrm{O}$

32 g of $\mathrm{CH}_{4}=\frac{36}{16} \times 32=72 \mathrm{~g}$ of $\mathrm{H}_{2} \mathrm{O}$
76.(c) 11200 cc of H_{2} gas is given by 96500 c charge

1 cc of H_{2} gas is given by $\frac{96500}{11200}$ c charge
$\begin{aligned} & =8.6 \mathrm{c} \text { charge } \\ \text { Current }(\mathrm{i}) & =\frac{\mathrm{q}}{\mathrm{t}}=\frac{8.6}{1}=8.6 \mathrm{~A}\end{aligned}$
77.(b)
$\begin{array}{ll}\mathrm{pH}=2 & \mathrm{pH}=11 \\ \mathrm{Na}=10^{-2} & \mathrm{Nb}=10^{-3}\end{array}$
$\mathrm{N}_{\text {mix }}=\frac{10^{-2}-10^{-3}}{2}=4.5 \times 10^{-3}$
(w.r.t. acid)
$\mathrm{pH}=-\log 4.5 \times 10^{-3}=2.34$
78.(c) $\frac{\text { Volume of } \mathrm{CO}_{2} \text { at } \mathrm{STP}}{\text { Eq. volume of } \mathrm{CO}_{2} \text { at } \mathrm{STP}}=\frac{\mathrm{V} \times \mathrm{N}}{1000}$
$\frac{224}{11200}=\frac{100 \times \mathrm{N}}{1000}$
$\therefore \mathrm{N}=\frac{1}{5}$
79.(d) Eq. wt. of acid $=\frac{\mathrm{wt} \text {. of } \mathrm{Al} \text { salt } \times 9}{\mathrm{wt} . \text { of } \mathrm{Al}}-8$

$$
=\frac{21.3 \times 9}{2.7}-8=63
$$

80.(c) The gas formed is Cl_{2} and gives a mixture of NaCl and NaClO_{3} with hot and conc. NaOH $4 \mathrm{HCl}+\mathrm{MnO}_{2} \rightarrow \mathrm{Cl}_{2}+\mathrm{MnCl}_{2}+2 \mathrm{H}_{2} \mathrm{O}$ $3 \mathrm{Cl}_{2}+6 \mathrm{NaOH} \rightarrow 5 \mathrm{NaCl}+\mathrm{NaClO}_{3}+3 \mathrm{H}_{2} \mathrm{O}$
81.(b) The gas is acetylene which on catalytic hydration gives vinyl alcohol which rearranges forming acetaldehyde.

PEA Association Pvt. Ltd. Thapathali, Kathmandu, Tel: 4245730, 4257187

 2079-7-19 Hints \& Solution$\mathrm{CaC}_{2}+\mathrm{H}_{2} \mathrm{O} \longrightarrow \mathrm{C}_{2} \mathrm{H}_{2}+\mathrm{Ca}(\mathrm{OH})_{2}$
$\mathrm{HC} \equiv \mathrm{CH} \xrightarrow[\mathrm{HgSO}_{4}]{\stackrel{\text { dil. } \mathrm{H}_{2} \mathrm{SO}_{4}}{\longrightarrow}} \mathrm{CH}_{2} \xlongequal{\stackrel{\mathrm{OH}}{\mathrm{O}} \mathrm{H}} \longrightarrow \underset{\substack{\mathrm{O} \\ \text { acetaldehyde }}}{\mathrm{CH}_{3}-\stackrel{\mathrm{O}}{\mathrm{C}}-\mathrm{H}}$
82.(b) $\int_{0}^{\pi / 2} e^{x}(\sin x+\cos x) d x=\left[e^{x} \sin x\right]_{0}^{\pi / 2}$
$=e^{\pi / 2} \cdot \sin \frac{\pi}{2}-e^{0} \sin 0=e^{\pi / 2}$
83.(d) $\quad f^{\prime}(x)=|\sin x|$
$f\left(\frac{3 \pi}{4}\right)=\left(\sin \frac{3 \pi}{4}\right)=\frac{1}{\sqrt{2}}$
84.(a) Put $\cos ^{-1} x=\theta$
$\cos \theta=\frac{x}{1}=\frac{b}{h}$
$\mathrm{P}=\sqrt{1-\mathrm{x}^{2}}$ $\sin \cot ^{-1} \tan \theta$
$=\operatorname{sincot}^{-1} \frac{\sqrt{1-x^{2}}}{x}$
Put $\cot ^{-1} \frac{\sqrt{1-x^{2}}}{x}=\beta$ and find $\sin \beta$
85.(b) $2 \mathrm{~s}=2 \mathrm{r}_{1}$
$\mathrm{s}=\operatorname{stan} \frac{\mathrm{A}}{2}$
$\tan 45=\tan \frac{\mathrm{A}}{2}$
$\mathrm{A}=90^{\circ}($ Rt. angled $\Delta)$
86.(a) $\frac{\alpha}{\beta}+\frac{\beta}{\alpha}+2$
$=\frac{\mathrm{w}}{\mathrm{w}^{2}}+\frac{\mathrm{w}^{2}}{\mathrm{w}}+2$
$=\frac{1}{w}+w+2=\left(w^{2}+w\right)+2=-1+2=1$
87.(b) $3 \alpha+4 \alpha=-\frac{q}{p}$
$\alpha=-\frac{q}{7 p}$
and $(3 \alpha .4 \alpha)=\frac{\mathrm{r}}{\mathrm{p}}$
$12\left(-\frac{q}{7 p}\right)^{2}=\frac{r}{p}$
$12 q^{2}=49 \mathrm{pr}$
88.(a) $114+\frac{2}{8}+\frac{3}{16}+\frac{4}{32}+$ \qquad ∞
Let $\mathrm{p}=2$
Taking: $\mathrm{s}_{\infty}=\frac{1}{4}+\frac{2}{8}+\frac{3}{6}+\ldots \ldots \infty$
Using: $\mathrm{s}_{\infty}=\frac{\mathrm{a}}{1-\mathrm{r}}+\frac{\mathrm{d} . \mathrm{r}}{(1-\mathrm{r})^{2}}$
We get, $\mathrm{s}_{\infty}=1$
So, $p=2^{\prime}=2$
89.(a)

From the graph
No solution
i.e. $(P \cap Q)=\phi$
90.(c) Coplanar if: $\left|\begin{array}{lll}\mathrm{a} & 1 & 1 \\ 1 & \mathrm{~b} & 1 \\ 1 & 1 & \mathrm{c}\end{array}\right|=0$

On expanding: $\mathrm{abc}+2=\mathrm{a}+\mathrm{b}+\mathrm{c}$
91.(d) $\mathrm{t}_{\mathrm{n}}=\frac{2+4+6+\ldots \ldots+\mathrm{n} \text { terms }}{\mathrm{n}!}$

$$
=\frac{\mathrm{n}(\mathrm{n}+1)}{\mathrm{n}(\mathrm{n}-1)!}=\frac{(\mathrm{n}-1)+2}{(\mathrm{n}-1)!}
$$

$$
=\frac{1}{(n-1)!}+\frac{2}{(n-1)!}
$$

Putting $\mathrm{n}=1,2,3 \ldots \ldots$ and adding
Sum $=e+2 e=3 e$
92.(c) An solving: $(2 x+\lambda)^{2}=2 x$
$4 x^{2}+2 x(2 \lambda-1)+\lambda^{2}=$
Does not intersect if
$b^{2}-4 \mathrm{ac}<0$
$[2(2 \lambda-1)]^{2}-4.4 \lambda^{2}<0$
$\lambda>\frac{1}{4}$
93.(a) $10-\alpha>0$ and $\alpha-4>0$
$\Rightarrow \quad \alpha<4$
94.(d) y-intercept $=2 \sqrt{\mathrm{f}^{2}-\mathrm{c}}$

$$
=2 \sqrt{\frac{49}{4}-12}=1 \text { units }
$$

95.(b) $\frac{x+y}{y}=\frac{15}{6}=\frac{5}{2}$
$\frac{2}{3} x=y$
$\frac{d y}{d x}=\frac{2}{3}$
$\frac{\mathrm{dy}}{\mathrm{dt}}=\frac{\mathrm{dy}}{\mathrm{dt}} \cdot \frac{\mathrm{dx}}{\mathrm{dt}}=\frac{2}{3} \cdot 9=6 \mathrm{ft} / \mathrm{sec}$
96.(c) $\quad \begin{aligned} y^{2} & =x \\ x^{2} & =y\end{aligned}$
$A=\int_{0}^{1}\left(\sqrt{x}-x^{2}\right) d x=\frac{1}{3}$
97.(a) 98.(b) 99.(b) 100.(b)

