PEA Association Pvt. Ltd. Thapathali, Kathmandu, Tel: 4245730, 4257187 2079-7-19 Hints & Solution						
	Section - I	16.(d)	$Bqv = \frac{mv^2}{r}$ or, $P = Bqr$			
1.(d)	The distance covered by particle is zero means particle is at rest so displacement is also zero.	17.(b)	Resistance is high then no current flows so act			
2.(b)	The resultant of 3 vectors acting on a body in a plane must be zero.	18.(b)	as capacitor. The energy is given by $(n + l)$ value and if $(n + l)$			
3.(c)	$t = \sqrt{\frac{2h}{a}}$, remain same	(-)	<i>l</i>) is same then orbital with lower n value have			
4.(d)	Modulus of elasticity depends on nature of matter.	19.(d)	In NH_4Cl there is ionic bond between NH_4^+ and			
5.(b)	$\frac{\Delta l}{l} = \alpha \Delta \theta = 1\%$		Cl^{-} and covalent and co-ordinate covalent bond in NH_4^+ .			
	$\frac{\Delta A}{A} = \beta \Delta \theta = 2\alpha \Delta \theta = 2 \times 1\% = 2\%$	20.(a)	All the species are isoelectronic and species with least nuclear charge have largest size. So			
6.(c)	$dQ = du + d\omega$		the order of size is the			
	or, $\gamma du = du + P dv$ or, $du = \frac{1}{\gamma - 1}$	21.(c)	S > Cl > K' > Ca'' In Fe(CO) ₅ O.N. of iron is zero so it has least			
7.(a)	dQ = du + dw, Here $dw = 0$ & $dQ < 0$ means –	()	O.N.			
8.(a)	decreased. $v \propto T^{1/2}$	22.(d)	H_3O^+ is positive ion so it is lewis acid and can donate proton so it is Bronsted acid but being			
	or, $\frac{\Delta v}{v} = \frac{1}{2} \frac{\Delta T}{T}$ or, $\Delta T = \frac{1}{100} \times 2 \times 273 = 5.5^{\circ}C$	23.(c)	HCO_3^- and OH^- -ion cann't exist together			
9.(b)	Here $kx = \frac{2\pi x}{2}$		because they react as $HCO_3 + OH \rightarrow CO_3$ -+ H_2O			
	or $\frac{2\pi x}{2\pi x} = \frac{2\pi x}{2\pi x}$ or $\lambda = 3$ cm	24.(b)	Mg and Mn are only metals that gives H_2 gas with dilute HNO ₃			
	λ	25.(b)	Zn ⁺⁺ ion lies in group IIIB metal ions and can give precipitate only in alkaline medium			
	Distance between nodes $=\frac{1}{2}=1.5$ cm	26.(c)	All metal nitrates are soluble in water.			
10.(c)	$H = \frac{1}{2} cv^2 = \frac{1}{2} \times 2 \times 10^{-6} \times 100^2 = 0.01 J$	27.(b)	The structure of glyoxal is			
11.(d)	I = venA = v'e nA'		\parallel			
	or, $v \times \pi r^2 = v' \pi (2r)^2$ or, $v' = \frac{v}{4}$	28.(c)	The reaction of sodium alkoxide with			
12.(b)	Potential gradient = $\frac{V_P}{l} = \frac{IR_P}{l}$		alkylhalide to give ether is called Williamson's reaction.			
	r = resistance per unit length	29.(d)	$y = \log_{x^{1/2}} x = \frac{1}{1} \log_x x$			
	so the potential gradient also become three		$\frac{1}{2}$			
	times.		y = 2.1 dy			
13.(d)	$L = 2\pi R$ $R = \frac{2\pi}{2\pi}$		$\frac{dy}{dx} = 0$			
	$M = IA = I\pi R^2 = I\pi \left(\frac{L}{2\pi}\right)^2 = \frac{IL^2}{4\pi}$	30.(a)	1 + 1 + 1 = 3 1 + 1 + 3 = 5			
14.(b)	$\beta = \frac{D\lambda}{d}$		1+3+5=9 3+5+9=17			
	β increases if 'd' decreases	31.(d)	$\lim_{x \to 0} \frac{a^{n}-1}{x} + \lim_{x \to 0} \frac{b^{n}-1}{x} + \lim_{x \to 0} \frac{c^{n}-1}{x}$			
15.(b)	$m = -2 = \frac{v}{4} \qquad v = -24$		$= \log a + \log b + \log c = \log(abc)$			
	Now, $\frac{1}{f} = \frac{1}{u} + \frac{1}{v}$	32.(b)	$\int_{0}^{1} a^{2} dx - \int_{0}^{1} x^{2} dx$			
	or, $\frac{1}{10} = \frac{1}{u} - \frac{1}{2u} = \frac{2-1}{2u}$		$=a^{2}(x)_{0}^{a}=\left(\frac{x}{3}\right)_{0}$			
	or, $u = \frac{10}{2} = 5 \text{ cm}$		$=a^{2}(a-0)-\left(\frac{a}{3}-0\right)=\frac{2a}{3}$			

2079-7-19 Hints & Solution					
33.(b)	$2^{x} = e^{kx}$		Section – II		
	$e^{\log 2^{x}} = e^{kx}$ $e^{x\log 2} = e^{kx}$	61.(c)	$v = at = 1.25 \times 8 = 10 \text{ m/s}$		
	$k = \log_e 2$		$h = \frac{1}{2} at^2 = \frac{1}{2} \times 1.25 \times 8^2 = 40 m$		
34.(d) 35.(a)	$O(A \times B) = mn$ n = 18		When released		
	For the greatest coeff. $r = \frac{n}{2} = \frac{18}{2} = 9$		$h = -ut + \frac{1}{2}gt^2$		
	Greatest coefficient = $C(n, r) = C(18, 9)$		or, $40 = -10t + \frac{1}{2} \times \cot^2$		
36.(a)	Squaring and adding, we get $x^2 + y = x^2$ (girals)		or, $5t^2 - 10t - 40 = 0$ or, $t^2 - 2t - 8 = 0$		
37.(a)	It is obvious.		or, $t^2 - 4t + 2t - 8 = 0$		
38.(d)	Length at major axis = $2a$		or, $t(t-4) + 2(t-4) = 0$ or, $(t-4)(t+2) = 0$		
	$= 2 \times 5 = 10$	(a ()	\therefore t = 4s		
39.(d)	$(\vec{i} + \vec{j} + \vec{k}) \cdot \frac{2\vec{i} + \vec{j} + \vec{k}}{\sqrt{6}} = \frac{2+1+1}{\sqrt{6}}$	62.(a)	Wt. of hanging part		
40.(b)	$a = 2b \left(\frac{a^2 + b^2 - c^2}{2ab} \right)$		or, $x.mg = \mu (l - x) mg$		
	$c^2 = b^2$		or, $\frac{l-x}{x} = \frac{1}{\mu}$		
	c = b		or, $\frac{l}{r} = \frac{1+\mu}{\mu}$		
41.(b)	A = 2ab		x μ x μ		
	= 24.5 = 24 sq. units		or, $\frac{1}{l} = \frac{1}{\mu + 1}$		
42.(c)	$\cos^{2}\theta + \sec^{2}\theta = (\cos\theta - \sec\theta)^{2} + 2\cos\theta\sec\theta$ $= (\cos\theta - \sec\theta)^{2} + 2 \ge 2$		$\% = \frac{x}{l} \times 100\% = \frac{\mu}{\mu + 1} \times 100\%$		
43.(d)	Put $\cot^{-1}x = \theta$		$=\frac{0.25}{0.25}\times100\%=20\%$		
	$\cot\theta = \frac{x}{1} = \frac{b}{p}$	63.(d)	f = ma		
	$h = \sqrt{1 + x^2}$		or, $a = \frac{\sqrt{4^2 + 3^2}}{10} = 0.5 \text{ m/s}^2$		
	Now, $\sin\theta = \frac{1}{\sqrt{1+x^2}}$		$v = at = 0.5 \times 10 = 5 m/s$		
44.(d)	Obvious		$\therefore \text{KE} = \frac{1}{2} \text{mv}^2 = \frac{1}{2} \times 10 \times 5^2 = 125 \text{ J}$		
45.(b)	$PQ = \sqrt{(5-7)^2 + (-3+5)^2 + (8-9)^2} = 3$ 5-7 3+5 8-9	64.(a)	$v = \sqrt{\frac{GM}{r}} = \sqrt{\frac{GM}{R+R}} = \sqrt{\frac{GM}{2R}}$		
	d.c's of line are $\frac{1}{3}$, $-\frac{1}{3}$, $\frac{1}{3}$:. $KE = \frac{1}{2}mv^2 = \frac{1}{2}m\frac{gR^2}{2R} = \frac{1}{4}mgR$		
	i.e. $-\frac{2}{3}, \frac{2}{3}, -\frac{1}{3}$	65.(c)	$d\omega = Pdv$ = 10 ⁵ (1671 - 1) × 10 ⁻⁶		
46.(c)	The equation of the plane is		= 167 J = 40 cals		
	$\frac{x}{a} + \frac{y}{b} + \frac{z}{c} = 1$		$\therefore du = dQ - d\omega$ = 540 - 40 = 500 cals		
	$\frac{x}{2} + \frac{y}{-3} + \frac{z}{4} = 1$	66.(a)	$Q = \int_{0}^{10} dQ = \int_{0}^{10} msd\theta$		
47.(c)	6x - 4y + 3z = 12 r + r + 2 = 2n		$=\int_{0}^{10} \times 0.6\theta^2 d\theta$		
(•)	r = (n - 1)		$= 6 \left(\frac{\theta^3}{\theta^3} \right)^{10} = 2(10^3 - 0^3)$		
48.(c)	It is obvious.		= 2000 cal		
49.(a) 55 (d)	50.(c) $51.(d)$ $52.(c)$ $53.(d)$ $54.(c)56.(a)$ $57.(c)$ $58.(b)$ $59.(a)$ $60.(c)$		· · · · · · · · · · · · · · · · · · ·		
22.(u)	$(\cdot, \cdot, \cdot$	1			

PEA Association Pvt. Ltd. Thapathali, Kathmandu, Tel: 4245730, 4257187

I	PEA Association Pvt. Ltd. Thapathali, Kathmandu, Tel: 4245730, 4257187 2079-7-19 Hints & Solution					
67.(a)	y = rsin ω t or, $\frac{r}{2}$ = rsin ω t or, sin30 = sin ω t or, 30 × $\frac{\pi}{180} = \frac{2\pi}{T}$.t	74.(d)	Now, $E_n = -\frac{13.6}{n^2}$ or, $n = \sqrt{\frac{13.6}{0.87}} = 4$ 206g of Pb ²⁰⁶ is formed from 238g			
68.(b)	or, $t = \frac{T}{12} = \frac{12}{12} = 1s$ C = C' or, $\frac{\varepsilon_0 A}{d} = \frac{\varepsilon_0 A}{d - t \left(1 - \frac{1}{\varepsilon_r}\right) + 3.5 \times 10^{-5}}$		$3.47x$ $= 3.47x$ $= 3.47x$ $= 7.47x$ $m = 4x$ $m = 4x$ $\frac{t}{10}$			
	or, $d = d - 4 \times 10^{-5} \left(1 - \frac{1}{\epsilon_r}\right) + 3.5 \times 10^{-5}$ or, $4 \times 10^{-5} \left(1 - \frac{1}{\epsilon_r}\right) = 3.5 \times 10^{-5}$ or, $4 - \frac{4}{\epsilon_r} = 3.5$		Now $\frac{m}{m_0} = \left(\frac{1}{2}\right)^{\frac{1}{T_{1/2}}}$ or, $\frac{4}{7.47} = \left(\frac{1}{2}\right)^{\frac{1}{T_{1/2}}}$ $ln\left(\frac{4}{747}\right)$			
69.(b)	or, $\frac{4}{\varepsilon_r} = 0.5$ or, $\varepsilon_r = \frac{4}{0.5} = 8$ $I = \frac{2E}{3+2r} = \frac{E}{r}$	75.(c)	or, $t = \frac{(747)^{2}}{\ln(\frac{1}{2})} \times 4.5 \times 10^{9}$ = 4 × 10 ⁹ years 16g of CH ₄ = 4g of H ₂ = 36g of H ₂ O 32g of CH ₄ = $\frac{36}{2} \times 32 = 72g$ of H ₂ O			
	$3 + \frac{1}{2}$ or, $\frac{2}{3 + 2r} = \frac{1}{3 + \frac{r}{2}}$ or, $6 + r = 3 + 2r$ or, $r = 3\Omega$	76.(c)	11200cc of H ₂ gas is given by 96500 c charge 1 cc of H ₂ gas is given by $\frac{96500}{11200}$ c charge = 8.6 c charge Current (i) = $\frac{q}{1} = \frac{8.6}{1} = 8.6$ A			
70.(b)	$\frac{V^2}{R} = mL_f$ or, $m = \frac{210^2}{50 \times 80 \times 4200}$ $= 2.6 \times 10^{-3} \text{ kg} = 2.6 \text{ g}$	77.(b)	$pH = 2 pH = 11Na = 10-2 Nb = 10-3Nmix = \frac{10^{-2} - 10^{-3}}{2} = 4.5 \times 10^{-3}(w.r.t. acid)$			
71.(a)	$B_{a} = \frac{1}{8} B_{c}$ or, $\frac{\mu_{0}NIR^{2}}{2(R^{2} + x^{2})^{3/2}} = \frac{1}{8} \times \frac{\mu_{0}NI}{2R}$ or, $8R^{3} = (R^{2} + x^{2})^{3/2}$ or, $2R = (R^{2} + x^{2})^{1/2}$ or, $4R^{2} = R^{2} + x^{2}$	78.(c)	$pH = -\log 4.5 \times 10^{-3} = 2.34$ $\frac{Volume \text{ of } CO_2 \text{ at } STP}{Eq. \text{ volume of } CO_2 \text{ at } STP} = \frac{V \times N}{1000}$ $\frac{224}{11200} = \frac{100 \times N}{1000}$ $\therefore N = \frac{1}{5}$			
72.(b)	or, $x^2 = 3R^2$ or, $x = \sqrt{3} R$ $x = 1.5 \beta = 1.5 \frac{D\lambda}{d}$	79.(d)	Eq. wt. of acid = $\frac{\text{wt. of Al salt} \times 9}{\text{wt. of Al}} - 8$ = $\frac{21.3 \times 9}{2.7} - 8 = 63$			
73 (c)	$= \frac{1.5 \times 1 \times 6.5 \times 10^{-7}}{10^{-3}}$ = 9.75 × 10 ⁻⁴ m = 0.975 mm $F = \frac{hc}{h} = \frac{6.62 \times 10^{-34} \times 3 \times 10^8}{10^{-34} \times 3 \times 10^8} = 12.73 \text{ eV}$	80.(c)	The gas formed is Cl_2 and gives a mixture of NaCl and NaClO ₃ with hot and conc. NaOH 4HCl + MnO ₂ \rightarrow Cl ₂ + MnCl ₂ + 2H ₂ O 3Cl ₂ + 6NaOH \rightarrow 5NaCl + NaClO ₃ + 3H ₂ O			
	$\begin{array}{c} L & \lambda & = & 975 \times 10^{-10} & = 12.73 \text{ eV} \\ \text{Here } E_n = E_1 + E \\ = -13.6 + 12.73 = -0.87 \text{ eV} \end{array}$	81.(b)	The gas is acetylene which on catalytic hydration gives vinyl alcohol which rearranges forming acetaldehyde.			

2079-7-19 Hints & Solution $CaC_{2} + H_{2}O \longrightarrow C_{2}H_{2} - C_{M_{2}}$ $HC = CH \xrightarrow{dil. H_{2}SO_{4}} CH_{2} = CH \xrightarrow{O} CH_{3} - C - H$ acetaldehyde $\pi/2$ 89.(a) $\int_{0}^{\pi/2} e^{x}(\sin x + \cos x) \, dx = [e^{x} \sin x]$ 82.(b) From the graph $= e^{\pi/2} . \sin \frac{\pi}{2} - e^0 \sin 0 = e^{\pi/2}$ No solution i.e. $(P \cap Q) = \phi$ 83.(d) $f'(x) = |\sin x|$ $f\left(\frac{3\pi}{4}\right) = \left(\sin \frac{3\pi}{4}\right) = \frac{1}{\sqrt{2}}$ 90.(c) Coplanar if: $\begin{vmatrix} a & 1 & 1 \\ 1 & b & 1 \\ 1 & 1 & c \end{vmatrix} = 0$ 84.(a) Put $\cos^{-1}x = \theta$ On expanding: abc + 2 = a + b + c $\cos\theta = \frac{x}{1} = \frac{b}{h}$ $P = \sqrt{1 - x^{2}}$ $= \operatorname{sincot}^{-1} \frac{\sqrt{1 - x^{2}}}{x}$ 91.(d) $t_n = \frac{2+4+6+\dots+n \text{ terms}}{n!}$ $= \frac{n(n+1)}{n(n-1)!} = \frac{(n-1)+2}{(n-1)!}$ $= \frac{1}{(n-1)!} + \frac{2}{(n-1)!}$ Put $\cot^{-1} \frac{\sqrt{1-x^2}}{x} = \beta$ and find $\sin\beta$ Putting n = 1, 2, 3 and adding Sum = e + 2e = 3e85.(b) $2s = 2r_1$ An solving: $(2x + \lambda)^2 = 2x$ $s = stan \frac{A}{2}$ 92.(c) $4x^2 + 2x(2\lambda - 1) + \lambda^2 =$ Does not intersect if $\tan 45 = \tan \frac{A}{2}$ $b^2 - 4ac < 0$ A = 90° (Rt. angled Δ) $[2(2\lambda - 1)]^2 - 4.4 \ \lambda^2 < 0$ $\lambda > \frac{1}{4}$ 86.(a) $\frac{\alpha}{\beta} + \frac{\beta}{\alpha} + 2$ $=\frac{W}{W^2} + \frac{W^2}{W} + 2$ 93.(a) $10 - \alpha > 0$ and $\alpha - 4 > 0$ $\Rightarrow \alpha < 4$ 95.(b) $\frac{x+y}{y} = \frac{15}{6} = \frac{5}{2}$ $=\frac{1}{w} + w + 2 = (w^2 + w) + 2 = -1 + 2 = 1$ 87.(b) $3\alpha + 4\alpha = -\frac{q}{p}$ b) $\frac{x r}{y}$ $\frac{2}{3}x = y$ $\frac{dy}{dx} = \frac{2}{3}$ $\frac{dy}{dt} = \frac{dy}{dt} \cdot \frac{dx}{dt} = \frac{2}{3} \cdot 9 = 6 \text{ ft/sec}$ $96.(c) \quad y^2 = x$ $x^2 = y$ $A = \int_{-1}^{1} (\sqrt{x} - x^2) \, dx = \frac{1}{3}$ (b) 99.6 $\alpha = -\frac{q}{7p}$

PEA Association Pvt. Ltd. Thapathali, Kathmandu, Tel: 4245730, 4257187

and $(3\alpha.4\alpha) = \frac{r}{p}$ $12\left(-\frac{q}{7p}\right)^2 = \frac{r}{p}$ $\boxed{12q^2 = 49pr}$ 88.(a) $114 + \frac{2}{8} + \frac{3}{16} + \frac{4}{32} + \dots \infty$ Let p = 2 Taking: $s_{\infty} = \frac{1}{4} + \frac{2}{8} + \frac{3}{6} + \dots \infty$ Using: $s_{\infty} = \frac{a}{1-r} + \frac{d.r}{(1-r)^2}$ We get, $s_{\infty} = 1$

So, p = 2' = 2

100.(b)

...The End...