

12. If $y = 1 + x + \frac{x^2}{2!} + \frac{x^3}{3!} + then \frac{dy}{dx} =a. y b. y - 1 c. y + 1 d. 013. The distance s meter covered by a body in t seconds is given by s = 3t^2 - 8t + 5, then the bod stop aftera. \frac{4}{3} \sec b. \frac{3}{4} \sec c. 1 \sec d. 4 \sec14. \int x \cos x^2 dx =a. -\frac{1}{2} \sin x^2 + c b. \frac{1}{2} \sin x^2 + c c. -\frac{1}{2} \sin^2 x + c d. \frac{1}{2} \sin^2 x + c15. The order of the differential equation whose general solution is given byy = (C_1 + C_2) \sin(x + C_3) - C_4 e^{x + C_5} isa. 2 b. 3 c. 4 d. 516. If the sum of the slopes of the lines given by x^2 - 2cxy - 7x = 0 is four times their product therea\frac{2}{2} b. -1 c. 1 d. 217. The length of intercept, the circle x^9 + y = 10x - 6y + 9 = 0 makes or the x-axis, isa. 2 b. 4 - c c. 6 - d d. 818. If A and B are two fixed points and P is a variable point such that PA + PB = 4, then the loculisa. a circle b. aparabola c. an ellipse d. \sqrt{34}20. The chance that A can solve the problem is \frac{2}{9} g. d. \sqrt{34}20. The chance that A can solve the problem is \frac{2}{9} g. (A - \frac{7}{9})^221. When \vec{A}.\vec{B} = \vec{A} \times \vec{B} them resultant of \vec{A} and \vec{B} isa. A + B b. A - B c. (A^2 + B^2 + 2AB)^{1/2} d. (A^2 + B^2 + \sqrt{2} AE)^22. A ball of mass 0.1 kg is theory against a wall. The ratio of their moment of inertia about a isa. 0.5 NS$ b. $50 NS$ c. $1 N$ d. $5 NS23. A ring and a disc have the same mass and radius. The ratio of their moment of inertia about a isa. 1 \cdot 1 b. 2 \cdot 1 c. 4 \cdot 1 d. 1 \cdot 224. The internal energy of an ideal gas depends ona. Pressure b. Volume c. Temperature d. Size of molecule 25. A gas perform minimum work when it expands a. A + B + V = V_1 + V_2 $		Himalaya Coli	lege of Engineerin	ng	Chyasal, Lalitpur Tel: 0	1-54	40555, 5454227
a. y b. y-1 c. y+1 d. 0 13. The distance s meter covered by a body in t seconds is given by $s = 3t^2 - 8t + 5$, then the bod stop after a. $\frac{4}{3} \sec$ b. $\frac{3}{4} \sec$ c. $1 \sec$ d. $4 \sec$ 14. $\int x \cos^2 dx =$ a. $-\frac{1}{2} \sin^2 x + c$ b. $\frac{1}{2} \sin^2 x + c$ c. $-\frac{1}{2} \sin^2 x + c$ d. $\frac{1}{2} \sin^2 x + c$ 15. The order of the differential equation whose general solution is given by $y = (C_1 + C_2) \sin(x + C_3) - C_4 e^{x+C_5}$ is a. 2 b. 3 c. 4 d. 5 16. If the sum of the slopes of the lines given by $x^2 - 2cxy - 7x^2 = 0$ is four times their product ther a. -2 b. -1 c. 1 d. 2 17. The length of intercept, the circle $x^2 + y^2 + 10x - 6y + 9 = 0$ makes or the x-axis, is a. 2 b. $4 - c$ 6 d. 8 18. If A and B are two fixed points and P is a variable point such that $PA + PB = 4$, then the locus is a. a circle b. suparabola c. an ellipse d. a hyperbola 19. The perpendicular distance of the point (3, 4, 5) from y-axis is a. 3 b. 4 c. 5 d. $\sqrt{344}$ 20. The chance that A can solve the problem is $\frac{2}{3}$ and the chance that B can solve the problem is $\frac{2}{9}$ probability that the problem is solved by both A and B at a. 0 b 1 c. $\frac{2}{9}$ d. $\frac{7}{9}$ 21. When $\vec{A} \cdot \vec{B} = \vec{A} \times \vec{B}$ then resultant of \vec{A} and \vec{B} is a. $A + B$ b. $Ax - B$ c. $(A^2 + B^2 + 2AB)^{1/2}$ d. $(A^2 + B^2 + \sqrt{2} AF$ 22. A ball of mass 0.1 kg is theown gasiest a wall. It strikes the wall normally with velocity of 3 and rebound with velocity of 20 m/s. The impulse exerted by ball on wall is a. $0.5 NS$ b. $50 NS$ c. $1 N$ d. $5 NS$ 23. A ring and a disc have the same mass and radius. The ratio of their moment of inertia about a is a. $1:1$ b. $2:1$ c. $4:1$ d. $1:2$ 47. The internal energy of an ideal gas depends on a. Pressure b. Volume c. Temperature d. Size of molecule 24. A gas perform minimum work when it expands a. Atiabatically b. isothermally c. Isobarically d. Isocherically 4. Ultrasonic, infrasonic and audible waves travel through a medium with speed v_u , v_i a respectively then a. $v_i = $	12.	If $y = 1 + x + \frac{x^2}{2!} + \frac{x^3}{3!} + \frac{x^3}{3!}$	then $\frac{dy}{dx} =$				
13. The distance s meter covered by a body in t seconds is given by $s = 3t^2 - 8t + 5$, then the bod stop after a. $\frac{4}{3} \sec$ b. $\frac{3}{4} \sec$ c. 1 sec d. 4 sec 14. $\int x \cos^2 dx =$ a. $-\frac{1}{2} \sin^2 + c$ b. $\frac{1}{2} \sin^2 + c$ c. $-\frac{1}{2} \sin^2 x + c$ d. $\frac{1}{2} \sin^2 x + c$ 15. The order of the differential equation whose general volution is given by $y = (C_1 + C_2) \sin(x + C_3) - C_4 e^{x + C_5}$ is a. 2 b. 3 c. 4 d. 5 16. If the sum of the slopes of the lines given by $x^2 - 2cxy - 7b^2 = 0$ is four times their product ther a. -2 b. -1 c. 1 d. 2 17. The length of intercept, the circle $x + y^2 + 10x - 6y + 9 = 0$ makes of the x-axis, is a. 2 b. $4d$ c. 6 d. 8 18. If A and B are two fixed points and P is a variable point such that PA + PB = 4, then the locu is a. a circle b. aparabola c. an ellipse d. a hyperbola 19. The perpendicular distance of the point (6,4,5) from y-axis it a. 3 b. 4 c. 5 d. $\sqrt{34}$ 20. The chance that A can solve the problem ts $\frac{2}{9}$ and the chance that B can solve the problem is $\frac{2}{9}$ probability that the problem is solved by both A and B ds a. 0 b. 1 c. $\frac{2}{9}$ d. $\frac{7}{9}$ 21. When $\vec{A} \cdot \vec{B} = \vec{A} \times \vec{B} $ then resultant of \vec{A} and \vec{B} is a. A + B b. $4A - B$ c. $(A^2 + B^2 + 2AB)^{1/2}$ d. $(A^2 + B^2 + \sqrt{2} AF$ 22. A ball of mass 0.1 kg is throwin against a wall. It strikes the wall normally with velocity of 3 and rebound with velocity 0.20 m/s. The impuse exerted by ball on wall is a. 0.5 NS b. 50 NS c. 1 N d. 5 NS 23. A ring and a disc have the same mass and radius. The ratio of their moment of inertia about a is a. 1: 1 b. 2: 1 c. 4: 1 d. 1: 2 24. The internal energy of an ideal gas depends on a. Pressure b. Volume c. Temperature d. Size of molecule 25. A gas perform minimum work when it expands a. Adiabatically b. isothermally c. Isobarically d. Isochorically 26. Ultrasonic, infrasonic and audible waves travel through a medium with speed v_a , v_i a respectively then a. $v_i = v_a = v_u$ b. $v_a > v_a > v_i$ c. $v_a < $		a. y	b. y – 1	c.	y + 1	d.	0
a. $\frac{4}{3} \sec$ b. $\frac{3}{4} \sec$ c. $1 \sec$ d. $4 \sec$ 14. $\int x \cos^2 dx =$ a. $-\frac{1}{2} \sin^2 + c$ b. $\frac{1}{2} \sin^2 + c$ c. $-\frac{1}{2} \sin^2 x + c$ d. $\frac{1}{2} \sin^2 x + c$ 15. The order of the differential equation whose general solution is given by $y = (C_1 + C_2) \sin(x + C_3) - C_4 e^{x + C_5}$ is a. 2 b. 3 c. 4 d. 5 16. If the sum of the slopes of the lines given by $x^2 - 2 \exp - 7x^2 = 0$ is four times their product ther a. -2 b. -1 c. 1 d. 5 17. The length of intercept, the circle $x + y + 10x - 6y + 9 = 0$ makes of the x-axis, is a. 2 b. 4 c. 6 d. 8 18. If A and B are two fixed points and P is a variable point such that PA + PB = 4, then the locu is a a circle b. aparabola c: an ellipse of the approbability that the problem is $\frac{2}{3}$ and the chance that B can solve the problem is $\frac{2}{9}$ form y-axis is a. 3 b. 4 c. 5 d. $\sqrt{34}$ 20. The chance that A can solve the problem is $\frac{2}{3}$ and the chance that B can solve the problem is $\frac{2}{9}$ form $\frac{2}{9}$ d. $\frac{7}{9}$ 21. When $\vec{A} \cdot \vec{B} = \vec{A} \times \vec{B} $ then resultant of \vec{A} and \vec{B} is a. $A + B$ b. $A - B$ c. $(A^2 + B^2 + 2AB)^{1/2}$ d. $(A^2 + B^2 + \sqrt{2}AF)$ 22. A ball of mass 0.1 kg is thrown agaist t a wall. It strikes the wall normally with velocity of 23 and rebound with velocity of 20 mis. The impulse exerted by ball on wall is a. $1 \cdot 1$ b. $2 \cdot 1$ c. $4 \cdot 1$ d. $1 \cdot 2$ 24. The internal energy of an ideal gas depends on a. Pressure b. Volume c. Temperature d. Size of molecule 25. A gas perform minimum work when it expands a. Adiabatically b. isothermally c. Isobarically d. Isochorically a. 4 size of molecule 26. Ultrasonic, infrasonic and audible waves travel through a medium with speed v_u , v_i a respectively then a. $v_i = v_a = v_u$ b. $v_a > v_a > v_i > v_i$ c. $v_u < v_a < v_i = v_i$ d. $v_a \le v_u = v_i$	13.	The distance s meter costop after	overed by a body in t see	con	ds is given by $s = 3t^2$	- 8	3t + 5, then the body will
14. $\int x \cos x^2 dx =$ a. $-\frac{1}{2} \sin x^2 + c$ b. $\frac{1}{2} \sin x^2 + c$ c. $-\frac{1}{2} \sin^2 x + c$ d. $\frac{1}{2} \sin^2 x + c$ 15. The order of the differential equation whose general solution is given by $y = (C_1 + C_2) \sin(x + C_3) - C_4 e^{x^+ + C_5}$ is a. 2 b. 3 c. 4 d. 5 16. If the sum of the slopes of the lines given by $x^2 - 2cxy - 7v = 0$ is four times their product ther a. -2 b. -1 c. 1 d. 2 17. The length of intercept, the circle $x^2 + y^2 + 10x - 6y + 9 = 0$ makes or the x-axis, is a. 2 b. 44 c. 6 d. 8 18. If A and B are two fixed points and P is a variable point such that PA + PB = 4, then the locu is a. a circle b. alparabola c. on ellipse f. a hyperbola 19. The perpendicular distance of the point (3, 4, 5) from y-axis is a. 3 b. 4 c. 5 d. $\sqrt{34}$ 20. The chance that A can solve the problem is $\frac{2}{3}$ and the chance that B can solve the problem is $\frac{2}{9}$ a. 0 b. 1 c. $\frac{2}{9}$ d. $\frac{7}{9}$ 21. When $\vec{A}.\vec{B} = \vec{A} \times \vec{B} $ then resultant of \vec{A} and \vec{B} is a. A + B b. $A - B$ c. $(A^2 + B^2 + 2AB)^{1/2}$ d. $(A^2 + B^2 + \sqrt{2} AB)^{1/2}$ d. $A^2 + B^2 + \sqrt{2} AB$ 22. A ball of mass 0.1 kg is thrown against a wall. It strikes the wall normally with velocity of 3 and rebound with velocity of 20 m/s. The impulse exerted by ball on wall is a. 0.5 NS b. 50 NS c. 1 N d. 5 NS 23. A ring and a disc have the same mass and radius. The ratio of their moment of inertia about a is a. 1:1 b. 2:1 c. 4:1 d. 1:2 24. The internal energy of an ideal gas depends on a. Pressure b. Volume c. Temperature d. Size of molecule 25. A gas perform minimum work when it expands a. Adiabatically b. isothermally c. Isobarically d. Isochorically 26. Ultrasonic, infrasonic and audible waves travel through a medium with speed v _u , v _i a respectively then a. v _i = v _a = v _u b. v _a > v _a > v _i c. v _a < v _a < v _i d. v _a < v _u = v _i		a. $\frac{4}{3}$ sec	b. $\frac{3}{4}$ sec	c.	1 sec	d.	4 sec
a. $-\frac{1}{2}\sin^2 + c$ b. $\frac{1}{2}\sin^2 + c$ c. $-\frac{1}{2}\sin^2 x + c$ d. $\frac{1}{2}\sin^2 x + c$ 15. The order of the differential equation whose general solution is given by $y = (C_1 + C_2)\sin(x + C_3) - C_4 e^{x^+ C_3}$ is a. 2 b. 3 c. 4 d. 5 16. If the sum of the slopes of the lines given by $x^2 - 2cxy - 7v^2 = 0$ is four times their product ther a. -2 b. -1 c. 1 d. 2 17. The length of intercept, the circle $x^2 + y^2 + 10x - 6y + 9 = 0$ makes on the x-axis, is a. 2 b. $4 - c$. 6 d. 8 18. If A and B are two fixed points and P is a variable point such that $PA + PB = 4$, then the locus is a circle b. a parabola c. an ellipse the ahyperbola 19. The perpendicular distance of the point (5, 4, 5) from y-axis is a. 3 b 4 c. 5 d. $\sqrt{34}$ 20. The chance that A can solve the problem is $\frac{2}{3}$ and the chance that B can solve the problem is yperbola 19. The perpendicular distance of the point (5, 4, 5) from y-axis is a. 3 b 4 c. 5 d. $\sqrt{34}$ 20. The chance that A can solve the problem is $\frac{2}{3}$ and the chance that B can solve the problem is yperbola fits a. 0 b 4 d. c. $\frac{2}{9}$ d. $\frac{7}{9}$ 21. When $\vec{A}.\vec{B} = \vec{A} \times B $ theneresultant of \vec{A} and \vec{B} is a. $A + B$ b. $A - B$ c. $(A^2 + B^2 + 2AB)^{1/2}$ d. $(A^2 + B^2 + \sqrt{2} AB)^{1/2}$ 22. A ball of mass 0.1 kg is thrown against a wall. It strikes the wall normally with velocity of 3 and rebound with velocity of 20 m/s. The impulse exerted by ball on wall is a. $0.5 NS$ b. $50 NS$ c. $1 N$ d. $5 NS$ 23. A ring and a disc have the same mass and radius. The ratio of their moment of inertia about a is a. $1: 1$ b. $2: 1$ c. $4: 1$ d. $1: 2$ 24. The internal energy of an ideal gas depends on a. Pressure b. Volume c. Temperature d. Size of molecule 25. A gas perform minimum work when it expands a. Adiabatically b. is othermally c. Isobarically d. Isochorically 26. Ultrasonic, infrasonic and audible waves travel through a medium with speed v_u , v_i a respectively then a. $v_i = v_a = v_u$ b. $v_u > v_a > v_i$ c. $v_u < v_a < v_i$	14.	$\int x \cos x^2 dx =$					
15. The order of the differential equation whose general solution is given by $y = (C_1 + C_2) \sin(x + C_3) - C_4 e^{x+C_5}$ is a. 2 b. 3 c. 4 d. 5 16. If the sum of the slopes of the lines given by $x^2 - 2cxy - 7y^2 = 0$ is four times their product ther a. -2 b. -1 c. 1 d. 2 17. The length of intercept, the circle $x^2 + y^2 + 10x - 6y + 9 = 0$ makes or the x-axis, is a. 2 b. 4 c. 6 d. 8 18. If A and B are two fixed points and P is a variable point such than PA + PB = 4, then the locu is a. a circle b. aparabola c. an ellipse d. a hyperbola 19. The perpendicular distance of the point (3, 4, 5) from y-axis is a. 3 b. 4 c. 5 d. $\sqrt{34}$ 20. The chance that A can solve the problem is $\frac{2}{3}$ and the chance that B can solve the problem is $\frac{2}{9}$ probability that the problem is solved by both A and B is a. 0 br. 1 $2\frac{9}{9}$ d. $\frac{7}{9}$ 21. When $\vec{A}.\vec{B} = \vec{A} \times \vec{B} $ then resultant of \vec{A} and \vec{B} is a. $A + B$ 0 $A - B$ c. $(A^2 + B^2 + 2AB)^{1/2}$ d. $(A^2 + B^2 + \sqrt{2} AB)^{1/2}$ A ball of mass 0.1 kg is thrown against a wall. It strikes the wall normally with velocity of 3 and rebound with velocity of 20 m/s. The impulse exerted by ball on wall is a. $1:1$ b. $2:1$ c. $4:1$ d. $1:2$ 24. The internal energy of an ideal gas depends on a. $1:1$ b. $2:1$ c. $4:1$ d. $1:2$ 24. The internal energy of an ideal gas depends on a. Pressure b. Volume c. Temperature d. Size of molecule 25. A gas perform minimum work when it expands a. $v_i = v_a = v_u$ b. $v_u > v_a > v_i$ c. $v_u < v_a < v_i$ d. $v_a \le v_u = v_i$		a. $-\frac{1}{2}\sin^2 + c$	b. $\frac{1}{2}\sin^2 + c$	c.	$-\frac{1}{2}\sin^2 x + c$	d.	$\frac{1}{2}\sin^2 x + c$
a. 2 b. 3 c. 4 d. 5 16. If the sum of the slopes of the lines given by $x^2 - 2cxy - 7v^2 = 0$ is four times their product ther a2 b1 c. 1 d. 2 17. The length of intercept, the circle $x^2 + y^2 + 10x - 6y + 9 = 0$ makes or the x-axis, is a. 2 b. 4t c. 6 d. 8 18. If A and B are two fixed points and P is a variable point such that PA + PB = 4, then the locu is a. a circle b. a parabola c. an ellipse d. a hyperbola 19. The perpendicular distance of the point (6, 4, 5) from y-axis is a. 3 b. 4 c. 5 d. $\sqrt{34}$ 20. The chance that A can solve the problem is $\frac{2}{3}$ and the chance that B can solve the problem is probability that the problem is solved by both A and B is a. 0 b. 1 c. $\frac{2}{9}$ d. $\frac{7}{9}$ 21. When $\vec{A}.\vec{B} = \vec{A} \times \vec{B} $ then resultant of \vec{A} and \vec{B} is a. A + B b. $\vec{A} - B$ c. $(A^2 + B^2 + 2AB)^{1/2}$ d. $(A^2 + B^2 + \sqrt{2} AB)^{1/2}$ 22. A ball of mass 0.1 kg is thrown against a wall. It strikes the wall normally with velocity of 3 and rebound with velocity of 20 m/s. The impulse exerted by ball on wall is a. 0.5 NS b. 50 NS c. 1 N d. 5 NS 23. A ring and a disc have the same mass and radius. The ratio of their moment of inertia about a is a. 1:1 b. 2:1 c. 4:1 d. 1:2 24. The internal energy of an ideal gas depends on a. Pressure b. Volume c. Temperature d. Size of molecule 25. A gas perform minimum work when it expands a. Adiabatically b. isothermally c. Isobarically d. Isochorically 26. Ultrasonic, infrasonic and audible waves travel through a medium with speed $v_{u_x} v_i$ a respectively then a. $v_i = v_a = v_u$ b. $v_u > v_a > v_i$ c. $v_u < v_a < v_i$ d. $v_a \le v_u = v_i$	15.	The order of the difference $y = (C_1 + C_2) \sin(x)$	ential equation whose gen + C_3) - $C_4 e^{x+C_5}$ is	nera	l solution is given by		
 16. If the sum of the slopes of the lines given by x² - 2cxy - 7x² = 0 is four times their product thet a2 b1 c. 1 d. 2 17. The length of intercept, the circle x² + y² + 10x - 6y + 9 = 0 makes or the x-axis, is a. 2 b. 4 c. 6 d. 8 18. If A and B are two fixed points and P is a variable point such that PA + PB = 4, then the locu is a. a circle b. a parabola c. an ellipse d. a hyperbola 19. The perpendicular distance of the point (6, 4, 5) from y-axis it a. 3 b. 4 c. 5 d. √34 20. The chance that A can solve the problem is ²/₃ and the chance that B can solve the problem is probability that the problem is solved by both A and B is a. 0 b. 1 c. ²/₉ d. ⁷/₉ 21. When A.B = A × B then resultant of A and B is a. A + B b, A - B c. (A² + B² + 2AB)^{1/2} d. (A² + B² + √2 A B all of mass 0.1 kg is thrown against a wall. It strikes the wall normally with velocity of 3 and rebound with velocity of 20 m/s. The impulse exterted by ball on wall is a. 0.5 NS b. 50 NS c. 1 N d. 5 NS 23. A ring and a disc have the same mass and radius. The ratio of their moment of inertia about a is a. 1:1 b. 2:1 c. 4:1 d. 1:2 24. The internal energy of an ideal gas depends on a. Pressure b. Volume c. Temperature d. Size of molecule 25. A gas perform minimum work when it expands a. Atiabatically b. isothermally c. Isobarically d. Isochorically 26. Ultrasonic, infrasonic and audible waves travel through a medium with speed v_u, v_i a respectively then a. v_i = v_a = v_u b. v_u > v_a > v_i c. v_u < v_a < v_i d. v_a ≤ v_u = v_i 		a. 2	b. 3	c.	4	d.	5
a. -2 b. -1 c. 1 d. 2 17. The length of intercept, the circle $x^{2} + y^{2} + 10x - 6y + 9 = 0$ makes on the x-axis, is a. 2 b. 4 c. 6 d. 8 18. If A and B are two fixed points and P is a variable point such that PA + PB = 4, then the loculis a. a circle b. a parabola c. an ellipse d. a hyperbola 19. The perpendicular distance of the point (3, 4, 5) from y-axis is a. 3 b. 4 c. 5 d. $\sqrt{34}$ 20. The chance that A can solve the problem is $\frac{1}{3}$ and the chance that B can solve the problem is solved by both A and B is a. 0 b. 1 c. $\frac{2}{9}$ d. $\frac{7}{9}$ 21. When $\vec{A}.\vec{B} = \vec{A} \times \vec{B} $ then resultant of \vec{A} and \vec{B} is a. A + B b. $A - B$ c. $(A^{2} + B^{2} + 2AB)^{1/2}$ d. $(A^{2} + B^{2} + \sqrt{2} AB)^{1/2}$ A ball of mass 0.1 kg is thrown against a wall. It strikes the wall normally with velocity of 3 and rebound with velocity of 20 m/s. The impulse exerted by ball on wall is a. 0.5 NS b. 50 NS c. 1 N d. 5 NS 23. A ring and a disc have the same mass and radius. The ratio of their moment of inertia about a is a. 1:1 b. 2:1 c. 4:1 d. 1:2 24. The internal energy of an ideal gas depends on a. Pressure b. Volume c. Temperature d. Size of molecule 25. A gas perform minimum work when it expands a. Adiabatically b. isothermally c. Isobarically d. Isochorically 26. Ultrasonic, infrasonic and audible waves travel through a medium with speed v_{uv} v_{v} is a respectively then a. $v_{u} = v_{u} = v_{u}$ b. $v_{u} > v_{a} > v_{i}$ c. $v_{u} < v_{a} < v_{i}$ d. $v_{a} < v_{u} = v_{i}$	16.	If the sum of the slopes	s of the lines given by x^2	- 20	$exy - 7y^2 = 0$ is four t	ime	es their product then c =
 17. The length of intercept, the circle x² + y² + 10x - 6y + 9 = 0 makes of the x-axis, is a. 2 b. 4 c. 6 d. 8 18. If A and B are two fixed points and P is a variable point such that PA + PB = 4, then the locu is a. a circle b. a parabola c. an ellipse d. a hyperbola 19. The perpendicular distance of the point (3, 4, 5) from y-axis is a. 3 b. 4 c. 5 d. √34 20. The chance that A can solve the problem is ²/₃ and the chance that B can solve the problem is probability that the problem is solved by both A and B is a. 0 b. 1 c. ²/₉ d. ⁷/₉ 21. When A.B = A × B then resultant of A and B is a. A + B b. A - B c. (A² + B² + 2AB)^{1/2} d. (A² + B² + √2 AB) 22. A ball of mass 0.1 kg is thrown against a wall. It strikes the wall normally with velocity of 3 and rebound with velocity of 20 m/s. The impulse exerted by ball on wall is a. 0.5 NS b. 50 NS c. 1 N d. 5 NS 23. A ring and a disc have the same mass and radius. The ratio of their moment of inertia about a is a. 1:1 b. 2:1 c. 4:1 d. 1:2 24. The internal energy of an ideal gas depends on a. Pressure b. Volume c. Temperature d. Size of molecule 25. A gas perform minimum work when it expands a. Aiabatically b. isothermally c. Isobarically d. Isochorically 26. Ultrasonic, infrasonic and audible waves travel through a medium with speed v_{ux}, v₁ a respectively then a. v₁ = v_a = v_u b. v_u > v_a > v_i c. v_u < v_u < v_i d. v_a < v_u = v_i 		a. –2	b1	c.	1	d.	2
a. 2 b. 4 c. 6 d. 8 18. If A and B are two fixed points and P is a variable point such that PA + PB = 4, then the locu is a. a circle b. a parabola c. an ellipse d. a hyperbola 19. The perpendicular distance of the point (3, 4, 5) from y-axis is a. 3 b. 4 c. 5 d. $\sqrt{34}$ 20. The chance that A can solve the problem is $\frac{2}{3}$ and the chance that B can solve the problem is sprobability that the problem is solved by both A and B is a. 0 b. 1 c. $\frac{2}{9}$ d. $\frac{7}{9}$ 21. When $\vec{A}.\vec{B} = \vec{A} \times \vec{B} $ then resultant of \vec{A} and \vec{B} is a. A + B b. A - B c. $(A^2 + B^2 + 2AB)^{1/2}$ d. $(A^2 + B^2 + \sqrt{2}AB)^{1/2}$ 22. A ball of mass 0.1 kg is thrown against a wall. It strikes the wall normally with velocity of 3 and rebound with velocity of 20 m/s. The impulse exerted by ball on wall is a. 0.5 NS b. 50 NS c. 1 N d. 5 NS 23. A ring and a disc have the same mass and radius. The ratio of their moment of inertia about a is a. 1:1 b. 2:1 c. 4:1 d. 1:2 24. The internal energy of an ideal gas depends on a. Pressure b. Volume c. Temperature d. Size of molecule 25. A gas perform minimum work when it expands a. Adiabatically b. isothermally c. Isobarically d. Isochorically 26. Ultrasonic, infrasonic and audible waves travel through a medium with speed v _{us} , v _i a respectively then a. $v_i = v_a = v_u$ b. $v_u > v_a > v_i$ c. $v_u < v_a < v_i$ d. $v_a \le v_u = v_i$	17.	The length of intercept	, the circle $x^2 + y^2 + 10x$	- 6	y + 9 = 0 makes on th	e x-	-axis, is
 18. If A and B are two fixed points and P is a variable point such that PA + PB = 4, then the locu is a. a circle b. a parabola c. an ellipse d. a hyperbola 19. The perpendicular distance of the point (3, 4, 5) from y-axis is a. 3 b. 4 c. 5 d. √34 20. The chance that A can solve the problem is ²/₃ and the chance that B can solve the problem is sprobability that the problem is solved by both A and B is a. 0 b. 1 c. ²/₉ d. ⁷/₉ 21. When A.B = A × B then resultant of A and B is a. A + B b. A - B c. (A² + B² + 2AB)^{1/2} d. (A² + B² + √2 AB) 22. A ball of mass 0.1 kg is thrown against a wall. It strikes the wall normally with velocity of 3 and rebound with velocity of 20 m/s. The impulse exerted by ball on wall is a. 0.5 NS b. 50 NS c. 1 N d. 5 NS 23. A ring and a disc have the same mass and radius. The ratio of their moment of inertia about a is a. 1:1 b. 2:1 c. 4:1 d. 1:2 24. The internal energy of an ideal gas depends on a. Adiabatically b. isothermally c. Isobarically d. Isochorically 26. Ultrasonic, infrasonic and audible waves travel through a medium with speed v_{us}, v_i a respectively then a. v_i = v_a = v_u b. v_a > v_i c. v_a < v_i d. v_a < v_u = v_i 		a. 2	b. 4	c.	6	d.	8
 a. a circle b. a parabola c. an ellipse d. a hyperbola 19. The perpendicular distance of the point (3, 4, 5) from y-axis is a. 3 b. 4 c. 5 d. √34 20. The chance that A can solve the problem is ²/₃ and the chance that B can solve the problem is solved by both A and B is a. 0 b. 1 c. ²/₉ d. ⁷/₉ 21. When A.B = A × B then resultant of A and B is a. A + B b. A - B c. (A² + B² + 2AB)^{1/2} d. (A² + B² + √2 AB) 22. A ball of mass 0.1 kg is thrown against a wall. It strikes the wall normally with velocity of 30 m/s. The impulse exerted by ball on wall is a. 0.5 NS b. 50 NS c. 1 N d. 5 NS 23. A ring and a disc have the same mass and radius. The ratio of their moment of inertia about a is a. 1:1 b. 2:1 c. 4:1 d. 1:2 24. The internal energy of an ideal gas depends on a. Adiabatically b. isothermally c. Isobarically d. Isochorically 26. Ultrasonic, infrasonic and audible waves travel through a medium with speed v_{us}, v_i a respectively then a. v_i = v_a = v_u b. v_a > v_i c. v_a < v_i d. v_a ≤ v_u = v_i 	18.	If A and B are two fixe is	ed points and P is a varia	able	point such that PA +	- PE	B = 4, then the locus of P
 19. The perpendicular distance of the point (3, 4, 5) from y-axis is a. 3 b. 4 c. 5 d. √34 20. The chance that A can solve the problem is 3/3 and the chance that B can solve the problem is probability that the problem is solved by both A and B is a. 0 b. 1 c. 2/9 d. 7/9 21. When A.B = A × B then resultant of A and B is a. A + B b. A - B c. (A² + B² + 2AB)^{1/2} d. (A² + B² + √2 AE 22. A ball of mass 0.1 kg is thrown against a wall. It strikes the wall normally with velocity of 3 and rebound with velocity of 20 m/s. The impulse exerted by ball on wall is a. 0.5 NS b. 50 NS c. 1 N d. 5 NS 23. A ring and a disc have the same mass and radius. The ratio of their moment of inertia about a is a. 1:1 b. 2:1 c. 4:1 d. 1:2 24. The internal energy of an ideal gas depends on a. Adiabatically b. isothermally c. Isobarically d. Isochorically 26. Ultrasonic, infrasonic and audible waves travel through a medium with speed v_u, v_i a respectively then a. v_i = v_a = v_u b. v_u > v_a > v_i c. v_u < v_a < v_i d. v_a ≤ v_u = v_i 		a. a circle	b. a parabola	C.	an ellipse	d.	a hyperbola
a. 3 b. 4 c. 5 d. $\sqrt{34}$ 20. The chance that A can solve the problem is $\frac{3}{3}$ and the chance that B can solve the problem is probability that the problem is solved by both A and B for a. 0 b. 1 c. $\frac{2}{9}$ d. $\frac{7}{9}$ 21. When $\vec{A}.\vec{B} = \vec{A} \times \vec{B} $ then resultant of \vec{A} and \vec{B} is a. A + B b. A - B c. $(A^2 + B^2 + 2AB)^{1/2}$ d. $(A^2 + B^2 + \sqrt{2} AB)^{1/2}$ 22. A ball of mass 0.1 kg is thrown against a wall. It strikes the wall normally with velocity of 3 and rebound with velocity of 20 m/s. The impulse exerted by ball on wall is a. 0.5 NS b. 50 NS c. 1 N d. 5 NS 23. A ring and a disc have the same mass and radius. The ratio of their moment of inertia about a is a. 1:1 b. 2:1 c. 4:1 d. 1:2 24. The internal energy of an ideal gas depends on a. Pressure b. Volume c. Temperature d. Size of molecule 25. A gas perform minimum work when it expands a. Adiabatically b. isothermally c. Isobarically d. Isochorically 26. Ultrasonic, infrasonic and audible waves travel through a medium with speed v _u , v _i a respectively then a. $v_i = v_a = v_u$ b. $v_u > v_a > v_i$ c. $v_u < v_a < v_i$ d. $v_a \le v_u = v_i$	19.	The perpendicular dista	ance of the point (3, 4, 5)) fro	m y-axis is	Har.	
 20. The chance that A can solve the problem is ²/₃ and the chance that B can solve the problem is probability that the problem is solved by both A and B is a. 0 b. 1 c. ²/₉ d. ⁷/₉ 21. When A.B = A × B then resultant of A and B is a. A + B b. A-B c. (A² + B² + 2AB)^{1/2} d. (A² + B² + √2 AE 22. A ball of mass 0.1 kg is thrown against a wall. It strikes the wall normally with velocity of 3 and rebound with velocity of 20 m/s. The impulse exerted by ball on wall is a. 0.5 NS b. 50 NS c. 1 N d. 5 NS 23. A ring and a disc have the same mass and radius. The ratio of their moment of inertia about a is a. 1 : 1 b. 2 : 1 c. 4 : 1 d. 1 : 2 24. The internal energy of an ideal gas depends on a. Pressure b. Volume c. Temperature d. Size of molecule 25. A gas perform minimum work when it expands a. Adiabatically b. isothermally c. Isobarically d. Isochorically 26. Ultrasonic, infrasonic and audible waves travel through a medium with speed v_u, v_i a respectively then a. v_i = v_u b. v_u > v_a > v_i c. v_u < v_i d. v_a < v_u = v_i 		a. 3	b. 4	c.	5	d.	$\sqrt{34}$
a. 0 b. 1 c. $\frac{2}{9}$ d. $\frac{7}{9}$ 21. When $\vec{A}.\vec{B} = \vec{A} \times \vec{B} $ then resultant of \vec{A} and \vec{B} is a. $A + B$ b. $A - B$ c. $(A^2 + B^2 + 2AB)^{1/2}$ d. $(A^2 + B^2 + \sqrt{2} AB)^{1/2}$ 22. A ball of mass 0.1 kg is thrown against a wall. It strikes the wall normally with velocity of 3 and rebound with velocity of 20 m/s. The impulse exerted by ball on wall is a. 0.5 NS b. 50 NS c. 1 N d. 5 NS 23. A ring and a disc have the same mass and radius. The ratio of their moment of inertia about a is a. 1:1 b. 2:1 c. 4:1 d. 1:2 24. The internal energy of an ideal gas depends on a. Pressure b. Volume c. Temperature d. Size of molecule 25. A gas perform minimum work when it expands a. Adiabatically b. isothermally c. Isobarically d. Isochorically 26. Ultrasonic, infrasonic and audible waves travel through a medium with speed v _u , v _i a respectively then a. $v_i = v_a = v_u$ b. $v_u > v_a > v_i$ c. $v_u < v_a < v_i$ d. $v_a \le v_u = v_i$	20.	The chance that A can	solve the problem is $\frac{2}{3}$ a	ind 1	the chance that B can	sol	we the problem is $\frac{1}{3}$. The
a. 0 b. 1 c. $\frac{2}{9}$ d. $\frac{1}{9}$ 21. When $\vec{A}.\vec{B} = \vec{A} \times \vec{B} $ then resultant of \vec{A} and \vec{B} is a. $A + B$ b. $A - B$ c. $(A^2 + B^2 + 2AB)^{1/2}$ d. $(A^2 + B^2 + \sqrt{2} AB)^{1/2}$ 22. A ball of mass 0.1 kg is thrown against a wall. It strikes the wall normally with velocity of 3 and rebound with velocity of 20 m/s. The impulse exerted by ball on wall is a. 0.5 NS b. 50 NS c. 1 N d. 5 NS 23. A ring and a disc have the same mass and radius. The ratio of their moment of inertia about a is a. 1:1 b. 2:1 c. 4:1 d. 1:2 24. The internal energy of an ideal gas depends on a. Pressure b. Volume c. Temperature d. Size of molecule 25. A gas perform minimum work when it expands a. Adiabatically b. isothermally c. Isobarically d. Isochorically 26. Ultrasonic, infrasonic and audible waves travel through a medium with speed v_{us} , v_i a respectively then a. $v_i = v_a = v_u$ b. $v_u > v_a > v_i$ c. $v_u < v_a < v_i$ d. $v_a \le v_u = v_i$		probability that the pro-		ait	2		7
 21. When Å.B = Å × Bi then resultant of Å and B is a. A + B b. A - B c. (A² + B² + 2AB)^{1/2} d. (A² + B² + √2 AB 22. A ball of mass 0.1 kg is thrown against a wall. It strikes the wall normally with velocity of 3 and rebound with velocity of 20 m/s. The impulse exerted by ball on wall is a. 0.5 NS b. 50 NS c. 1 N d. 5 NS 23. A ring and a disc have the same mass and radius. The ratio of their moment of inertia about a is a. 1:1 b. 2:1 c. 4:1 d. 1:2 24. The internal energy of an ideal gas depends on a. Pressure b. Volume c. Temperature d. Size of molecule 25. A gas perform minimum work when it expands a. Adiabatically b. isothermally c. Isobarically d. Isochorically 26. Ultrasonic, infrasonic and audible waves travel through a medium with speed v_u, v_i a respectively then a. v_i = v_a = v_u b. v_u > v_a > v_i c. v_u < v_a < v_i d. v_a ≤ v_u = v_i 		a. 0	b. 1	c.	5	d.	$\frac{7}{9}$
 a. A+B b. A-B c. (A² + B² + 2AB)^{1/2} d. (A² + B² + √2 AB 22. A ball of mass 0.1 kg is thrown against a wall. It strikes the wall normally with velocity of 3 and rebound with velocity of 20 m/s. The impulse exerted by ball on wall is a. 0.5 NS b. 50 NS c. 1 N d. 5 NS 23. A ring and a disc have the same mass and radius. The ratio of their moment of inertia about a is a. 1:1 b. 2:1 c. 4:1 d. 1:2 24. The internal energy of an ideal gas depends on a. Pressure b. Volume c. Temperature d. Size of molecule 25. A gas perform minimum work when it expands a. Adiabatically b. isothermally c. Isobarically d. Isochorically 26. Ultrasonic, infrasonic and audible waves travel through a medium with speed v_u, v_i a respectively then a. v_i = v_a = v_u b. v_u > v_a > v_i c. v_u < v_a < v_i d. v_a ≤ v_u = v_i 	21.	When $\vec{A}.\vec{B} = \vec{A} \times \vec{B} $ th	en resultant of \vec{A} and \vec{B} i	is 🖉			
 22. A ball of mass 0.1 kg is thrown against a wall. It strikes the wall normally with velocity of 3 and rebound with velocity of 20 m/s. The impulse exerted by ball on wall is a. 0.5 NS b. 50 NS c. 1 N d. 5 NS 23. A ring and a disc have the same mass and radius. The ratio of their moment of inertia about a is a. 1:1 b. 2:1 c. 4:1 d. 1:2 24. The internal energy of an ideal gas depends on a. Pressure b. Volume c. Temperature d. Size of molecule 25. A gas perform minimum work when it expands a. Adiabatically b. isothermally c. Isobarically d. Isochorically 26. Ultrasonic, infrasonic and audible waves travel through a medium with speed v_u, v_i a respectively then a. v_i = v_a = v_u b. v_u > v_a > v_i c. v_u < v_i d. v_a < v_u = v_i 		a. A + B	b . A – B	c.	$(A^2 + B^2 + 2AB)^{1/2}$	d.	$(A^2 + B^2 + \sqrt{2} AB)^{1/2}$
a. 0.5 NS b. 50 NS c. 1 N d. 5 NS 23. A ring and a disc have the same mass and radius. The ratio of their moment of inertia about a isa. $1:1$ b. $2:1$ c. $4:1$ d. $1:2$ 24. The internal energy of an ideal gas depends on a. Pressureb. Volumec. Temperatured. Size of molecule25. A gas perform minimum work when it expands a. Adiabaticallyb. isothermallyc. Isobaricallyd. Isochorically26. Ultrasonic, infrasonic and audible waves travel through a medium with speed v_u , v_i a respectively then a. $v_i = v_a = v_u$ b. $v_u > v_a > v_i$ c. $v_u < v_a < v_i$ d. $v_a \le v_u = v_i$	22.	A ball of mass 0.1 kg and rebound with veloc	is thrown against a wall city of 20 m/s. The impul	. It : lse e	strikes the wall norm exerted by ball on wal	ally Il is	with velocity of 30 m/s
 23. A ring and a disc have the same mass and radius. The ratio of their moment of inertia about a is a. 1:1 b. 2:1 c. 4:1 d. 1:2 24. The internal energy of an ideal gas depends on a. Pressure b. Volume c. Temperature d. Size of molecule 25. A gas perform minimum work when it expands a. Adiabatically b. isothermally c. Isobarically d. Isochorically 26. Ultrasonic, infrasonic and audible waves travel through a medium with speed v_u, v_i a respectively then a. v_i = v_a = v_u b. v_u > v_a > v_i c. v_u < v_a < v_i d. v_a ≤ v_u = v_i 		a. 0.5 NS	b. 50 NS	c.	1 N	d.	5 NS
a. $1:1$ b. $2:1$ c. $4:1$ d. $1:2$ 24. The internal energy of an ideal gas depends on a. Pressureb. Volumec. Temperatured. Size of molecule25. A gas perform minimum work when it expands a. Adiabaticallyb. isothermallyc. Isobaricallyd. Isochorically26. Ultrasonic, infrasonic and audible waves travel through a medium with speed v_u , v_i a respectively then a. $v_i = v_a = v_u$ b. $v_u > v_a > v_i$ c. $v_u < v_a < v_i$ d. $v_a \le v_u = v_i$	23.	A ring and a disc have is	the same mass and radi	us. โ	The ratio of their mor	men	t of inertia about an axis
 24. The internal energy of an ideal gas depends on a. Pressure b. Volume c. Temperature d. Size of molecule 25. A gas perform minimum work when it expands a. Adiabatically b. isothermally c. Isobarically d. Isochorically 26. Ultrasonic, infrasonic and audible waves travel through a medium with speed v_u, v_i a respectively then a. v_i = v_a = v_u b. v_u > v_a > v_i c. v_u < v_a < v_i d. v_a ≤ v_u = v_i 		a. 1:1	b. 2:1	c.	4:1	d.	1:2
a. Pressureb. Volumec. Temperatured. Size of molecule25. A gas perform minimum work when it expands a. Adiabaticallyb. isothermallyc. Isobaricallyd. Isochorically26. Ultrasonic, infrasonic and audible waves travel through a medium with speed v_u , v_i a respectively then a. $v_i = v_a = v_u$ b. $v_u > v_a > v_i$ c. $v_u < v_a < v_i$ d. $v_a \le v_u = v_i$	24.	The internal energy of	an ideal gas depends on				
 25. A gas perform minimum work when it expands a. Adiabatically b. isothermally c. Isobarically d. Isochorically 26. Ultrasonic, infrasonic and audible waves travel through a medium with speed v_u, v_i a respectively then a. v_i = v_a = v_u b. v_u > v_a > v_i c. v_u < v_a < v_i d. v_a ≤ v_u = v_i 		a. Pressure	b. Volume	c.	Temperature	d.	Size of molecule
a. Adiabaticallyb. isothermallyc. Isobaricallyd. Isochorically26. Ultrasonic, infrasonic and audible waves travel through a medium with speed v_u , v_i a respectively thena. $v_i = v_a = v_u$ b. $v_u > v_a > v_i$ c. $v_u < v_a < v_i$ d. $v_a \le v_u = v_i$	25.	A gas perform minimu	m work when it expands				
26. Ultrasonic, infrasonic and audible waves travel through a medium with speed v_u , v_i a respectively then a. $v_i = v_a = v_u$ b. $v_u > v_a > v_i$ c. $v_u < v_a < v_i$ d. $v_a \le v_u = v_i$		a. Adiabatically	b. isothermally	c.	Isobarically	d.	Isochorically
a. $v_i = v_a = v_u$ b. $v_u > v_a > v_i$ c. $v_u < v_a < v_i$ d. $v_a \le v_u = v_i$	26.	Ultrasonic, infrasonic respectively then	and audible waves tra	avel	through a medium	wi	th speed v_u , v_i and v_a
		a. $\mathbf{v}_i = \mathbf{v}_a = \mathbf{v}_u$	b. $v_u > v_a > v_i$	c.	$v_u < v_a < v_i$	d.	$\mathbf{v}_a \leq \mathbf{v}_u = \mathbf{v}_i$

	Himalaya College of Enginee	ering Chyasal, Lalitpur Tel: 01-5440555, 5454227
27.	When 100 J of work is performed in car electric field. The potential of this point is	rrying a charge –5C from infinity to particular point in
	a. 100 V b. 5 V	c20 V d. 20 V
28.	The internal resistance of a cell of emf 2V voltage across cell will be	V is 0.1 Ω . It is connected to a resistance of 3.9 Ω then
	a. 0.5 V b. 1.9 V	c. 1.95 V d. 2 V
29.	At a certain place the horizontal component then total field intensity at that place will be	ent of earths magnetic field is B_0 and angle of dip is 45° e
	a. B_0 b. $\sqrt{2} B_0$	c. $2B_0$ d. $\frac{B_0}{\sqrt{2}}$
30.	In LCR circuit the inductance of solenoid c	changed from L to $\frac{L}{2}$. To keep same resonating frequency,
	capacitance should change from C to	
	a. 2 C b. $\frac{C}{2}$	c. 4 C d. 4
31.	In Young's double slit experiment, the sebetween the slits and screen is doubled. The	separation between the slits is halved and the distance e fringe width will be
22	a. Unchanged b. Halved	c. Doubled d. Quadrupled
32.	a Red b Violet	c Blue d Green
33	Double ionized helium atom and hydrogen	i on are accelerated from rest through the same potential
	difference. The ratio of final velocities of h	elium and hydrogen ions is
	a. 2:1 b. $\sqrt{2}:1$	c. 1:2 d. $1:\sqrt{2}$
34.	When voltage of 0.5 V drop across diode value of R in circuit will be	in circuit and maximum power rating is 100 mw. The $R = 0.5 V$
		⊢ 1.5♥
	a. 2 Ω b . 5 Ω	c. 10Ω d. 20Ω
35.	The bond present in N_2O_5 are	
	a. only covalent	b. covalent & co-ordinate
A -	c. covalent & ionic	d. only ionic
36.	Hydrogen behave as oxidizing agent when i	it reacts with
	a. Oxygen to form Ammonia	 o. Support to form Hydrogen sulphide d. Calcium to form calcium hydride
37	The correct set of four quantum numbers of	f 4d electron is
	a. 4, 2, 1, $-\frac{1}{2}$ b. 4, 3, -2, $+\frac{1}{2}$	c. 4, 3, 2, $+\frac{1}{2}$ d. 4, 3, 1, $+\frac{1}{2}$
38.	0.53 gm of anhydrous Na ₂ CO ₃ is added to 1	100 ml 0.1 M HCl, the resulting solution will be
	a. Acidic b. Neutral	c. Alkaline d. Acidic or Alkaline
39.	Reduction of nitrobenzene in neutral mediu	ım yields
	a. Aniline	b. Azobenzene
	c. Phenyl hydroxyl amine	d. Hydrazobenzene

Himalaya College of Engineering Chyasal, Lalitpur Tel: 01-5440555, 5454227

	Himalaya College of Engineeri	ng	Chyasal, Lalitpur Tel: (01-54	140555, 5454227
40.	Aldehyde can be prepared from acid chloride b	у			
	a. Rosenmund reduction				
	b. Wolf-Kishner red ⁿ				
	c. Clemmensen's reduction				
	d. Catalytic hydrogenation in presence of Rand	ey n	ickel		
41.	Sodium nitroprusside solution is added to se	odiu	im extract of an org	gani	c compound in alkaline
	medium. If violet colour is obtained, it is due to	o the	e formation of		
	a. $K_3[Fe(CN)_5NS]$ b. $Na_4[Fe(CN)_6]$	c.	$K_3[Fe(CN)_6]_2$	d.	Na ₄ [Fe(CN) ₅ NOS]
42.	Which of the following shows electrophilic sub	ostitu	ution reaction most st	rong	gly
	a. Benzene b. Phenol	c.	Nitrobenzene	d.	Dinitrobenzene
43.	CF ₃ COOH is stronger acid than acetic acid bec	ause	e of		
	a. inductive effect b. electromeric effect	c.	mesomeric effect	d.	resonance
44.	When 2-propanone is treated with Iodine in pre	esen	ce of sodium hydroxi	de g	gives
	a. 1-iodopropane	b.	1, 2-diiodopropane		
	c. 2-iodopropanone	d.	Iodoform		
45.	The catalyst used in the manufacture of sulphus	ric a	cid by contact proces	ss is	
	a. MnO ₂ b. ZnO	c.	V ₂ O ₅	d.	CuO 🥒
46.	In the blast furnace iron oxide is reduced by				
	a. Carbon b. Br ₂	C.	СО	d.	CaCO ₃
47.	On heating KBr with conc. H_2SO_4 for sometim	e the	e gases evolved are		
	a. HBr b. $Br_2 + SO_2$	c.	$HBr + Br_2$	d.	$SO_2 + HBr$
48.	Conc. HNO ₃ reacts with phosphorous to form				U.D.O.
10	a. H_3PO_4 b. H_3PO_3	C.	P_2O_5	d.	$H_2P_2O_7$
49.	We are accustomed doing hard work.				:4
-	a. in b. of	¢.	to	d.	with
50.	If you were to buy a car, it you a lot of mono	ey.			
	a. would cost b. cost	Ċ.	had cost	d.	will cost
51.	He said to her, "Are you coming to the party?"				
	a. He asked her whether she had been coming	to t	he party.		
	b. He told her if she was coming to the party.	,			
	d. He asked her if she will be coming to the party	artv.			
52	You must look into this matter				
52.	a This matter has been looked into by you	h	This matter may be	امما	ked into by you
	c. This matter should be looked into by you.	d.	This matter into loo	ked	by you.
53.	Choose the correct synonym of Stern .				
	a. lenient b. Yong	c.	stem	d.	strict
54	Choose the correct antonym of MISANTHROP	 PIST			
υт.	a nedant h pragmatist	.151 C	zealot	Ь	nhilanthronist
55	I dare to talk to him 2	0.	20000	u.	Pinantinopist
55.	a does he he don't I	C	aren't I	Ь	did I
		Ċ.		u.	ulu I

Himalaya College of Engineering Chyasal, Lalitpur Tel: 01-5440555, 5454227 70. If the parabola $y^2 = 4ax$ passes through the point (1, -2) then the equation of tangent at this point is b. 2x + 3y + 1 = 0a. x + y + 1 = 0c. x - y - 1 = 0d. 4x + 3y = 271. The S.D. of a first n natural numbers is b. $\sqrt{\frac{n^2+1}{3}}$ c. $\sqrt{\frac{n^2-1}{12}}$ d. $\sqrt{}$ a. $\sqrt{\frac{n^2-1}{3}}$ 72. $\lim_{x \to 0} x^x =$ b. 1 c. e d. doesn't exist 73. If $y = \tan^{-1}\left(\frac{\cos x + \sin x}{\cos x - \sin x}\right)$ then $\frac{dy}{dx} =$ b. 0 d. 1 a _1 74. The value of $\int \sqrt{2} [x^2] dx$, where $[\cdot]$ is the greatest integer function is b. $\sqrt{2} + 1$ a. $\sqrt{2} - 1$ 75. The area enclosed between the curves $y^2 = x$ and y = |x| is a. $\frac{2}{3}$ 1 d. 3 76. After falling from aeroplane parachutist fall 50 m without friction. When parachute opens, it decelerates at 2 m/s². Parachute reach the ground with 3 m/s. What is height of aeroplane when parachute fall b. 98 m a. 182 m c. 248 m d. 298 m 77. A mass of 0.5 kg moving with speed of 1.5 m/s on a horizontal smooth surface collides with spring of spring constant K = 50 N/m. The maximum compression of spring will be b 0.15 m c. 0.12 m a. 0.5 m d. 1.5 m 78. A boat of length 3 m and breadth 2 m is floating on lake. Boat sink by 1 cm when a man gets on it. The mass of man is b. 62 kg c. 72 kg a. 60 kg d. 128 kg 79. 5.6 *l*ts of Helium gas at STP is compressed adiabatically to 0.7 *l*ts. If initial temperature is T_1 then work done in the process is c. $\frac{15}{8}$ RT₁ d. $\frac{9}{2}$ RT₁ a. $\frac{9}{8}$ RT₁ b. $\frac{3}{2}RT_1$ 80. Two identical rods of same material are connected between two containers one of the is at 100°C and another is at 0°C. If rods are placed in parallel then q1 g/s ice melt and if rods are placed in series then q_2 g/sec ice melt. The value of $\frac{q_2}{q_1}$ is a. 2:1 b. 4:1 c. 1:2 d. 1:4 81. A car is moving towards a high diff. A car driver sound horn of frequency 'f'. The frequency of echo noticed by driver of car is 2f then velocity of car is, if velocity of sound is v m/s a. $\frac{v}{2}$ d. $\frac{V}{4}$ c. $\frac{v}{3}$ b. $\frac{v}{\sqrt{2}}$

6

82. If potential in the region is V = (6xy - y + 2yz) then electric field intensity at a point (1, 1, 0) is

a. -(6i + 5j + 2k)c. -(6i + 9i + k)d. -(3i + 5j + 3k)b. -(2i + 3j + k)83. The charge flowing through a resistor 'R' varies with time by $Q = at - bt^2$ where a & b are +ve constant. The total heat developed in resistor is d. $\frac{a^3 R}{\cdot}$ <u>a'R</u> c. $\frac{a^3 R}{2h}$ a. b. 6b 84. A long solenoid of diameter 0.1 m has 2×10^4 turns per m. At the centre of the solenoid a coil of 100 turns and radius 0.01 m is placed with its axis coinciding with axis of solenoid. The current in the solenoid reduces at constant rate to 0A from 4A in 0.05 sec. The resistance of coil is $10\pi^2 \Omega$ then charge circulate through it is c. 16 π μc a. 16 µc b. 32 µc d. 32 πuc 85. In Young's double slit experiment the intensity of light at a point on screen where path difference is λ is K. The intensity at another at which path difference is $\frac{\lambda}{4}$ will be b. $\frac{K}{4}$ a. K 86. In spectrum of hydrogen atom the ratio of longest wavelength in Lyman series to the longest wavelength in Balmer series is a. 9:4 5:27 d. 4:9 87. A converging lens of focal length 20 cm in air lens is made by material of refractive index 1.6. If lens is immersed in liquid of refractive index 1.3. The new focal length of lens will be a. 40 cm concave 80 cm convex c. 52 cm convex d. 160 cm convex h 88. The half life of radium is 1620 yrs and atomic weight is 226. The activity of 1g of sample will be a. 3.6×10^6 /s d. $3.6 \times 10^{10}/s$ b. $3.6 \times 10^8/s$ $3.6 \times 10^{9}/s$ 89. ΔH and ΔS values of the reactants X, Y and Z are given below $X : \Delta H = 10.5 \text{ KJ}, \Delta S = 30 \text{ JK}^{-1}$ Y : Δ H = 1.08 KJ, Δ S = -100 JK⁻¹ $Z : \Delta H = -11.7 \text{ KJ}, \Delta S = -100 \text{ JK}^{-1}$ The reaction that will be spontaneous at 300 K is a. X only b. Z only c. Y only d. None of them 90. A first order reaction is half complete in 40 minutes. The time required for completion of 3/4th of reaction is a. 60 minute b. 10 minute c. 80 minute d. 160 minute 91. An oxide of metal contains 47% by weight of oxygen if the metal has the relative atomic mass of 27. The empirical formula of metal oxide is a. M₂O b. MO c. M_2O_3 d. MO₂ 92. To an acidic solution having pH = 2, sufficient acid is added so that the pH decreases to 1. The increase in hydrogen ion concentration is a. 2 times b. 100 times c. 10 times d. 3 times 93. 1.2 gm of gas occupies 336 ml at NTP. The molecular weight of the gas is a. 40 b. 80 c. 60 d. 160

- 94. The oxidation of ethanol with acidified sodium dichromate gives
 - b. Acetic anhydride d. Formic acid a. Acetone c. Acetic acid
- 95. Benzene on treating with acetyl chloride in presence of Aluminium chloride gives
 - b. C₆H₅COCH₃ a. C₆H₅COOH c. C₆H₅OH d. C₆H₅CH₃
- 96. The yellow light used to illuminates the high way is of
 - b. Sodium vapor lamp a. Murcury vapor lamp
 - c. Neon gas lamp d. Halogen lamp

Read the following passage and answer the given questions.

Three fourths of the surface of our planet is covered by the sea, which both separates and unites the various races of mankind. The sea is the great highway along which man may journey at his will, the great road that has no walls or hedges hemming it in, and that nobody has to keep it in good repair with the aid of pickaxes and barrels of tar and steamrollers. The sea appeals to man's love of the perilous and the unknown, to his love of conquest, his love of knowledge and his love of gold. Its green, and grey, and blue, and purple waters call to him and bid him fare forth in quest of fresh fields. Beyond their horizons he has found danger and death, glory and gain.

In some great continents such as America and Australia, there are towns and villages many thousands of miles from the coast, whose children have never seen or heard or felt the waves of the sea. But in the British Isles it is nowhere much more than a hundred miles from the most inland spot. The love of the sea is in the very blood of the British people.

- 97. How much of our planet is not covered by the sea?
 - a. Half of the planet
 - b. One fourth of the planet c. More than one can measure d. Three fourths of the planet
- 98. The sea helps a man
 - a. in building great roads
 - b. in making journey at his will all around the world
 - c. in raising walls on the coast
 - d. in clearing hedges hemming the sea water
- 99. In what way does the sea appeal to man?
 - a. It helps man take lessons from the perilous waves and stay at home.
 - b. It invites man to amass gold hidden under the sea water.
 - c. It makes man wax eloquent about the futility of adventurous deeds.
 - d. It bids man to venture out in quest of new places.
- 100. The children have not responded to the call of the sea
 - a. in remote towns and villages of America
 - b. in Great Britain
 - c. in the Antarctica
 - d. in India

...Best of Luck ...