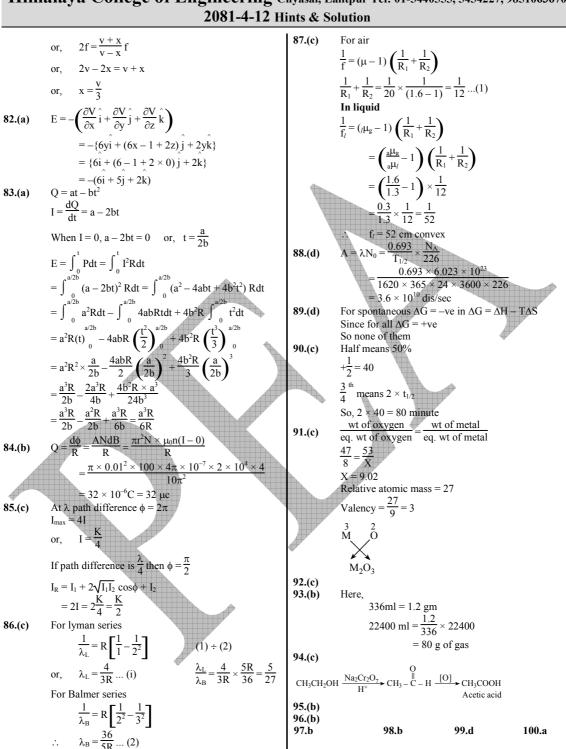

Himalaya College of Engineering Chyasal, Lalitpur Tel: 01-5440555, 5454227, 9851063670 2081-4-12 Hints & Solution				
	Section – I	21.(d)	$\vec{A} \cdot \vec{B} = \vec{A} \times \vec{B} $	
l.(c)	From De Morgan's law, $\sim (p \lor q) \equiv \sim p \land \sim q$.	21.(u)	$A.B = A \wedge B $ or, $ABcos\theta = ABsin\theta$	
2.(c)			or, $\tan\theta = 1 = \tan 45^\circ$	
.(b)	$Z^{n} + Z^{-n} = (\cos\theta + i\sin\theta)^{n} + (\cos\theta + i\sin\theta)^{-n}$		$\theta = 45^{\circ}$	
	$= \cos n\theta + i \sin n\theta + \cos(-n\theta) + i \sin(-n\theta)$			
	$= \cos \theta + i \sin \theta + \cos \theta - i \sin \theta$	22 (4)	$R = \sqrt{A^2 + 2AB\cos 45^\circ + B^2} = \sqrt{A^2 + \sqrt{2}AB + B^2}$	
	$= 2\cos\theta$	22.(d)	Impulse = change in momentum = $mv - (-mu)$	
l.(a)	$(1 + 2x + x^2)^{15} = ((1 + x)^2)^{15} = (1 + x)^{30}$		= mv $=$ ($-$ mu) = mv $+$ mu	
	No. of terms = $n + 1 = 30 + 1 = 31$		= 0.1 (20 + 30) = 5 NS	
5.(b)	$t_n = s_n - s_{n-1} $ (10 ³ - 100) (0 ³ - 100) (0 ³ - 100)	22.4.	$\underline{\text{Ir}} \underline{\text{mr}}^2$ 2.1	
	$\therefore t_{10} = s_{10} - s_9 = (10^3 - 100) - (9^3 - 100) = 271$	23.(b)	$\frac{\mathrm{Ir}}{\mathrm{Id}} = \frac{\mathrm{mr}^2}{\frac{1}{2}\mathrm{mr}^2} = 2:1$	
6.(b)	$\sec^2\theta + \csc^2\theta$		$\overline{2}$ mr	
	$= 1 + \tan^2 \theta + 1 + \cot^2 \theta$	24.(c)	Internal energy = KE	
	$= 2 + (\tan\theta - \cot\theta)^2 + 2\tan\theta \cot\theta$ $= 4 + (\tan\theta - \cot\theta)^2 \ge 4$		KE is function of temp.	
	$= 4 + (\tan\theta - \cot\theta)^2 \ge 4$ Min. value = 4	25.(d)	No work is done in isochoric process.	
/.(c)	$\sec^{2}(\tan^{-1}2) + \csc^{2}(\cot^{-1}3)$	26.(a)	Ultrasonic, infrasonic and audible are classified with	
(c)	$= 1 + \tan^{2}(\tan^{-1}2) + 1 + \cot^{2}(\cot^{-1}3)$		frequency but speed remain same in medium.	
	$= 1 + \tan^{2}(\tan^{-1} 2) + 1 + \cot^{2}(\cot^{-1} 3)$ = 1 + 2 ² + 1 + 3 ² = 15	27.(c)	$V = \frac{W}{\Omega} = \frac{100}{-5} = -20V$	
8.(c)	$\begin{vmatrix} a & 1 & 1 \\ 1 & b & 1 \\ 1 & 1 & c \end{vmatrix} = 0 \Rightarrow abc + 2 = a + b + c$	28.(c)	$V = E - Ir = E - \frac{E}{R + r} \cdot r$	
).(a)	Formula		$=2-\frac{2}{39+0.1}\times 0.1$	
0.(a)			= 1.95 V	
11.(c)	$x^2 + x^3$	29.(b)	$B_{\rm H} = B\cos\delta$	
2.(a)	$y = 1 + x + \frac{x^2}{2!} + \frac{x^3}{3!} + \dots$		or, $B_0 = B \times \cos 45^\circ$	
	$y = e^x$		or, $B = \sqrt{2} B_0$	
		30.(a)	At resonance	
	$\frac{dy}{dx} = e^x$	Ť	$f_{a} = -\frac{1}{2}$	
	$\therefore \frac{dy}{dx} = y$		$f_0 = \frac{1}{2\pi\sqrt{LC}}$	
			i.e. $LC = constant$	
l 3. (a)	$\mathbf{v} = \frac{ds}{dt} = 6t - 8$		or, $LC = \frac{L}{2} \times C'$	
a)	ui li			
	The body will be stopped when $v = 0$		or, $C' = 2C$	
A stand	i.e. $6t - 8 = 0$	31.(d)	$\beta = \frac{D\lambda}{d}$	
	\Rightarrow t = $\frac{4}{3}$ sec		u u	
4 (b)	Put $x^2 = t \Rightarrow dt = 2xdx$		$\beta' = \frac{2D\lambda}{\frac{d}{2}} = 4\beta$	
l 4.(b)			$\frac{u}{2}$	
	$I = \frac{1}{2} \int \cot dt = \frac{1}{2} \sin t + c = \frac{1}{2} \sin x^{2} + c$	32.(a)	$\delta = (\mu - 1) A$	
5 (b)	$y = (C_1 + C_2) \sin(x + C_3) - C_4 e^x \cdot e^{C_5}$	32.(a)		
l 5.(b)	$y = (C_1 + C_2) \sin(x + C_3) - C_4 e$.e $y = A \sin(x + C_3) - Be^x$		$\mu = A + \frac{B}{\lambda^2}$ so μ decreases	
	Where $A = C_1 + C_2 \& B = C_4 e^{C_5}$		If λ increases and δ decreases	
	Where $A = C_1 + C_2 \approx B = C_4 e^2$ Order = no. of arbitrary constants = 3		If μ is least	
	$(A, B \& C_3)$		•	
6.(d)	$m_1 + m_2 = 4m_1m_2$	33.(d)	$qV = \frac{1}{2}mv^2$	
. /			$\sqrt{2aV}$	
	or, $-\frac{2C}{7} = 4\left(-\frac{1}{7}\right)$		or, $v = \sqrt{\frac{2qV}{m}}$	
	\Rightarrow C=2			
7.(d)	g = 5, c = 9		$\therefore \frac{v_{\text{He}}}{v_{\text{He}}} = \sqrt{\frac{2 \times 2c v \times m}{4m \times 2e V}}$	
. /	Length of intercept on x-axis = $2\sqrt{g^2 - c}$		$\therefore \qquad \frac{v_{He}}{v_{H}} = \sqrt{\frac{2 \times 2eV \times m}{4m \times 2eV}} = \frac{1}{\sqrt{2}}$	
	$= 2\sqrt{5^2 - 9} = 8$		$=\frac{1}{\sqrt{2}}$	
8.(c)	2,0 7 0	34.(b)	√2 For diode	
9.(d)	Distance from y-axis = $\sqrt{x^2 + z^2} = \sqrt{3^2 + 5^2} = \sqrt{34}$	54.(0)	P = IV	
0.(c)	Since the events are independent, $P(A \text{ and } B) =$			
. /	$P(A \cap B) = P(A).P(B)$		or, $I = \frac{100 \times 10^{-3}}{0.5} = 0.2A$	
	$=\frac{2}{3} \times \frac{1}{3} = \frac{2}{9}$		1.5-0.5 1	
	$=\overline{3}\times\overline{3}=\overline{9}$		Now, $I = \frac{1.5 - 0.5}{R}$ or, $r = \frac{1}{0.2} = 5\Omega$	
		•		


Himalaya College of Engineering Church Lalitana Tak 01 5440555 5454007 0851063670

Himalaya College of Engineering Chyasal, Lalitpur Tel: 01-5440555, 5454227, 9851063670 2081-4-12 Hints & Solution

		1	12.221
35.(b)			$\Rightarrow \frac{b^2 + c^2 - a^2}{2bc} = \frac{1}{2}$
	O $N - O - N$ O O		$\Rightarrow \cos A = \cos 60^{\circ}$
	0/10 0		$\Rightarrow A = 60^{\circ}$
	Thus covalent & co-ordinate.		$ \vec{a} + \vec{b} = 1$
36.(d)	0 -1	63.(d)	
	$H_2 + Ca \longrightarrow CaH_2$		or, $(\vec{a} + \vec{b})^2 = 1$
	Reduced		or, $a^2 + 2\vec{a}.\vec{b} + b^2 = 1$
	↓ Oxidizing agent		or, $1 + 2\vec{a} \cdot \vec{b} + 1 = 1$ [:: $ \vec{a} = \vec{b} = 1$]
37.(a)	For 4d		$\therefore 2\vec{a}.\vec{b} = -1$
()	h = 4 $e = 2$	4	
	m = -2 to $+2$		Now, $ \vec{a} - \vec{b} ^2 = (\vec{a} - \vec{b})^2$
	$s = \pm \frac{1}{2}$		$= a^{2} - 2\vec{a}.\vec{b} + b^{2}$ = 1 - (-1) + 1 = 3
	-	The second secon	= 1 - (-1) + 1 = 3
38.(b)	$\frac{0.53}{53} = \frac{100 \times 0.1}{1000}$		$ \vec{a} - \vec{b} = \sqrt{3}$
	1 1	64.(d)	Taking common a, b, c from R ₁ , R ₂ and R ₃
	$\frac{1}{100} \text{ gm eq} = \frac{1}{100} \text{ gm eq}$		-a b c
	Neutral		abc a -b c a b -c
39.(c)	NO ₂ NH – OH		Again, taking common a, b, c from C_1 , $C_2 \& C_3$
	Zn/NH ₄ Cl		$(abc) (abc) \begin{vmatrix} -1 & 1 & 1 \\ 1 & -1 & 1 \\ 1 & 1 & -1 \end{vmatrix}$
			VIII III
40.(a)			Expanding along R_1 $a^2b^2c^2.4 = 4a^2b^2c^2$
41.(d)		65.(c)	For even numbers, we must have 0, 2, 4 or 6 in unit's
42.(b)	-OH group is activating group. So it favour's		place. Also, the first digit cannot be 0. We have two
12 ()	electrophilic substitution reaction.	•	cases.
43.(a)	ЕН		Case I: Last digit is 0 Required no. of ways = $4 \times 5 \times 6 \times 1$
			= 120
	F – C – COOH H – C – COOH		Case II: Last digit is 2, 4, or 6
Á	F H		Required no. of ways = $5 \times 5 \times 4 \times 3 = 300$
Æ	-1 effect of F > H		Total no. of 4 digit even numbers = $120 + 300 = 420$
44.(d)	So trifluoroacetic acid stronger than acetic acid. Iodoform test	66.(b)	Since ratio of the roots are equal, $\frac{\alpha}{\beta} = \frac{\alpha_1}{\beta_1}$
44.(u) 45.(c)	louoronni est		
46.(c)	$Fe_2O_3 + CO \rightarrow 2Fe + CO_2$		or, $\frac{\alpha + \beta}{\alpha - \beta} = \frac{\alpha_1 + \beta_1}{\alpha_1 - \beta_1}$ (Componendo & dividendo)
47.(b)	$\mathrm{KBr} + \mathrm{H}_2\mathrm{SO}_4 \to \mathrm{Br}_2 + \mathrm{SO}_2$		or, $\frac{(\alpha+\beta)^2}{(\alpha_1+\beta_1)^2} = \frac{(\alpha+\beta)^2 - 4\alpha\beta}{(\alpha_1+\beta_1)^2 - 4\alpha_1\beta_1}$
40 ()	conc.	Ψ.	or, $\frac{(\alpha_1 + \beta_1)^2}{(\alpha_1 + \beta_1)^2 - 4\alpha_1\beta_1}$
48.(a) 49.c	50.a 51.c 52.c 53.d 54.d		or, $\frac{\mathbf{p}^2}{l^2} = \frac{\mathbf{p}^2 - 4\mathbf{q}}{l^2 - 4\mathbf{m}} \Rightarrow \mathbf{p}^2 \mathbf{m} = l^2 \mathbf{q}$
55.b	56.b 57.b 58.d 59.a 60.c		
	Continue II		$\frac{1(2^n-1)}{2-1}$
	Section – II	67.(d)	General term $(t_n) = \frac{2 - 1}{n!}$
61.(b)	$y = \sin^{-1} \log_3\left(\frac{x}{3}\right)$		$[: 1 + 2 + 2^2 + 2^3 + \text{ is a G.S.}]$
			$=\frac{2^{n}-1}{n!}=\frac{2^{n}}{n!}-\frac{1}{n!}$
	$\Rightarrow -1 \le \log_3\left(\frac{x}{3}\right) \le 1$		11: 11: 11:
			$S_{\infty} = \sum_{n=1}^{\infty} \left(\frac{2^n}{n!} - \frac{1}{n!} \right) = (e^2 - 1) - (e - 1) = e^2 - e$
	$\Rightarrow 3^{-1} \le \frac{x}{3} \le 3^1$	$\langle 0 \rangle \rangle$	
	$\frac{1}{x} = \frac{x}{x}$	68.(a)	Let the coordinates of the foot of the perpendicular be (x_2, y_2)
	$\Rightarrow \frac{1}{3} \le \frac{x}{3} \le 3$		· · · · ·
	\Rightarrow 1 \leq x \leq 9		Then, $\frac{x_2 - x_1}{a} = \frac{y_2 - y_1}{b} = -\frac{ax_1 + by_1 + c}{a^2 + b^2}$
()(-)	$\Rightarrow x \in [1, 9]$		i.e. $\frac{x_2-2}{1} = \frac{y_2-4}{1} = -\frac{(2+4-1)}{1+1}$
62.(c)	(a+b+c)(b+c-a) = 3bc $(b+c)^2 - a^2 = 3bc$		
	$\Rightarrow (b+c)^2 - a^2 = 3bc$ $\Rightarrow b^2 + c^2 - a^2 = bc$		From 1^{st} and 3^{rd} , $x_2 = -\frac{1}{2}$
		I	<u> </u>

Himalaya College of Engineering Chyasal, Lalitpur Tel: 01-5440555, 5454227, 9851063670 2081-4-12 Hints & Solution

Himalaya College of Engineering Chyasal, Lalitpur Tel: 01-5440555, 5454227, 9851063670

...The End...