PEA's

TRIBHUVAN UNIVERSITY
 INSTITUTE OF ENGINEERING

B.E. Model Entrance Exam 2080
 Date: 2080-2-06

Hints and Solutions

PEA Association Pvt. Ltd. Thapathali, Kathmandu, Tel: 5345730, 5357187

Section - I

1.(c) Average velocity $\left(\mathrm{v}_{\mathrm{av}}\right)=\frac{\text { Displacement }}{\text { Time }}$
$=\frac{2 \mathrm{R}}{\mathrm{T}}=\frac{2 \times 40}{40}=2 \mathrm{~m} / \mathrm{s}$
2.(d) $\frac{\mathrm{H}_{1}}{\mathrm{H}_{2}}=\frac{\sin ^{2} \theta}{\sin ^{2}\left(90^{\circ}-\theta\right)}=\operatorname{Tan}^{2} \theta: 1$
3.(b) $\mathrm{KE}=$ workdone
or, $40=\mathrm{Fscos} \theta$
or, $\cos \theta=\frac{40}{20 \times 4}=\frac{1}{2}=\cos 60^{\circ}$
or, $\theta=60^{\circ}$
4.(b) $\quad \mathrm{wt}=$ upthrust
or, $\mathrm{m}=\mathrm{V}_{\mathrm{i}} \rho_{l}$
For Ice, $\mathrm{m}=\mathrm{V} \rho_{\mathrm{w}} \ldots \ldots$...(2)
$\mathrm{V}_{\mathrm{i}} \rho_{l}=\mathrm{V} \rho_{\mathrm{w}}$
$\rho_{l}<\rho_{\mathrm{w}}$ so $\mathrm{V}_{l}>\mathrm{V}$ i.e. volume immersed is greater then volume water formed by melting ice so level fall.
5.(b) $\frac{\Delta l}{l}=\alpha \Delta \theta=0.1 \%$
$\frac{\Delta \mathrm{A}}{\mathrm{A}}=\beta \Delta \theta=2 \alpha \Delta \theta=2 \times 0.1 \%=0.2 \%$
6.(d) $P=\sigma 4 \pi r^{2}\left(\mathrm{~T}^{4}-\mathrm{T}_{0}^{4}\right)=\mathrm{ms} \frac{\mathrm{d} \theta}{\mathrm{dt}}$
or, $\frac{d \theta}{d t}=\frac{\sigma 4 \pi r^{2}\left(\mathrm{~T}^{4}-\mathrm{T}_{0}^{4}\right)}{\frac{4 \pi}{3} \mathrm{r}^{3} \rho \mathrm{~s}}$

$$
=\frac{3 \sigma\left(\mathrm{~T}^{4}-\mathrm{T}_{0}^{4}\right)}{\mathrm{r} \rho \mathrm{~s}}
$$

or, $\frac{\mathrm{d} \theta}{\mathrm{dt}} \propto \frac{1}{\mathrm{r}}$
7.(c)
$\mathrm{v}=\frac{\mathrm{V}_{\text {max }}}{2}$
or, $w \sqrt{A^{2}-y^{2}}=\frac{A w}{2}$
or, $\quad A^{2}-y^{2}=\frac{A^{2}}{4}$
or, $y^{2}=\frac{3 A^{2}}{4}$
or, $\mathrm{y}=\frac{\sqrt{3} \mathrm{~A}}{2}$

$f^{\prime}=\frac{v-v_{0}}{v-v_{s}} \times f=\frac{v-v^{\prime}}{v-v^{\prime}} \times f=f$
9.(b) At B
$F_{R}=\sqrt{F^{2}+2 F^{2} \cos 60^{\circ}+F^{2}}$
$=\sqrt{2 \mathrm{~F}^{2}\left(1+\cos 60^{\circ}\right)}$
$\begin{aligned} & =\sqrt{2 \mathrm{~F}^{2} \times \frac{3}{2}}=\sqrt{3} \mathrm{~F} \\ V & =V_{A B .} \mathrm{q}\end{aligned}$

$\mathrm{V}_{\mathrm{AB}}=\frac{10}{5}=2 \mathrm{~V}$
$\mathrm{R}=\frac{\rho l}{\mathrm{~A}}=\frac{\rho l}{\pi \mathrm{r}^{2}}$
$\frac{\mathrm{R}^{\prime}}{\mathrm{R}}=\frac{l^{\prime}}{l} \times\left(\frac{\mathrm{r}}{\mathrm{r}^{\prime}}\right)^{2}=\frac{2 l}{l} \times\left(\frac{\mathrm{r}}{\frac{\mathrm{r}}{2}}\right)^{2}=8 \quad \mathrm{R}^{\prime}=8 \mathrm{R}$
12.(a) $\frac{\mathrm{p}^{\prime}}{\mathrm{p}}=\left(\frac{\mathrm{v}^{\prime}}{\mathrm{v}}\right)^{2}=\left(\frac{0.6 \mathrm{v}}{\mathrm{v}}\right)^{2}=0.36$
$\mathrm{p}^{\prime}=0.36 \times 100=36 \mathrm{~W}$
13.(d) $\mathrm{T}=2 \pi \sqrt{\frac{\mathrm{I}}{\mathrm{MH}}}$
or, $\frac{\mathrm{T}^{\prime}}{\mathrm{T}}=\sqrt{\frac{\mathrm{H}}{\mathrm{H}^{\prime}}}=\sqrt{\frac{\mathrm{H}}{2 \mathrm{H}^{\prime}}}=\frac{1}{\sqrt{2}}$
$\therefore \mathrm{T}^{\prime}=\frac{2}{\sqrt{2}}=\sqrt{2} \mathrm{~S}$
14.(b) $\beta=\frac{D \lambda}{d}$, on decreasing d, β increases
15.(d) $d=t\left(1-\frac{1}{\mu}\right)$
$\mu=\mathrm{A}+\frac{\mathrm{B}}{\lambda^{2}}, \lambda_{\mathrm{r}}>\lambda_{\mathrm{v}}$ so $\mu_{\mathrm{r}}<\mu_{\mathrm{v}}$
As μ decreases d also decreases so
16.(a) Energy of electrons is independent of intensity.
17.(c) $\beta=\frac{\mathrm{I}_{\mathrm{c}}}{\mathrm{I}_{\mathrm{b}}}=60$

$$
A_{v}=\frac{v_{\text {out }}}{v_{\text {in }}}=\frac{I_{c} R_{\text {out }}}{I_{b} R_{\text {in }}}=60 \times \frac{5000}{500}=600
$$

18.(d) AlCl_{3} has a vacant p -orbital so it can accept a pair of electrons. CN^{-}is ambident nucleophile, NH_{3} and $\mathrm{H}_{2} \mathrm{O}$ are nucleophile.
19.(a) $\mathrm{CH}_{3} \mathrm{COOH}$-acetic acid, $\mathrm{HCOOCH}_{3}-\quad$ methyl methanoate.
20.(a) $\mathrm{Fe}_{2} \mathrm{O}_{3}$ (Haematite) $+3 \mathrm{C} \rightarrow 2 \mathrm{Fe}+3 \mathrm{CO}$
21.(b) PbCl_{2} is insoluble in cold water however soluble in hot water.
22.(a) ${ }_{25} \mathrm{Mn}^{++}=[\mathrm{Ar}] 3 \mathrm{~d}^{5}$ i.e. 5 unpaired electrons as-

${ }_{26} \mathrm{Fe}^{++}=$| \uparrow | \uparrow | \uparrow | \uparrow | \uparrow |
| :---: | :---: | :---: | :---: | :---: |
| $[\mathrm{Ar}] 3 \mathrm{~d}^{6}$ i.e. 4 unpaired electrons | | | | |

Increase H^{+}and decrease the pH
6.(b) Calgon $=\mathrm{Na}_{2}\left[\mathrm{Na}_{4}\left(\mathrm{PO}_{3}\right)_{6}\right]$ or $\mathrm{Na}_{6}\left(\mathrm{PO}_{3}\right)_{6}$
27.(d) Since Cu electrode acts as anode and silver electrode acts as cathode.
$\mathrm{Cu} / \mathrm{Cu}^{2+}=-0.34 \mathrm{~V} \quad \therefore \mathrm{Cu}^{2+} / \mathrm{Cu}=+0.34 \mathrm{~V}$
$\mathrm{Ag} / \mathrm{Ag}^{+}=+0.80 \mathrm{~V} \quad \therefore \mathrm{Ag}^{+} / \mathrm{Ag}=-0.80 \mathrm{~V}$
$\therefore \quad$ Ecell $=\mathrm{E}^{\mathrm{o}}$ cathode $-\mathrm{E}^{\mathrm{o}}$ anode

$$
=-0.80-(+0.34)=-1.14 \mathrm{~V}
$$

28.(c) 1 gm equivalent (i.e. 29.35 gm) of Nl is deposited by 1 Faraday of electricity.
0.1 F deposits 2.93 gm of Nickel.
29.(c) $\quad A=\left(\begin{array}{ll}2 & 2 \\ 2 & 7\end{array}\right)$

So $\mathrm{A}^{-1}=\frac{1}{2 \times 7-2 \times 2}\left(\begin{array}{cc}7 & -2 \\ -2 & 2\end{array}\right)=\left(\begin{array}{cc}0.7 & -0.2 \\ -0.2 & 0.2\end{array}\right)$
30.(b) As the equations have both common roots, we have
$\frac{1}{1}=\frac{\mathrm{b}}{\mathrm{d}}=\frac{\mathrm{c}}{\mathrm{e}} \Rightarrow \mathrm{be}=\mathrm{cd}$

PEA Association Pvt. Ltd. Thapathali, Kathmandu, Tel: 5345730, 5357187

31.(c) $\lim _{x \rightarrow 0} \frac{\log _{a}(1+x)}{x}=\lim _{x \rightarrow 0} \log _{a} e \frac{\log _{c}(1+x)}{x}=\log _{a} e$
32.(b) $\mathrm{a}=5, \mathrm{~S}_{\infty}=15$
or, $\quad \frac{\mathrm{a}}{1-\mathrm{r}}=15 \quad$ or, $\frac{5}{1-\mathrm{r}}=15 \quad$ or, $1-\mathrm{r}=\frac{5}{15}$
$\therefore \quad r=1-\frac{1}{3}=\frac{2}{3}$
33.(b) Here $\int x \operatorname{cosec} x^{2} \cot x^{2} d x$

Put $y=x^{2} \quad$ i.e. $\frac{d y}{2} \Rightarrow x d x$.
So $\int \operatorname{cosec} y \operatorname{coty} \frac{d y}{2}=-\frac{\operatorname{cosec} y}{2}+c=-\frac{\operatorname{cosec} x^{2}}{2}+c$
34.(c) $\quad \mathrm{A} \cup \mathrm{B}=[-4,4], \mathrm{A} \cap \mathrm{B}=(1,3)$

So, $A \Delta B=(A \cup B)-(A \cap B)=[-4,4]-(1,3)$
35.(d) $\quad\left(\frac{x}{a}\right)^{2}-\left(\frac{y}{a}\right)^{2}=\sec ^{2} t-\tan ^{2} t=1$
i.e $x^{2}-y^{2}=a^{2}$, which is a rectangular hyperbola.
36.(d) Coeff. of $(2 r+1)^{\text {th }}$ term $=$ coeff. of $(r+2)^{\text {th }}$ term
$\Rightarrow \mathrm{C}(43,2 \mathrm{r})=\mathrm{C}(43,4+1)$
$\Rightarrow \quad 2 \mathrm{r}=\mathrm{r}+1 \quad$ or, $2 \mathrm{r}+4+1=43$
$\Rightarrow \quad \mathrm{r}=1$
or, $r=14$
37.(d) Length of intercepts on intercepts on x-axis $=2 \sqrt{g^{2}-c}$
$=2 \sqrt{(-2)^{2}-(-12)}=2 \sqrt{4+12}=2.4=8$ units
38.(c) $\quad(\vec{a}-\vec{b}) \times(\vec{a}+\vec{b})=\vec{a} \times \vec{a}+\vec{a} \times \vec{b}-\vec{b} \times \vec{a}+\vec{b} \times \vec{b}$

$$
=0+\vec{a} \times \vec{b}+\vec{a} \times \vec{b}+0=2(\vec{a} \times \vec{b})
$$

39.(d) $\cos \theta=\sin \alpha$ or, $\cos \theta=\cos \left(\frac{\pi}{2}-\alpha\right)$
$\therefore \quad \theta=2 n \pi \pm\left(\frac{\pi}{2}-\alpha\right)$
40.(c) Here $f(x)=\cot ^{-1} x$. So $f^{\prime}(x)=-\frac{1}{1+x^{2}}<0$ for all real x.
41.(b) Here $\alpha=45^{\circ}, \beta=60^{\circ}, \gamma=$?

We have, $\cos ^{2} \alpha+\cos ^{2} \beta+\cos ^{2} \gamma=1$
or, $\cos ^{2} 45^{\circ}+\cos ^{2} 60^{\circ}+\cos ^{2} \mathrm{r}=1$
or, $\frac{1}{2}+\frac{1}{4}+\cos ^{2} \gamma=1$
or, $\cos ^{2} \gamma=\frac{1}{4}$ or, $\cos \gamma= \pm \frac{1}{2} \Rightarrow r=60^{\circ}$ or 120°
42.(c) Complex number is $-1-\mathrm{i}$.

So $\tan \theta=\frac{-1}{-1}=1 \Rightarrow \theta=45^{\circ}$
But $\mathrm{x}=-1, \mathrm{y}=-1$ So, $\theta=45^{\circ}+180^{\circ}=225^{\circ}$
43.(b) We have, $\sin ^{-1} x=\cos ^{-1} y$
or, $\quad \sin ^{-1} x=\sin ^{-1} \sqrt{1-y^{2}}$
or, $\quad x=\sqrt{1-y^{2}}$
or, $\quad x^{2}=1-y^{2}$
$\therefore \quad x^{2}+y^{2}=1$
44.(d) $\frac{d\left(\sin ^{-1} x\right)^{3}}{d \sin ^{-1} x}=3\left(\sin ^{-1} x\right)^{2}$
45.(c) The bine bisecting the angle between the coordinate axes makes an angle of 45° or 135° with the x -axis. So slope $=$ $\tan 45^{\circ}$ or $\tan 135^{\circ}= \pm 1$
$\therefore \quad E q^{n}$ of the line is $y= \pm x$
46.(a) Here $f(x)=10^{x}+10^{-x}$

So, $\mathrm{f}(-\mathrm{x})=10^{-\mathrm{x}}+10^{\mathrm{x}}+10^{\mathrm{x}}=\mathrm{f}(\mathrm{x})$.
So f is even
47.(a) $\begin{aligned} & \text { Here 2R's are always together, } \\ & \text { which } \mathrm{A} \text { is repeated twice } \\ & \text { arrangements }=\frac{6!}{2!}=\frac{720}{2}=360\end{aligned}$

Req. Area $=2 \int_{0} y d x=2 \int_{0} \sqrt{x} d x$
$=2\left[\frac{\mathrm{x}^{3 / 2}}{\frac{3}{2}}\right]_{0}^{1}$
$=2 \times \frac{2}{3}=\frac{4}{3}$ sq. units
$\begin{array}{llllll}\text { 49.(c) } & 50 .(\mathrm{d}) & 51 .(\mathrm{a}) & 52 .(\mathrm{b}) & 53 .(\mathrm{d}) & 54 .(\mathrm{d}) \\ 55 .(\mathrm{a}) & 56 .(\mathrm{a}) & 57 .(\mathrm{a}) & 58 .(\mathrm{c}) & 59 .(\mathrm{a}) & 60 .(\mathrm{d})\end{array}$

Section - II

61.(b) $a_{t}=2 \mathrm{~m} / \mathrm{s}^{2} \mathrm{a}_{\mathrm{c}}=\frac{\mathrm{v}^{2}}{\mathrm{r}}=\frac{30^{2}}{500}=1.8 \mathrm{~m} / \mathrm{s}^{2}$
$\mathrm{a}=\sqrt{\mathrm{a}_{\mathrm{t}}{ }^{2}+\mathrm{a}_{\mathrm{c}}^{2}}=\sqrt{2^{2}+1.8^{2}}=2.7 \mathrm{~m} / \mathrm{s}^{2}$
$\mathrm{T}_{\text {max }}=\mathrm{m}\left(\mathrm{g}+\mathrm{a}_{\text {max }}\right)$
or, $\quad a_{\max }=\frac{310}{24}-10=2.91 \mathrm{~m} / \mathrm{s}^{2}$
Again, $\mathrm{h}=\frac{1}{2} \mathrm{a}_{\text {max }} \mathrm{t}^{2}$
or, $\mathrm{t}=\sqrt{\frac{2 \mathrm{~h}}{\mathrm{a}_{\max }}}=\sqrt{\frac{2 \times 4.6}{2.91}}=1.78 \mathrm{~s}$
63.(d) First case
$\theta_{1}=\frac{1}{2} \alpha t^{2}=\frac{1}{2} \times 0.4 \times 5^{2}=4 \mathrm{rad}$.
$2^{\text {nd }}$ case
$\theta_{2}=\alpha \mathrm{t}_{1} \times \mathrm{t}_{2}=0.4 \times 5 \times 30=60 \mathrm{rad}$
$3^{\text {rd }}$ case

$$
\theta_{3}=5 \mathrm{rad}
$$

$\therefore \quad \theta=\theta_{1}+\theta_{2}+\theta_{3}=70 \mathrm{rad}$
$\therefore \quad \theta=\frac{\mathrm{S}}{\mathrm{r}}$
$\underset{\mathrm{s}^{2 / 3}}{ }=\theta \mathrm{r}=70 \times 3=210 \mathrm{~m}$
64.(c)
$\mathrm{V}=\mathrm{KT}^{2 / 3}$
$\Delta \mathrm{V}=\frac{2}{3} \mathrm{KT}^{-1 / 3} \Delta \mathrm{~T}$
$\Delta \mathrm{W}=\mathrm{P} \Delta \mathrm{V}=\frac{\mathrm{RT} \times \Delta \mathrm{V}}{\mathrm{V}}$
$=\frac{\mathrm{RT}}{\mathrm{KT}^{2 / 3}} \times \frac{2}{3} \mathrm{KT}^{-1 / 3} \Delta \mathrm{~T}$
$=\frac{2}{3} \mathrm{R} \Delta \mathrm{T}$

$$
=\frac{2}{3} \times 8.3 \times 30=166 \mathrm{~J}
$$

65.(a)
$\frac{\mathrm{P}_{2}}{\mathrm{P}_{1}}=\frac{\theta_{2}-\theta_{0}}{\theta_{1}-\theta_{0}}$
or, $\frac{\mathrm{P}_{2}}{45}=\frac{40-20}{80-20}=\frac{20}{60}=\frac{1}{3}$
or, $\quad \mathrm{P}_{2}=15 \mathrm{cal} / \mathrm{s}$
66.(b)
$\frac{\mathrm{f}_{2}}{\mathrm{f}_{1}}=\sqrt{\frac{\mathrm{T}_{2}}{\mathrm{~T}_{1}}}=\sqrt{\frac{363}{300}}=1.1$

PEA Association Pvt. Ltd. Thapathali, Kathmandu, Tel: 5345730, 5357187

```
    \(\therefore \quad \mathrm{f}_{2}=1.1 \times 400=440 \mathrm{~Hz}\)
67.(d) \(E=-\frac{d v}{d x}=-(10 x+10)\)
    \(\mathrm{x}=1\) then \(\mathrm{E}=-20 \mathrm{~V} / \mathrm{m}\)
68.(a) Pd between \(\mathrm{B} \& \mathrm{D}\) will be zero if
\(\frac{\mathrm{R}_{\mathrm{AB}}}{\mathrm{R}_{\mathrm{BC}}}=\frac{\mathrm{R}_{\mathrm{AD}}}{\mathrm{R}_{\mathrm{DC}}}\)
or, \(\frac{12}{0.5}=\frac{x+6}{0.5}\)
or, \(x+6=12\)
or, \(x=6 \Omega\)
69.(c)
\(\mathrm{F}_{1}=\mathrm{BI}_{\mathrm{c}} l_{\mathrm{c}}\)
\(=\frac{\mu_{0} \mathrm{I}_{1}}{2 \pi \mathrm{a}} \times \mathrm{I}_{\mathrm{c}} l_{\mathrm{c}}\)
    \(=\frac{4 \pi \times 10^{-7} \times 25 \times 15 \times 0.25}{2 \pi \times 0.02}\)
    \(=9.4 \times 10^{-4} \mathrm{~N}\) toward wire
```



```
\(=9.4 \times 10^{-4} \mathrm{~N}\) toward wire
On BC
\(\mathrm{F}_{2}=\mathrm{BI}_{\mathrm{c}} l_{\mathrm{c}}\)
\[
\begin{aligned}
& =\frac{\mu_{0} \mathrm{I}_{1}}{2 \pi(\mathrm{a}+\mathrm{b})} \times \mathrm{I}_{\mathrm{c}} l_{\mathrm{c}} \\
& =\frac{4 \pi \times 10^{-7} \times 25 \times 15 \times 0.25}{2 \pi(0.1+0.02)}
\end{aligned}
\]
\[
=1.56 \times 10^{-4} \mathrm{~N} \text { a way from wire }
\]
\[
\mathrm{F}=\mathrm{F}_{1}-\mathrm{F}_{2}=7.8 \times 10^{-4} \mathrm{~N} \text { towards }
\]
\[
\text { 70.(d) } \quad \mathrm{P}=\mathrm{I}_{\mathrm{rms}} \mathrm{~V}_{\mathrm{rms}} \cos \phi
\]
\[
=\frac{\mathrm{I}_{0}}{\sqrt{2}} \times \frac{\mathrm{V}_{0}}{\sqrt{2}} \cos \frac{\pi}{2}=0
\]
71.(c) \(\quad d \sin \theta_{1}=\lambda\)
or, \(\sin \theta_{1}=\frac{\lambda}{d}\)
or, \(\theta_{1}=\sin ^{-1}\left(\frac{5000 \times 10^{-10}}{0.001 \times 10^{-3}}\right)=30^{\circ}\)
72.(a) For end A
\[
u=v=2 f, O=\frac{f}{3}
\]
For end B
\(u^{\prime}=2 f-\frac{f}{3}=\frac{5 f}{3}\)
\(v^{\prime}=\frac{f u}{u-f}=\frac{f \times \frac{5 f}{3}}{\frac{5 f}{3}-f}\)
\[
=\frac{5 \mathrm{f}^{2}}{3} \times \frac{3}{2 \mathrm{f}}=2.5 \mathrm{f}
\]
Length of image \((\mathrm{I})=\mathrm{v}^{\prime}-\mathrm{v}\)
\[
=2.5 \mathrm{f}-2 \mathrm{f}=0.5 \mathrm{f}
\]
\(\mathrm{m}=\frac{\mathrm{I}}{0}=\frac{0.5 \mathrm{f}}{\frac{\mathrm{f}}{3}}=1.5\)
73. (a) \(\frac{\mathrm{N}}{\mathrm{N}_{0}}=\left(\frac{1}{2}\right)^{\frac{\mathrm{t}}{\mathrm{T}_{1 / 2}}}\)
\[
=\left(\frac{1}{2}\right)^{\frac{20}{5}}=\frac{1}{16}
\]
Decayed \(=1-\frac{\mathrm{N}}{\mathrm{N}_{0}}=\frac{15}{16} \times 100 \%\)
\[
=93.75 \%
\]
Work done \(=\mathrm{E}_{\mathrm{i}}\)
```

or, \quad E.e.s $=E_{i}$
or, $\quad \frac{V}{d}$ es $=15.6 \times 1.6 \times 10^{-19}$
or, $V=\frac{15.6 \times 0.013}{4 \times 10^{-5}}=5070 \mathrm{~V}$
75.(d) $0.3 \mathrm{MHNO}_{3}=0.3 \mathrm{~N} \mathrm{HNO}_{3}$
$0.3 \mathrm{M} \mathrm{H}_{2} \mathrm{SO}_{4}=0.6 \mathrm{~N} \mathrm{H}_{2} \mathrm{SO}_{4}$
or, $\quad \mathrm{N}_{1} \mathrm{~V}_{1}+\mathrm{N}_{2} \mathrm{~V}_{2}=\mathrm{N}_{3} \mathrm{~V}_{3}$
or, $\quad 0.3 \times 100+0.6 \times 200=\mathrm{N}_{3} \times 300 \Rightarrow \mathrm{~N}_{3}=0.5$
76.(c)
77.(c)
$\mathrm{Kb}=\frac{\mathrm{mx} \mathrm{W} \mathrm{x} \Delta \mathrm{T}}{\mathrm{wx} 1000}$ where, $\mathrm{m} \rightarrow$ molecular wt. of solute.

$$
=\frac{180 \times 100 \times 0.1}{1.8 \times 1000}=1 \mathrm{k} / \mathrm{moL}
$$

78.(b) With $\mathrm{KMnO}_{4} / \mathrm{OH}^{-}$(Baeyer's reagent), ethyne gives oxalic acid and ethene gives glycol
One electron is shifted from 3d to 4 p - ortbital.
$\mathrm{Cl}_{2}+$ concNaOH $\rightarrow \mathrm{NaCl}+\mathrm{NaClO}_{3}$
(hot)
81.(a) Thermal stability of alkaline earth metals increases down the group.
As $3-\sin 2 x \neq 0$, So domain $=\Re$. Also $-1 \leq \sin x \leq 1$
So range $=\left[\frac{1}{3-(-1)}, \frac{1}{3-1}\right]=\left[\frac{1}{4}, \frac{1}{2}\right]$
Put $\mathrm{y}=\cos ^{-1} \mathrm{x}$ i.e. $\mathrm{x}=\cos \mathrm{y}$
$\therefore \quad d y=-\frac{1}{\sqrt{1-x^{2}}} d x$
Then $I=-\int y \cos y d x$
$=-\left[y \int \cos y d y-\int\left(\frac{d y}{d x} \int \cos y d y\right) d y\right]$
$=-\left[y \sin y-\int \sin y d y\right]$
$=-[y \sin y+\cos y]+c$
$=-\cos y-y \sqrt{1-\cos ^{2} y}+c$
$=-x-\cos ^{-1} x \sqrt{1-x^{2}}+c$
$y=\operatorname{sinpt}$
So, $\frac{\mathrm{dx}}{\mathrm{dt}}=\operatorname{cost}, \quad \frac{\mathrm{dy}}{\mathrm{dt}}=\mathrm{p} \operatorname{cospt}$
Then $\frac{d y}{d x}=\frac{\frac{d y}{d t}}{\frac{d x}{d t}}=\frac{p \cos p t}{\cos t}$
Also, $\frac{d^{2} y}{d x^{2}}=\frac{d}{d x}\left(\frac{d y}{d x}\right)=\frac{d}{d t}\left(\frac{\mathrm{pcospt}}{\operatorname{cost}}\right) \frac{d t}{d x}$ $=\mathrm{p}\left[\frac{\operatorname{cost}(-\mathrm{psin} p \mathrm{t})-(-\sin \mathrm{t}) \operatorname{cospt}}{\cos ^{2} \mathrm{t}}\right] \cdot \frac{1}{\cos t}$
or, $\quad \cos ^{2} t \frac{d^{2} y}{d^{2}}=p\left[-p \sin p t+\sin t \frac{\cos p t}{\cos t}\right]$
or, $\quad \cos ^{2} t \frac{d^{2} y}{d x^{2}}=-p^{2} \sin p t+\sin t\left(\frac{p \operatorname{cospt}}{\cos t}\right)$
or, $\quad\left(1-\sin ^{2} t\right) \frac{d^{2} y}{d x^{2}}=-p^{2} \sin p t+\sin t \frac{d y}{d x}$
i.e. $\left(1-x^{2}\right) \frac{d^{2} y}{d x^{2}}-x \frac{d y}{d x}+p^{2} y=0$
85.(a) $\tan ^{-1} x+\tan ^{-1} y=\frac{\pi}{4}$
or, $\quad \tan ^{-1} \frac{x+y}{1-x y}=\frac{\pi}{4}$

PEA Association Pvt. Ltd. Thapathali, Kathmandu, Tel: 5345730, 5357187

or, $\quad \frac{x+y}{1-x y}=\tan \frac{\pi}{4}$
or, $\quad x+y=1-x y$
i.e. $x+y+x y=1$
86.(d) $1+\sin x+\sin ^{2} x+\ldots$ to $\infty=4+2 \sqrt{3}$
or, $\quad \frac{1}{1-\sin x}=4+2 \sqrt{3}$
or, $\quad 1-\sin x=\frac{1}{4+2 \sqrt{3}}$
or, $\quad \sin x=1-\frac{4-2 \sqrt{3}}{16-12}=1-\frac{4-2 \sqrt{3}}{4}=\frac{2 \sqrt{3}}{4}=\frac{\sqrt{3}}{2}$
$\therefore \quad \mathrm{x}=60^{\circ}$ or, 120°
87.(b) Let $\mathrm{z}_{1}, \mathrm{z}_{2}, \mathrm{z}_{3}$ be three complex numbers in AP so $2 \mathrm{z}_{2}=$ $\mathrm{Z}_{1}+\mathrm{Z}_{3}$
$\Rightarrow \quad z_{2}$ is midpoint of line joining z_{1} and z_{3}. So they lie on a straight line
88.(c) Given eq^{n} is: $\mathrm{x}^{2}+\mathrm{px}+\mathrm{q}=0$

Let α and β be the roots.
Then $\alpha+\beta=-\mathrm{p}, \alpha \beta=\mathrm{q}$
Given $\alpha+\beta=3(\alpha-\beta) \Rightarrow \alpha-\beta=-\frac{p}{3}$
So, $\quad(\alpha-\beta)^{2}=\left(-\frac{p}{3}\right)^{2}$
or, $\quad(\alpha+\beta)^{2}-4 \alpha \beta=\frac{p^{2}}{9}$
or, $\quad p^{2}-4 q=\frac{p^{2}}{9} \quad$ or, $\frac{8 p^{2}}{9}=4 q \Rightarrow 2 p^{2}=9 q$
89.(b) $1.1!+2.2!+\ldots .+n . n!$
$=\sum_{\substack{k=1 \\ n}}^{n} k \cdot k!=\sum_{k=1}^{n}(k+1-r) k!$
$=\sum_{k=1}[(k+1) k!-k!]$
$\left.=\sum_{k=1}[k+1)!-k!\right]$
$=(\mathrm{n}+1)!-1$
90.(d) $\quad \vec{a}+\vec{b}-\vec{c}=0,|\vec{a}|=|\vec{b}|=|\vec{c}|=1$
or, $\vec{a}+\vec{b}=\vec{c}$
or, $\quad(\vec{a}+\vec{b})=\vec{c}^{2}$
or, $\quad|\overrightarrow{\mathrm{a}}|^{2}+|\overrightarrow{\mathrm{b}}|^{2}+2 \overrightarrow{\mathrm{a}} \cdot \overrightarrow{\mathrm{b}}=|\overrightarrow{\mathrm{c}}|^{2}$
or, $\quad 1+1+2|\vec{a}||\vec{b}| \cos \theta=1$
or, 2.1.1 $\cos \theta=-1$
or, $\quad \cos \theta=-\frac{1}{2} \Rightarrow \theta=\frac{2 \pi}{3}$
91.(d) Here $\frac{e^{7 x}+e^{x}}{e^{3 x}}=e^{4 x}+e^{-2 x}$

$$
=\sum_{n=0}^{\infty} \frac{4^{n} x^{n}}{n!}+\sum_{n=0}^{\infty} \frac{(-2)^{n} x^{n}}{n!}
$$

$\therefore \quad$ Coeff. of $x^{n}=\frac{4^{n}}{n!}+\frac{(-2)^{n}}{n!}=\frac{4^{n}+(-2)^{n}}{n!}$
92.(c) Given $\mathrm{m}_{2}=5 \mathrm{~m}_{1} \Rightarrow \mathrm{~m}_{1}+5 \mathrm{~m}_{1}=\frac{2 \mathrm{~h}}{\mathrm{~b}}$
$\Rightarrow \quad \mathrm{m}_{1}=-\frac{2 \mathrm{~h}}{6 \mathrm{~b}}$ and $\mathrm{m}_{1} \cdot 5 \mathrm{~m}_{1}=\frac{\mathrm{a}}{\mathrm{b}} \Rightarrow 5 \cdot\left(-\frac{2 \mathrm{~h}}{6 \mathrm{~b}}\right)^{2}=\frac{\mathrm{a}}{\mathrm{b}}$
$\Rightarrow 5 \cdot \frac{4 \mathrm{~h}^{2}}{36 \mathrm{~b}^{2}}=\frac{\mathrm{a}}{\mathrm{b}} \quad \Rightarrow 5 \mathrm{~h}^{2}=9 \mathrm{ab}$
93.(a) As the parabola pases through the point $(-2,1)$ we have, $1^{2}=4 . p .(-2) \Rightarrow 4 p=-\frac{1}{2}$
$\therefore \quad$ Length of latus rectum $=\frac{1}{2}$
94.(b) For a line equally inclined to the coordinate axes, $\alpha=$ $\beta=\gamma$
So, $\cos ^{2} \alpha+\cos ^{2} \alpha+\cos ^{2} \alpha=1 \Rightarrow \cos \alpha= \pm \frac{1}{\sqrt{3}}$

$$
\text { de's are } \pm \frac{1}{\sqrt{3}}, \pm \frac{1}{\sqrt{3}}, \pm \frac{1}{\sqrt{3}}
$$

The possible combinations is 8 but 4 of them are opposite of other 4.

Solving $\mathrm{y}=\mathrm{x}^{2}$ with $\mathrm{y}=\mathrm{x}$,
$x^{2}=x \Rightarrow x=0,1$
$\therefore \quad$ Required area $=2 . \int_{0}\left(x-x^{2}\right) d x$

$$
\begin{aligned}
& =2\left[\frac{\mathrm{x}^{2}}{2}-\frac{\mathrm{x}^{3}}{3}\right]_{0}^{1}=2\left[\frac{1}{2}-\frac{1}{3}\right] \\
& =2 \cdot \frac{1}{6}=\frac{1}{3} \text { sq. units }
\end{aligned}
$$

96.(c)

Given $\mathrm{A}+\mathrm{B}=\frac{\pi}{2} \Rightarrow \mathrm{~B}=\frac{\pi}{2}-\mathrm{A}$
Let $\mathrm{P}=\cos \mathrm{A} \cos \mathrm{B}=\cos \mathrm{A} \cos \left(\frac{\pi}{2}-\mathrm{A}\right)=\cos \mathrm{A} \sin \mathrm{A}$ $=\frac{1}{2} \sin 2 \mathrm{~A}$
Then $\frac{d P}{d A}=\cos 2 A, \frac{d^{2} p}{{d A^{2}}^{2}}=-2 \sin 2 A$
For maxima or minima, $\frac{d p}{d A}=0 \Rightarrow \cos 2 A=0$
$\Rightarrow 2 \mathrm{~A}=\frac{\pi}{2} \Rightarrow \mathrm{~A}=\frac{\pi}{4}$
At $\mathrm{A}=\frac{\pi}{4}, \frac{\mathrm{~d}^{2} \mathrm{P}}{\mathrm{dA}^{2}}=-2<0$
$\therefore \quad$ Max. of $\mathrm{P}=\frac{1}{2} \sin 2 \cdot \frac{\pi}{4}=\frac{1}{2}$
97.(d)

