PEA's

TRIBHUVAN UNIVERSITY INSTITUTE OF ENGINEERING

B.E. Model Entrance Exam

2080

Date: 2080-2-06

Hints and Solutions

PEA Association Pvt. Ltd. Thapathali, Kathmandu, Tel: 5345730, 5357187
31(c)
$$\lim_{x \to 0} \frac{\log(1+x)}{x} = \lim_{x \to 0} \log(\frac{\log(1+x)}{x}) = \log c$$
32(d) $a = 5, s = 15$
or, $\frac{1}{1-r} = 15$ or, $\frac{1}{1-r} = 15$ or, $1-r = \frac{1}{3}$
 $3 \cdot r = 1 - \frac{1}{3} = \frac{2}{3}$
33(h) Here fixeosect' cour'ds
Put $y = x^{-1}$ is $\frac{1}{2} = \frac{2}{3}$ six.
So foreory $\frac{dy}{2} = \frac{\cos y}{2} + c = \frac{\cos x^{-1}}{2} + c$
34(c) AuB = [-4, 4], Ar-B = (1, 3)
35(d) $\left(\frac{x}{3}\right)^{-1} = \left(\frac{x}{2}\right)^{-1} = \frac{x^{-1}}{2} = \frac{1}{2} = \frac{1}{2}$ ben
 $\Rightarrow C(43, 27) - C(43, 4+1)$ constraint -1
 $\Rightarrow c = (-7, 27) - (-12) = 2\sqrt{2+1+12} = 2.4 = 8 \min s$
37(d) Length of intercepts on saviss $-2\sqrt{2}/2^{-1}$
 $= 2\sqrt{-27(-1-12)} = 2\sqrt{2+1+12} = 2.4 = 8 \min s$
 $3(e) (\sin - b) (a + b) = \sin - a + a + b + b + a + 5 + b = 0 + a - 5 + a + 5 + b = 0 + a - 5 + a + 5 + b = 0 + a - 5 + a + 5 + b + 5 + b = 0 + a - 5 + a + 5 + b + 5 + b = 0 + a - 5 + a + 5 + b + 5 + b = 0 + a - 5 + a + 5 + b + 2(a - 5)$
39(d) cosed = sinu or, coole - cool $(\frac{\pi}{2} - \alpha)$
 $\therefore \quad 0 - 2 \operatorname{ant} \pm \left(\frac{\pi}{2} - \alpha\right)$
 $(1, b) \operatorname{Here}(\pi x) = \operatorname{cort}^{-1} x + 5 + e^{-1} + 1 + a^{-1} + e^{-1} + e^{-1} + 1 + a^{-1} + e^{-1} + 1 + a^{-1} + a^{-1} + 1 + a^{-1} + a^{$

PEA Association Pvt. Ltd. Thapathali, Kathmandu, Tel: 5345730, 5357187		
	$\therefore f_2 = 1.1 \times 400 = 440 \text{ Hz}$	or, $E.e.s = E_i$
67.(d)	$\mathbf{E} = -\frac{\mathbf{d}\mathbf{v}}{\mathbf{d}\mathbf{x}} = -(10\mathbf{x} + 10)$	or, $\frac{V}{d}$ es = 15.6 × 1.6 × 10 ⁻¹⁹
$(0, (\cdot))$	x = 1 then $E = -20V/m$	or, $V = \frac{15.6 \times 0.013}{4 \times 10^{15}} = 5070 V$
68.(a)	Pd between B & D will be zero if $\frac{R_{AB}}{R_{BC}} = \frac{R_{AD}}{R_{DC}}$	4×10^{-1} 75.(d) 0.3 MHNO ₃ = 0.3 N HNO ₃
		$0.3 \text{ M H}_2\text{SO}_4 = 0.6 \text{ N H}_2\text{SO}_4$
	or, $\frac{12}{0.5} = \frac{x+6}{0.5}$	or, $N_1V_1 + N_2V_2 = N_3V_3$ or, $0.3 \times 100 + 0.6 \times 200 = N_3 \times 300 \Longrightarrow N_3 = 0.5$
	or, $x + 6 = 12$ or, $x = 6 \Omega$	76.(c) $Ux/Uy = \sqrt{\frac{3RT}{Mx}} / \sqrt{\frac{3RT}{My}} = \sqrt{\frac{My}{Mx}} = \frac{1}{9}$
69.(c)	On AD A B	77.(c) Kb = $\frac{m \times W \times \Delta T}{w \times 1000}$ where, m \rightarrow molecular wt. of
	$F_1 = BI_c I_c$ $\mu_0 I_1$	solute.
	$=\frac{\mu_0 l_1}{2\pi a} \times I_c l_c$	$=\frac{180 \times 100 \times 0.1}{1.8 \times 1000} = 1 \text{ k/moL}$
	$=\frac{4\pi \times 10^{-7} \times 25 \times 15 \times 0.25}{2\pi \times 0.02}$	78.(b) With KMnO ₄ /OH (Baeyer's reagent), ethyne gives
	$= 9.4 \times 10^{-4} \text{ N toward wire}$	oxalic acid and ethene gives glycol.
	On BC $F_2 = BI_c I_c$	79.(b) One electron is shifted from 3d to 4p – ortbital. 80.(c) $Cl_2 + concNaOH \rightarrow NaCl + NaClO_3$
	$=\frac{\mu_0 I_1}{2\pi(a+b)} \times I_c I_c$	(hot) 81.(a) Thermal stability of alkaline earth metals increases
	$=\frac{4\pi \times 10^{-7} \times 25 \times 15 \times 0.25}{2\pi (0.1 + 0.02)}$	down the group. 82.(c) As $3 - \sin 2x \neq 0$, So domain = \Re . Also $-1 \le \sin x \le 1$
	= 1.56×10^{-4} N a way from wire	So range = $\left[\frac{1}{3-(-1)}, \frac{1}{3-1}\right] = \left[\frac{1}{4}, \frac{1}{2}\right]$
70.(d)	$F = F_1 - F_2 = 7.8 \times 10^{-4} \text{ N towards}$ $P = I_{\text{rms}} \mathbf{V}_{\text{rms}} \cos \phi$	83.(c) Put $y = \cos^{-1}x$ i.e. $x = \cos y$
/0.(u)	$= \frac{I_0}{\sqrt{2}} \times \frac{V_0}{\sqrt{2}} \cos \frac{\pi}{2} = 0$	$\therefore dy = -\frac{1}{\sqrt{1-x^2}} dx$
71.(c)	$\sqrt{2}$ $\sqrt{2}$ $\sqrt{2}$ $\sqrt{2}$ $d\sin\theta_1 = \lambda$	Then I = $-\int y \cos y dx$
/1.(0)	or, $\sin\theta_1 = \frac{\lambda}{d}$	= $-\int y \int \cos y dy - \int \left(\frac{dy}{dx} \int \cos y dy\right) dy$
	or, $\theta_1 = \sin^{-1} \left(\frac{5000 \times 10^{-10}}{0.001 \times 10^{-3}} \right) = 30^{\circ}$	$= -[y \operatorname{siny} - \int \operatorname{siny} dy]$
72.(a)	For end A $(0.001 \times 10^{-3})^{-30}$	$= -[ysiny + cosy] + c$ $= -cosy - y\sqrt{1 - cos^2y} + c$
72.(a)	$\frac{101 \text{ end } A}{\text{u} = \text{v} = 2\text{f}, \text{O} = \frac{\text{f}}{3}}$	$=-x-\cos^{-1}x\sqrt{1-x^{2}}+c$
	For end B	84.(a) Here $x = sint$, $y = sinpt$ dx dy
	$u' = 2f - \frac{f}{3} = \frac{5f}{3}$	So, $\frac{dx}{dt} = \cos t$, $\frac{dy}{dt} = \operatorname{pcospt}$
	5 5	Then $\frac{dy}{dx} = \frac{\frac{dy}{dt}}{\frac{dx}{dx}} = \frac{pcospt}{cost}$
	$\mathbf{v}' = \frac{\mathbf{f}\mathbf{u}}{\mathbf{u} - \mathbf{f}} = \frac{\mathbf{f} \times \frac{3\mathbf{I}}{3}}{5\mathbf{f}}$	Then $\frac{dx}{dx} = \frac{dx}{dt} = \frac{1}{\cos t}$
	$\overline{3}$ -f	Also, $\frac{d^2y}{dx^2} = \frac{d}{dx} \left(\frac{dy}{dx} \right) = \frac{d}{dt} \left(\frac{pcospt}{cost} \right) \frac{dt}{dx}$
	$=\frac{5f^2}{3} \times \frac{3}{2f} = 2.5 \text{ f}$	
	Length of image (I) = $v' - v$ = 2.5f - 2f = 0.5f	$= p \left[\frac{\cos t (-p \sin p t) - (-\sin t) \cos p t}{\cos^2 t} \right] \cdot \frac{1}{\cos t}$
	$m = \frac{I}{0} = \frac{0.5f}{f} = 1.5$	or, $\cos^2 t \frac{d^2 y}{dx^2} = p \left[-p \operatorname{sinpt} + \operatorname{sint} \frac{\cos p t}{\cos t} \right]$
	3	or, $\cos^2 t \frac{d^2 y}{dx^2} = -p^2 \operatorname{sinpt} + \operatorname{sint} \left(\frac{\operatorname{pcospt}}{\operatorname{cost}} \right)$
73.(a)	$\frac{N}{N_0} = \left(\frac{1}{2}\right)^{\frac{t}{T_{1/2}}}$	or, $(1 - \sin^2 t) \frac{d^2 y}{dx^2} = -p^2 \sinh t + \sin t \frac{dy}{dx}$
		i.e. $(1 - x^2) \frac{d^2y}{dx^2} - x\frac{dy}{dx} + p^2y = 0$
	$=\left(\frac{1}{2}\right)^{\frac{20}{5}}=\frac{1}{16}$	π
	$Decayed = 1 - \frac{N}{N_0} = \frac{15}{16} \times 100\%$	· ·
74.(c)	= 93.75% Work done = E _i	or, $\tan^{-1}\frac{x+y}{1-xy} = \frac{\pi}{4}$
/=.(c)		

PEA Association Pvt. Ltd. Thapathali, Kathmandu, Tel: 5345730, 5357187

$$\begin{array}{c} \begin{array}{c} \frac{x+y}{1-xy} - \tan\frac{\pi}{4} \\ 0, x+y+u=1 - xy \\ i.e. x+y, y=1 \end{array} \\ 86.(d) 1 + \sin x + \sin^2 x - (mo = 4 + 2\sqrt{3}) \\ or, \frac{1}{1-\sin x} = \frac{4}{4\sqrt{3}} \\ 0, \frac{1}{1-\sin x} = \frac{1}{4+2\sqrt{3}} \\ or, \sin x - \left[\frac{4-2\sqrt{3}}{1-612} - 1 - \frac{4-2\sqrt{3}}{2} - \frac{\sqrt{3}}{2} \\ 0, \sin x - \left[\frac{4-2\sqrt{3}}{1-612} - 1 - \frac{4-2\sqrt{3}}{4} - \frac{\sqrt{3}}{2} \\ 0, \sin x - \left[\frac{4-2\sqrt{3}}{1-612} - 1 - \frac{4-2\sqrt{3}}{4} - \frac{\sqrt{3}}{2} \\ 0, \sin x - \frac{1}{4-2\sqrt{3}} \\ 1 - \sin x = \frac{1}{4+2\sqrt{3}} \\ or, \sin x - 1 - \frac{4-2\sqrt{3}}{16-12} - 1 - \frac{4-2\sqrt{3}}{4} - \frac{\sqrt{3}}{2} \\ 0, \sin x - 1 - \frac{4-2\sqrt{3}}{16-12} - 1 - \frac{4-2\sqrt{3}}{4} - \frac{\sqrt{3}}{2} \\ 0, \sin x - 1 - \frac{4-2\sqrt{3}}{16-12} - 1 - \frac{4-2\sqrt{3}}{4} - \frac{\sqrt{3}}{2} \\ 0, \sin x - 1 - \frac{4-2\sqrt{3}}{16-12} - 1 - \frac{4-2\sqrt{3}}{4} - \frac{\sqrt{3}}{2} \\ 0, \sin x - 1 - \frac{4-2\sqrt{3}}{16-12} - 1 - \frac{4-2\sqrt{3}}{4} - \frac{\sqrt{3}}{2} \\ 0, \sin x - 1 - \frac{4-2\sqrt{3}}{16-12} - 1 - \frac{4-2\sqrt{3}}{4} - \frac{\sqrt{3}}{2} \\ 0, \sin x - 1 - \frac{4-2\sqrt{3}}{16-12} - 1 - \frac{4-2\sqrt{3}}{4} - \frac{\sqrt{3}}{2} \\ 0, \sin x - 1 - \frac{4-2\sqrt{3}}{16-12} - 1 - \frac{4-2\sqrt{3}}{4} - \frac{\sqrt{3}}{2} \\ 0, \sin x - 1 - \frac{4-2\sqrt{3}}{16-12} - 1 - \frac{4-2\sqrt{3}}{4} - \frac{\sqrt{3}}{2} \\ 0, \sin x - 1 - \frac{4-2\sqrt{3}}{16} - \frac{1}{2} \\ 0, \sin x - 1 - \frac{4-2\sqrt{3}}{16} - \frac{1}{2} \\ 0, \sin x - 1 - \frac{4-2\sqrt{3}}{16} - \frac{1}{2} \\ 0, \sin x - 1 - \frac{4-2\sqrt{3}}{16} - \frac{1}{2} \\ 0, \sin x - 1 - \frac{4-2\sqrt{3}}{16} - \frac{1}{2} \\ 0, \sin x - 1 - \frac{4-2\sqrt{3}}{16} - \frac{1}{2} \\ 0, \sin x - 1 - \frac{4-2\sqrt{3}}{16} - \frac{1}{2} \\ 0, \sin x - 1 - \frac{4-2\sqrt{3}}{16} - \frac{1}{2} \\ 0, \sin x - 1 - \frac{4-2\sqrt{3}}{16} - \frac{1}{2} \\ 0, \sin x - 1 - \frac{4-2\sqrt{3}}{16} - \frac{1}{2} \\ 0, \sin x - 1 - \frac{4-2\sqrt{3}}{16} - \frac{1}{2} \\ 0, \sin x - 1 - \frac{4-2\sqrt{3}}{16} - \frac{1}{2} \\ 0, \sin x - 1 - \frac{4-2\sqrt{3}}{16} - \frac{1}{2} \\ 0, \sin x - 1 - \frac{4-2\sqrt{3}}{16} - \frac{1}{2} \\ 0, \sin x - 1 - \frac{4-2\sqrt{3}}{16} - \frac{1}{2} \\ 0, \sin x - 1 - \frac{4-2\sqrt{3}}{16} - \frac{1}{2} \\ 0, \sin x - 1 - \frac{4-2\sqrt{3}}{16} - \frac{1}{2} \\ 0, \sin x - 1 - \frac{4-2\sqrt{3}}{16} - \frac{1}{2} \\ 0, \sin x - 1 - \frac{4-2\sqrt{3}}{16} - \frac{1}{2} \\ 1, \sin x - \frac$$

...The End...