PEA's

TRIBHUVAN UNIVERSITY INSTITUTE OF ENGINEERING

B.E. Model Entrance Exam 2079

Date: 2079-11-27

Hints and Solutions

PEA Association Pvt. Ltd. Thapathali, Kathmandu, Tel: 5345730, 5357187

Section - I

1.(b) $\tan \theta=\frac{\mathrm{u}_{\mathrm{v}}}{\mathrm{u}_{\mathrm{x}}} \quad$ or, $\theta=\tan ^{-1}\left(\frac{\mathrm{~b}}{\mathrm{a}}\right)$
2.(b) $\mathrm{f}=\frac{1}{\mathrm{~T}}=\frac{1}{2 \times 0.25}=2 \mathrm{~Hz}$
3.(c) Smaller it the least count of device, more accurate and precise is the measurement. Measurement 1.000 cm is done by device of least count 0.001 cm
4.(b) $\quad a=\sqrt{a_{r}^{2}+a_{t}^{2}}$
or, $a=\sqrt{\left(\frac{v^{2}}{r}\right)^{2}+a_{t}^{2}}$
or, $a=\sqrt{\left(\frac{20^{2}}{100}\right)^{2}+3^{2}}$
or, $\quad \mathrm{a}=5 \mathrm{~m} / \mathrm{s}^{2}$
5.(a)
6.(c)
7.(d) R.H. $=\frac{\text { S.V.P. at dew point }}{\text { S.V.P. at room temperature }} \times 100 \%$

$$
\begin{aligned}
& =\frac{x}{x} \times 100 \% \\
& =100 \%
\end{aligned}(\because \text { dew point }=\text { room temperature })
$$

8.(a) $\phi=\frac{1}{\varepsilon_{0}} q_{\mathrm{net}}=0\left(\because \mathrm{q}_{\mathrm{net}}=0\right)$
9.(a) Persistence of hearing $(t)=\frac{1}{10} \mathrm{sec}$
$\therefore \quad 2 \mathrm{~d}=\mathrm{V} \times \mathrm{t}$
or, $d=\frac{V \times t}{2}$
or, $\quad d=\frac{V}{2} \times \frac{1}{10}=\frac{V}{20}$
10.(d) $\beta=\frac{\lambda D}{d}$, i.e. $\beta \propto \lambda$

When frequency is doubled, wavelength is halfed, so fringe width is halved.
11.(a) $\mathrm{I}=\frac{\varepsilon}{\mathrm{r}}$
or, $\mathrm{r}=\frac{1.5}{3} \quad$ or, $\mathrm{r}=0.5 \Omega$
12.(d) $\phi=$ LI

$$
\begin{aligned}
& =8 \times 10^{-3} \times 12 \times 10^{-3} \\
& =96 \times 10^{-6} \mathrm{~Wb}
\end{aligned}
$$

13.(d) γ-ray is originated from nuclear transition.
14.(c) Energy stored $=$ Energy density \times volume

$$
\begin{aligned}
& =\frac{1}{2} \varepsilon_{0} \mathrm{E}^{2} \times \mathrm{V} \\
& =\frac{1}{2} \times 8.854 \times 10^{-12} \times 120^{2} \times 1 \\
& =6.37 \times 10^{-8} \mathrm{~J}
\end{aligned}
$$

15.(a) $\quad v=\frac{E}{B}=\frac{1.50 \times 10^{3}}{0.350}=4.28 \times 10^{3} \mathrm{~m} / \mathrm{s}$
)
16.(a) Since, diode is reverse biased, reading of A_{1} is OA. For A_{2},

$$
\mathrm{I}=\frac{\mathrm{E}}{5}=\frac{5}{5}=1 \mathrm{~A}
$$

17.(b) $\mathrm{W}=\frac{1}{2} \times \mathrm{F} \times \Delta l, \mathrm{~F}=$ thermal force

$$
\Delta l=\text { extension }
$$

or, $\mathrm{W}=\frac{1}{2} \times \mathrm{YA} \alpha \theta \times l \alpha \theta$
or, $\mathrm{W}=\frac{1}{2} \mathrm{YA} l \alpha^{2} \theta^{2}$
18.(a) Bornit is $\mathrm{Cu}_{3} \mathrm{FeS}_{3}$
19.(b)
20.(a)
21.(a) $\mathrm{SO}_{2}+2 \mathrm{H}_{2} \mathrm{O} \rightarrow \mathrm{H}_{2} \mathrm{SO}_{4}+2[\mathrm{H}]$
22.(c)
23.(a)
24.(a)
25.(d)
26.(d)
27.(b)
28.(c)
29.(c)
graphs
These graphs do not intersect. So $\mathrm{A} \cap \mathrm{B}=\phi$
We have A. Adj. $A=|A| I$, So, $|A|\left(\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right)$

$$
=10\left(\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right) \Rightarrow|\mathrm{A}|=10
$$

31.(c) $|z|=|3+4 i|=\sqrt{3^{2}+4^{2}}=5$ and $|w|=|4-3 i|$

$$
=\sqrt{4^{2}+(-3)^{2}}=5
$$

So, $|z|=|w|$
$\lim _{x \rightarrow 0} \frac{\log _{a}(1+x)}{x}=\lim _{x \rightarrow 0} \log _{a} \mathrm{e} \cdot \frac{\log _{e}(1+x)}{x}$

$$
=\log _{\mathrm{a}} \mathrm{e} \cdot 1=\log _{\mathrm{a}} \mathrm{e}
$$

33.(a) $y=1+x+x^{2}+\ldots$ to $\infty=\frac{1}{1-x}$
$\Rightarrow \quad 1-x=\frac{1}{y} \quad \Rightarrow x=1-\frac{1}{y}=\frac{y-1}{y}$
34.(c) Put $y=\sqrt{x} \quad \therefore d y=\frac{1}{2 \sqrt{x}} d x$
i.e. $2 d y=\frac{1}{\sqrt{x}} d x$. Then

$$
\int \frac{2 \sqrt{x}}{\sqrt{x}} d x=2 \int \mathrm{e}^{\mathrm{y}} \mathrm{dy}=2 \mathrm{e}^{\mathrm{y}}+\mathrm{c}=2 \mathrm{e}^{\sqrt{x}}+\mathrm{c}
$$

35.(a) Replacing y by -y , we have $(-\mathrm{y})^{2}=4 \mathrm{ax}$
i.e. $y^{2}=4 a x$. So it is symmetric about x-axis.
36.(d) $\quad\left(1+3 x+3 x^{2}+x^{3}\right)^{15}=(1+x)^{45}$

So, coeff. of x^{10} is $c(45,10)$

PEA Association Pvt. Ltd. Thapathali, Kathmandu, Tel: 5345730, 5357187

37.(d) As origin is the centre of the circle $x^{2}+y^{2}=25$. So infinitely many normals are possible.
38.(b) Equation of ellipse is $3 x^{2}+4 y^{2}=12$
$\Rightarrow \frac{\mathrm{x}^{2}}{4}+\frac{\mathrm{y}^{2}}{3}=1$
So, $e=\sqrt{1-\frac{3}{4}}=\sqrt{\frac{1}{4}}=\frac{1}{2}$
39.(b) $\quad|\vec{a} \times \vec{b}|=(\vec{a} \cdot \vec{b}) \Rightarrow|\vec{a}||\vec{b}| \sin \theta=|\vec{a}||\vec{b}| \cos \theta$ $\Rightarrow \tan \theta=1 \Rightarrow \theta=45^{\circ}$
40.(d) $\quad \operatorname{cosec} \mathrm{A}(\sin \mathrm{B} \cos \mathrm{C}+\cos \mathrm{B} \operatorname{sinc} \mathrm{C})$
$=\operatorname{cosec} A \cdot \sin (B+C)$
$=\operatorname{cosec} \mathrm{A} \cdot \sin (\pi-\mathrm{A})$
$=\operatorname{cosec} \mathrm{A} \cdot \sin \mathrm{A}=1$
41.(d) $\sin \operatorname{arc} \cos t=\sin \cos ^{-1} t=\sin \sin ^{-1} \sqrt{1-t^{2}}$
$=\sqrt{1-\mathrm{t}^{2}}=\cos \cos ^{-1} \sqrt{1-\mathrm{t}^{2}}$
$=\cos \sin ^{-1} \mathrm{t}$
$=\cos (\operatorname{arc} \sin t)$
42.(c) For minimum value, we must have,
$4 x+20=0 \Rightarrow x=-5$
43.(c) Given $\cos x+\cos ^{2} x=1$
$\Rightarrow \quad \cos x=1-\cos ^{2} x=\sin ^{2} x$ So $\sin ^{2} x+\sin ^{4} x=\sin ^{2} x+\left(\sin ^{2} x\right)^{2}=\cos x+$ $\cos ^{2} \mathrm{x}=1$
44.(b) $\sin ^{2} \alpha+\sin ^{2} \beta+\sin ^{2} \gamma=1-\cos ^{2} \alpha+1-\cos ^{2} \beta+$ $1-\cos ^{2} \gamma$
$=3-\left(\cos ^{2} \alpha+\cos ^{2} \beta+\cos ^{2} \gamma\right)=3-1=2$
45.(a) Comparing with $\mathrm{ax}^{2}+2 \mathrm{hxy}+\mathrm{by}^{2}=0$, we get a $=1, \mathrm{~h}=-3, \mathrm{~b}=9$
Here $h^{2}=(-3)^{2}=9=1.9=a b$
So angle $=0^{\circ}$
46.(b) As both roots are zero, so constant term $=0$, coeff of $\mathrm{x}=0$
$\Rightarrow \lambda=0, \mathrm{k}=2$
47.(c) $y=\sin ^{-1} \frac{2 \sqrt{x}}{\sqrt{x}+1}+\sec ^{-1} \frac{\sqrt{x}+1}{2 \sqrt{x}}=\sin ^{-1} \frac{2 \sqrt{x}}{\sqrt{x}+1}+$ $\cos ^{-1} \frac{2 \sqrt{\mathrm{x}}}{\sqrt{\mathrm{x}}+1}=\frac{\pi}{2}$
So, $\frac{d y}{d x}=0$
48.(d) Given, $2 \mathrm{y}=2-\mathrm{x}^{2}$, on differentiation, we have $\frac{d y}{d x}=-x$
At $x=1, \frac{d y}{d x}=-1 \Rightarrow \tan \theta=-1 \Rightarrow \theta=135^{\circ}$

49.(a)	$50 .(\mathrm{a})$	$51 .(\mathrm{c})$	$52 .(\mathrm{d})$	$53 .(\mathrm{a})$	$54 .(\mathrm{c})$
55.(c)	$56 .(\mathrm{d})$	$57 .(\mathrm{a})$	$58 .(\mathrm{b})$	$59 .(\mathrm{c})$	$60 .(\mathrm{b})$

Section - II

61.(b) $\mathrm{T}-\mathrm{mg}=\mathrm{ma}$
or, $\quad \mathrm{a}=\frac{\mathrm{T}-\mathrm{mg}}{\mathrm{m}}$
or, $\mathrm{a}=\frac{50,000-5000 \times 9.8}{5000}$
or, $\mathrm{a}=0.2 \mathrm{~m} / \mathrm{s}^{2}$

Then, $\mathrm{h}=\frac{1}{2} \mathrm{at}^{2}=\frac{1}{2} \times 0.2 \times 10^{2}=10$
62.(c)
$\omega=a-b t \ldots$...(i)
$\therefore \quad \alpha=\frac{\mathrm{d} \omega}{\mathrm{dt}}$
or, $\quad \alpha=-\mathrm{brad} / \mathrm{s}^{2}$ (retardation which is uniform)
When $t=0$, then

$$
\omega=\mathrm{arad} / \mathrm{s}
$$

or, $\omega_{0}=\mathrm{arad} / \mathrm{s}$
Then, $\omega=\omega_{0}{ }^{2}+2 \alpha \theta$
or, $0=\mathrm{a}^{2}-2 \times \mathrm{b} \times \theta$
($\because \omega=0$ as it come to rest)
or, $\theta=\frac{\mathrm{a}^{2}}{2 \mathrm{~b}}$
63.(b) Velocity of efflux is

$$
\mathrm{v}=\sqrt{2 \mathrm{gh}}=\sqrt{2 \times 10 \times 5}=10 \mathrm{~m} / \mathrm{s}
$$

Then volume per second is

$$
\mathrm{V}=\mathrm{Av}=1 \times 10^{-4} \times 10=10^{-3} \mathrm{~m}^{3} / \mathrm{s}
$$

64.(a) Work-done $=$ change in K.E.
or, $\int_{x=20 m}^{x=30 m} F d x=$ K.E. $f-K . E_{i}$
or, $\int_{20}^{30}(-0.1 x) \mathrm{dx}=\mathrm{K} . \mathrm{E}_{\mathrm{f}}-\frac{1}{2} \mathrm{mu}^{2}$
or, $-0.1\left[\frac{\mathrm{x}^{2}}{2}\right]_{20}^{30}=$ K. $\mathrm{E}_{\mathrm{f}}-\frac{1}{2} \times 10 \times 10^{2}$
or,,$-\frac{0.1}{2}\left[30^{2}-20^{2}\right]=\mathrm{K} . \mathrm{E}_{\mathrm{f}}-500$
or, K. $\mathrm{E}_{\mathrm{f}}=500-25$
or, K. $\mathrm{E}_{\mathrm{f}}=475 \mathrm{~J}$
65.(d) $\mu=\frac{\text { Real depth }}{\text { Apparent depth }}$

$$
\text { Real depth }=1.5 \times 7=10.5 \mathrm{~cm}
$$

66.(c) 50% of $\frac{1}{2} \mathrm{mv}^{2}=\mathrm{ms} \Delta \theta+\mathrm{mL}_{\mathrm{f}}$
or, $\frac{1}{4} \mathrm{v}^{2}=\mathrm{s} \Delta \theta+\mathrm{L}_{\mathrm{f}}$
or, $\frac{1}{4} \mathrm{v}^{2}=0.03 \times 4200 \times(330-20)+6 \times 4200$
or, $v=506.9 \mathrm{~m} / \mathrm{s} \approx 507 \mathrm{~m} / \mathrm{s}$
67.(d)
$C_{\text {rms }}=\sqrt{\frac{3 R T}{M}}$
i.e. $C_{\text {rms }} \propto \sqrt{\frac{T}{M}}$
$\therefore \quad \frac{\left(\mathrm{C}_{\mathrm{rms}}\right)_{\mathrm{H}_{2}}}{\left(\mathrm{C}_{\mathrm{rms}}\right)_{\mathrm{N}_{2}}}=\sqrt{\frac{\mathrm{T}_{\mathrm{H}_{2}}}{\mathrm{M}_{\mathrm{H}_{2}}} \times \frac{\mathrm{M}_{\mathrm{N}_{2}}}{\mathrm{~T}_{\mathrm{N}_{2}}}}$
or, $7=\sqrt{\frac{\mathrm{T}_{\mathrm{H}_{2}}}{2} \times \frac{28}{300}}$
or, $\quad \mathrm{T}_{\mathrm{H}_{2}}=\frac{49 \times 2 \times 300}{28}$
or, $\mathrm{T}_{\mathrm{H}_{2}}=1050 \mathrm{~K}$

PEA Association Pvt. Ltd. Thapathali, Kathmandu, Tel: 5345730, 5357187

68.(a) $\mathrm{P}=\mathrm{I}_{\mathrm{rms}} \mathrm{V}_{\mathrm{rms}} \cos \phi ;$
$\phi=$ phase difference between current \& voltage
$=\frac{\mathrm{I}_{0}}{\sqrt{2}} \times \frac{\mathrm{V}_{0}}{\sqrt{2}} \times \cos \frac{\pi}{3}=\frac{2 \times 5}{2} \times \frac{1}{2}=2.5$ watts
69.(d) $\mathrm{B}=\mu_{0} \mathrm{nI}$

$$
=4 \pi \times 10^{-7} \times 12300 \times 3.60
$$

$$
=0.055 \mathrm{~T}
$$

$\therefore \quad \mathrm{F}_{\mathrm{m}}=\operatorname{Bevsin} \theta$

$$
\begin{aligned}
& =\mathrm{Be} \times 0.0187 \mathrm{C} \times \sin 90^{\circ} \\
& =0.055 \times 1.6 \times 10^{-19} \times 0.0187 \times 3 \times 10^{8} \\
& =4.94 \times 10^{-14} \mathrm{~N}
\end{aligned}
$$

70.(b) $\frac{1}{\mathrm{C}_{\mathrm{eq}}}=\frac{1}{\mathrm{C}}+\frac{1}{2 \mathrm{C}}+\frac{1}{\mathrm{C}}$
or, $\frac{1}{\mathrm{C}_{\mathrm{eq}}}=\frac{5}{2 \mathrm{C}}$
or, $\mathrm{C}_{\mathrm{eq}}=\frac{2 \mathrm{C}}{5}$
or, $\mathrm{C}_{\mathrm{eq}}=\frac{2 \times 4}{5}$
or, $\quad \mathrm{C}_{\mathrm{eq}}=\frac{8}{5} \mu \mathrm{~F}$
or, $\quad \mathrm{C}_{\mathrm{eq}}=\frac{8}{5} \times 10^{-6} \mathrm{~F}$
Then, $\mathrm{E}=\frac{1}{2} \mathrm{C}_{\mathrm{eq}} \mathrm{V}^{2}$

$$
=\frac{1}{2} \times \frac{8}{5} \times 10^{-6} \times 15^{2}=1.8 \times 10^{-4} \mathrm{~J}
$$

71.(c) $\frac{\mathrm{N}}{\mathrm{N}_{0}}=\left(\frac{1}{\mathrm{e}}\right)^{\mathrm{t} / \mathrm{T}}$
or, $\frac{\mathrm{N}}{\mathrm{N}_{0}}=\left(\frac{1}{\mathrm{e}}\right)^{3 \mathrm{~T} / \mathrm{T}}$
or, $\frac{\mathrm{N}}{\mathrm{N}_{0}}=\frac{1}{\mathrm{e}^{3}} \times 100 \%$

$$
=4.97 \%
$$

72.(a) $K . E_{p}=$ rest-mass of electron
or, K.E $\mathrm{E}_{\mathrm{p}}=\mathrm{m}_{0} \mathrm{c}^{2}$
or, $\quad \mathrm{K} . \mathrm{E}_{\mathrm{p}}=9.1 \times 10^{-31} \times\left(3 \times 10^{8}\right)^{2}$
or, $\quad K . E_{p}=8.2 \times 10^{-14} \mathrm{~J}$
Then, $\lambda_{\mathrm{p}}=\frac{\mathrm{h}}{\sqrt{2 \mathrm{~m}_{\mathrm{p}} \text { K.E } \mathrm{E}_{\mathrm{p}}}}$

$$
\begin{aligned}
& =\frac{6.62 \times 10^{-34}}{\sqrt{2 \times 1.66 \times 10^{-27} \times 8.2 \times 10^{-14}}} \\
& =4.012 \times 10^{-14} \mathrm{~m} \\
& =40.12 \times 10^{-15} \mathrm{~m}=40.12 \mathrm{fm}
\end{aligned}
$$

73.(b) The output power delivered by light source is

$$
\mathrm{P}_{\mathrm{out}}=\frac{\mathrm{n}}{\mathrm{t}} \frac{\mathrm{hc}}{\lambda} \quad \text { or, } \quad \mathrm{P}_{\mathrm{out}}=\frac{\mathrm{n}}{\mathrm{t}} \times \frac{\mathrm{hc}}{\lambda}
$$

or, $\mathrm{P}_{\text {out }}=\frac{2.3 \times 10^{20} \times 6.62 \times 10^{-34} \times 3 \times 10^{8}}{600 \times 10^{-9}}$
or, $\mathrm{P}_{\text {out }}=76.13$ watt
$\therefore \quad \eta=\frac{\mathrm{P}_{\text {out }}}{\mathrm{P}_{\text {in }}} \times 100 \%=\frac{76.13}{100} \times 100 \%=76.13 \%$
74.(a) $\quad V_{s}=\omega_{\mathrm{r}}$
or, $V_{s}=2 \pi f r$
or, $\quad V_{\mathrm{s}}=2 \pi \times \frac{400}{60} \times 1.2$
or, $\mathrm{V}_{\mathrm{s}}=50.26 \mathrm{~m} / \mathrm{s}$
Then, $f^{\prime}=\frac{V}{v+v_{s}} \times f$

$$
=\frac{340}{340+50.26} \times 500=435.6 \mathrm{~Hz}
$$

75.(b) According to Simon's $(\mathrm{n}+l)$ rule the highest energy is in $\mathrm{n}=3$ and $l 2(3+2=5$]
76.(a) $\mathrm{CaOCl}_{2}+2 \mathrm{HCl} \rightarrow \mathrm{CaCl}_{2}+\mathrm{H}_{2} \mathrm{O}+\mathrm{Cl}_{2}$
77.(c) $\mathrm{Conc}^{\mathrm{n}} \mathrm{NHO}_{3} \rightarrow \mathrm{H}_{2} \mathrm{O}+2 \mathrm{NO}_{2}+[\mathrm{O}]$
$\mathrm{I}_{2}+5[\mathrm{O}] \rightarrow \mathrm{I}_{2} \mathrm{O}_{5}$
$\mathrm{I}_{2} \mathrm{O}_{5}+\mathrm{H}_{2} \mathrm{O} \rightarrow 2 \mathrm{HIO}_{3}$
$\mathrm{HIO}_{3} \rightarrow \mathrm{HOIO}_{2}$
78.(c)
79.(c)
$\mathrm{Al}^{3+}+3 \mathrm{e}^{-} \rightarrow \mathrm{Al} \frac{\text { At. mass }}{3} \Rightarrow \mathrm{E}_{\mathrm{Al}}$
$\mathrm{Cu}^{2+}+2 \mathrm{e}^{-} \rightarrow \mathrm{Cu} \frac{\text { At mass }}{2} \Rightarrow \mathrm{E}_{\mathrm{Cu}}$
$\mathrm{Na}^{+}+1 \mathrm{e}^{-} \rightarrow \mathrm{Na} \frac{\text { At. mass }}{1} \Rightarrow \mathrm{E}_{\mathrm{Na}}$
80.(d) $\quad \mathrm{N}_{\text {mix }}=\frac{5 \times 1+20 \times 0.5+30 \times 0.33}{5+20+30}$

$$
=\frac{5+10+10}{55}=0.436 \mathrm{~N}
$$

$0.436 \times 55=1000 \times \mathrm{N}$
$\mathrm{N}=0.025 \mathrm{~N} \quad$ or, $\frac{\mathrm{N}}{40}$
81.(a) $\mathrm{Fe}_{2} \mathrm{O}_{3}+3 \mathrm{CO} \rightarrow 2 \mathrm{Fe}+3 \mathrm{CO}_{2}$

1 mole 3 moles
1 mole of $\mathrm{Fe}_{2} \mathrm{O}_{3}$ requires 3 mole of CO
Since 1 g mole of any gas at NTP occupies 22.42 at NTP 3 mole $\mathrm{CO}=3 \times 22.4=67.2$ or 67.2 dm^{3}
82.(a) Put $y=x e^{x}$
$\therefore \quad d y=\left(e^{x}+x e^{x}\right) d x=e^{x}(1+x) d x$ Then $\int \frac{(x+1) e^{x} d x}{\cos ^{2}\left(x e^{x}\right)}$

$$
\begin{aligned}
& =\int \frac{d y}{\cos ^{2} y}=\int \sec ^{2} y d y=\tan y+c \\
& =\tan \left(x e^{x}\right)+c
\end{aligned}
$$

83.(c) Given $y=\sin x$
$\frac{d y}{d x}=\cos x=\sin \left(\frac{\pi}{2}+x\right)$
$\frac{d^{2} y}{{d x^{2}}^{2}}=-\sin x=\sin (\pi+x)=\sin \left(2 \cdot \frac{\pi}{2}+x\right)$
$\frac{d^{3} y}{d x^{3}}=-\cos x=\sin \left(3 \frac{\pi}{2}+x\right)$
and so on $\frac{d^{n} y}{d x^{n}}=\sin \left(n \frac{\pi}{2}+x\right)$
84.(c) $2 \sin ^{-1} \frac{1}{2}+\cos ^{-1} \frac{1}{2}$

PEA Association Pvt. Ltd. Thapathali, Kathmandu, Tel: 5345730, 5357187

$=\sin ^{-1} \frac{1}{2}+\sin ^{-1} \frac{1}{2}+\cos ^{-1} \frac{1}{2}$
$=\frac{\pi}{6}+\frac{\pi}{2}=\frac{\pi+3 \pi}{6}=\frac{4 \pi}{6}=\frac{2 \pi}{3}$
85.(a) $\frac{\sin \mathrm{A}}{\sin \mathrm{C}}=\frac{\sin (\mathrm{A}-\mathrm{B})}{\sin (\mathrm{B}-\mathrm{C})}$
$\Rightarrow \frac{\sin (B+C)}{\sin (A+B)}=\frac{\sin (A-B)}{\sin (B-C)}$
$\Rightarrow \quad \sin ^{2} \mathrm{~B}-\sin ^{2} \mathrm{C}=\sin ^{2} \mathrm{~A}-\sin ^{2} \mathrm{~B}$
$\Rightarrow \mathrm{b}^{2}-\mathrm{c}^{2}=\mathrm{a}^{2}-\mathrm{b}^{2} \Rightarrow \mathrm{~b}^{2}-\mathrm{a}^{2}=\mathrm{c}^{2}-\mathrm{b}^{2}$
86.(a) Give $\left|\frac{z-5 i}{z+5 i}\right|=1$
or, $\quad|z-5 i|=|z+5 i|$
or, $\quad|x+i y-5 i|=|x+i y+5 i|$
or, $\sqrt{\mathrm{x}^{2}+(\mathrm{y}-5)^{2}}=\sqrt{\mathrm{x}^{2}+(\mathrm{y}+5)^{2}}$
or, $x^{2}+y^{2}-10 y+25=x^{2}+y^{2}+10 y+25$
or, $y=0$
\Rightarrow Real axis
87.(a) Let α and β be the roots

Then $A=\frac{\alpha+\beta}{2} \Rightarrow \alpha+B=2 A$

$$
\mathrm{G}=\sqrt{\alpha \beta} \Rightarrow \alpha \beta=\mathrm{G}^{2}
$$

$\therefore \quad$ Quadratic equation is $\mathrm{x}^{2}-2 \mathrm{~A}+\mathrm{G}^{2}=0$
88.(b) $\quad \mathrm{S}_{\mathrm{n}}=\frac{1}{2} \Sigma \mathrm{t}_{\mathrm{n}}=\frac{1}{2}\left(\Sigma \mathrm{n}^{2}+\Sigma \mathrm{n}\right)$
$=\frac{1}{2}\left[\frac{\mathrm{n}(\mathrm{n}+1)(2 \mathrm{n}+1)}{6}+\frac{\mathrm{n}(\mathrm{n}+1)}{2}\right]$
$=\frac{1}{2} \frac{\mathrm{n}(\mathrm{n}+1)}{2} \cdot\left[\frac{2 \mathrm{n}+1}{3}+1\right]=\frac{\mathrm{n}(\mathrm{n}+1)(\mathrm{n}+2)}{6}$
89.(b) $a^{2}+b^{2}=7 a b$
$\Rightarrow a^{2}+2 a b+b^{2}=9 a b$
$\Rightarrow\left(\frac{a+b}{3}\right)^{2}=a b$
$\Rightarrow \log \left(\frac{a+b}{3}\right)^{2}=\log a b$
$\Rightarrow 2 \log \left(\frac{a+b}{3}\right)=\log a b$
$\Rightarrow \log \left(\frac{a+b}{3}\right)=\frac{1}{2} \log a b$
90.(c) As the vectors are coplanar, we have $\left|\begin{array}{lll}\mathrm{a} & 1 & 1 \\ 1 & \mathrm{~b} & 1 \\ 1 & 1 & \mathrm{c}\end{array}\right|=0 \Rightarrow \mathrm{abc}+2=\mathrm{a}+\mathrm{b}+\mathrm{c}$
91.(a) No of arrangement of letters of word CALCUITA $=\frac{8!}{2!2!2!}$

No of arrangements of letters of word AMERICA $=\frac{7!}{2!}$
92.(d) Making homogenous $x^{2}+y^{2}-2 y+\lambda=0$

With the help of $x+y=1$,
So $x^{2}+y^{2}-2 y(x+y)+\lambda(x+y)^{2}=0$
i.e. $(1+\lambda) x^{2}+y^{2}(-1+\lambda)-2(-\lambda) x y=0$

The lines are perpendicular if $1+\lambda-1+\lambda=0$ $\Rightarrow \lambda=0$
93.(c) The equation of plane at a constant distance of $3 p$ units from the origin is $l x+m y+n z=3 p$
Then the coordinates of $\mathrm{A}, \mathrm{B}, \mathrm{C}$ are $\left(\frac{3 \mathrm{p}}{l}, 0,0\right)$,
$\left(0, \frac{3 p}{m}, 0\right)$ and $\left(0,0, \frac{3 p}{n}\right)$. Let $(\bar{x}, \bar{y}, \bar{z})$ be the
centroid of $\triangle A B C$. Then $\bar{x}=\frac{\frac{3 p}{l}+0+0}{3}$
$\Rightarrow \frac{1}{\overline{\mathrm{x}}}=\frac{l}{\mathrm{p}}, \frac{1}{\mathrm{y}}=\frac{\mathrm{n}}{\mathrm{p}}, \frac{1}{\overline{\mathrm{z}}}=\frac{\mathrm{n}}{\mathrm{p}}$.
So, $\frac{1}{\overline{\mathrm{x}}^{2}}+\frac{1}{\overline{\mathrm{y}}^{2}}+\frac{1}{\overline{\mathrm{z}}^{2}}=\frac{l^{2}+\mathrm{m}^{2}+\mathrm{n}^{2}}{\mathrm{p}^{2}}=\frac{1}{\mathrm{p}^{2}}$
So locus is $\frac{1}{\mathrm{x}^{2}}+\frac{1}{\mathrm{y}^{2}}+\frac{1}{\mathrm{z}^{2}}=\frac{1}{\mathrm{p}^{2}}$
94.(a) e is the eccentricity of hyperbola, so $e_{1}{ }^{2}=1+\frac{b^{2}}{a^{2}}$
$\Rightarrow \frac{1}{e^{2}}=\frac{a^{2}}{a^{2}+b^{2}}$
e_{1} is the eccentricity of conjugate.
So $\mathrm{e}_{1}{ }^{2}=1+\frac{\mathrm{a}^{2}}{\mathrm{~b}^{2}} \Rightarrow \frac{1}{\mathrm{e}_{1}{ }^{2}}=\frac{\mathrm{b}^{2}}{\mathrm{a}^{2}+\mathrm{b}^{2}}$
Then $\frac{1}{e^{2}}+\frac{1}{e_{1}^{2}}=\frac{a^{2}}{a^{2}+b^{2}}+\frac{b^{2}}{a^{2}+b^{2}}=1$
95.(b) Here $\frac{\mathrm{dx}}{\mathrm{dt}}=1.2 \mathrm{~m} / \mathrm{s} \quad \frac{\mathrm{dy}}{\mathrm{dt}}=$?

From similar $\Delta \mathrm{s}, \frac{1.8}{4.5}=\frac{y}{x+y}$
$\Rightarrow 2 \mathrm{x}+2 \mathrm{y}=5 \mathrm{y}$
$\Rightarrow 3 y=2 x \Rightarrow 3 \frac{\mathrm{dy}}{\mathrm{dt}}=2 \frac{\mathrm{dx}}{\mathrm{dt}} \Rightarrow \frac{\mathrm{dy}}{\mathrm{dt}}=0.8$
96.(d) Required area $=2 \int_{0}^{\pi} \sin x d x$ (By symmetry)
98.(c)

$$
\begin{aligned}
& =2[-\cos x]_{0}^{\pi} \\
& =2 \cdot[-\cos \pi+\cos 0] \\
& =2[1+1]=4 \text { sq. units }
\end{aligned}
$$

