PEA's

TRIBHUVAN UNIVERSITY INSTITUTE OF ENGINEERING

B.E. Model Entrance Exam 2079

Date: 2079-11-20

Hints and Solutions

PEA Association Pvt. Ltd. Thapathali, Kathmandu, Tel: 5345730, 5357187

Section -

1.(a) Eq^{n} when pendulum starts from entreme position, is

$$
y=A \cos \omega t
$$

or, $\frac{A}{2}=A \cos \left(\frac{2 \pi}{T} \times t\right)$
or, $\quad \cos \left(\frac{2 \pi}{T} \times t\right)=\frac{1}{2}=\cos 60^{\circ}=\cos \frac{\pi}{3}$
or, $\frac{2 \pi}{T} t=\frac{\pi}{3} \quad t=\frac{T}{6}$
3.(b) $\%$ increase $=\frac{\Delta l}{l} \times 100 \%$

$$
\begin{aligned}
& =\alpha \Delta \theta \times 100 \% \\
& =10^{-5} \times 100 \times 100 \%=0.1 \%
\end{aligned}
$$

4.(a) Sudden compression \Rightarrow adiabatic process

$$
\mathrm{P}_{2} \mathrm{~V}_{2}^{\gamma}=\mathrm{P}_{1} \mathrm{~V}_{1}^{\gamma}
$$

or, $\quad P_{2}\left(\frac{m}{d_{2}}\right)^{\gamma}=P_{1}\left(\frac{m}{d_{1}}\right)^{\gamma}$
or, $\quad P_{2}=P_{1}\left(\frac{\mathrm{nd}_{1}}{\mathrm{~d}_{1}}\right)^{\gamma} \quad\left(\because \mathrm{d}_{2}=\mathrm{nd}_{1}\right)$
or, $\mathrm{P}_{2}=\mathrm{n}^{\gamma} \mathrm{P}_{1}$
5.(c) $\mathrm{S}=\frac{\mathrm{dQ}}{\mathrm{m} . \mathrm{d} \theta}$

While boiling, temperature doesn't change, i.e. $\mathrm{d} \theta=0$, $\Rightarrow \mathrm{S}=\infty$
6.(d) Sound wave is longitudinal wave which cant be polarized.
7.(d) $\quad \lambda_{\mathrm{m}}=\frac{\lambda_{\mathrm{v}}}{\mu}$

Since, $\mu>1, \lambda_{\mathrm{m}}<\lambda_{\mathrm{v}}$, i.e. wave length decreases but frequency is not affected.
8.(c) Two particles will have same velocity after a complete wave.
9.(a) $\quad \phi=\frac{\mathrm{Q}}{\varepsilon_{0}}$

Flux is independent to size but depends on charge so, $\phi^{\prime}=\frac{\phi}{2 \varepsilon_{0}}=\frac{\phi}{2}$
10.(d) When resistance is placed parallel with voltmeter then resistance decreases current increases so ammeter reading increases $\&$ voltmeter reading decreases.
11.(c) Breaking stress $=\frac{F}{A}$
or, $\quad \mathrm{F}=$ Breaking stress $\times \mathrm{A}$
or, $F \propto A$
The load which can be supported by cable depends on area of cross-section remains constant.
12.(c)
13.(b) Semiconductor have -ve coefficient of resistance, so as temperature increases resistance decreases.
14.(b) $\mathrm{nf}=\mathrm{KE}+\phi$
or, $\quad \mathrm{eV}_{\mathrm{s}}=\mathrm{hf}-\phi$
or, $\quad V_{s}=\frac{h f}{e}-\frac{\phi}{e}$

Which is in form, $\mathrm{y}=\mathrm{mx}+\mathrm{c}$
Where, $m=\frac{h}{e}$
15.(b) Smaller the critical angle, more sparkling. Dipping diamond in water increases critical angle since refractive index decreases.
16.(b) $\mathrm{E}_{\mathrm{C}}-\mathrm{E}_{\mathrm{A}}=\mathrm{E}_{\mathrm{C}}-\mathrm{E}_{\mathrm{B}}+\mathrm{E}_{\mathrm{B}}-\mathrm{E}_{\mathrm{A}}$
or, $\frac{\mathrm{hc}}{\lambda_{3}}=\frac{\mathrm{hc}}{\lambda_{1}}+\frac{\mathrm{hc}}{\lambda_{2}}$
$\Rightarrow \frac{1}{\lambda_{3}}=\frac{1}{\lambda_{1}}+\frac{1}{\lambda_{2}}$
$F=\frac{G(M-m) m}{R^{2}}$
F will be maximum if $\frac{\mathrm{dF}}{\mathrm{dm}}=0$
$M-2 m=0$
$\mathrm{m}=\frac{\mathrm{M}}{2}$
18.(a) As halogens are most electronegative so configuration is $\mathrm{ns}^{2} \mathrm{np}^{5}$.
19.(d) $\mathrm{CO}=6+8=14, \mathrm{O}_{2}{ }^{++}=16-2=14, \mathrm{~N}_{2}=2 \times 7=14, \mathrm{Si}=14$
20.(b) For M shell, $n=3$. Hence, no. of orbitals $=n^{2}=3^{2}=9$
21.(c) \quad In $\left[\mathrm{Fe}\left(\mathrm{H}_{2} \mathrm{O}\right)_{5} \mathrm{NO}\right], \mathrm{NO}^{+}=1, \mathrm{H}_{2} \mathrm{O}=0$, so Fe has +1 .
22.(c) Mass of water $=1 \mathrm{gm}$

Mole of water $=\frac{1}{18}$
Molecules $=\frac{1}{18} \times \mathrm{N}_{\mathrm{A}}=\frac{1}{18} \times 6.023 \times 10^{23}=3.34 \times 10^{22}$
23.(a) $\mathrm{H}_{2} \mathrm{O}+\mathrm{SO}_{2} \rightarrow \mathrm{H}_{2} \mathrm{SO}_{3}$ (Sulphurous acid)
24.(b) ethyne
25.(c) 2-butyne $\left(\mathrm{CH}_{3}-\mathrm{C} \equiv \mathrm{C}-\mathrm{CH}_{3}\right)$ doesn't contain acidic H atom so it doesn't give ppt with Tollen's reagent.
In absence of peroxide electrophillic addition is observed. The first step is addition of H^{+}to alkene.
27.(a)
28.(b)
29.(b)

$$
\text { Since, } \begin{aligned}
f(-x) & =\frac{\sin ^{4}(-x)+\cos ^{4}(-x)}{-x+\tan (-x)} \\
& =\frac{\sin ^{4}(x)+\cos ^{4}(x)}{-(x+\tan x)}=-f(x)
\end{aligned}
$$

$\Rightarrow f(x)$ is odd function.
$n(A \cup B)=n(A)+n(B)-n(A \cap B)$
$n(A \cup B)$ is maximum when $n(A \cap B)=0$
So, $n(A \cup B)=n(A)+n(B)=145>n(U)$, which is not possible.
So, $[\mathrm{n}(\mathrm{A} \cup \mathrm{B})]_{\text {max }}=125$
32.(b) $\sin ^{2} \mathrm{~A}+\sin ^{2} \mathrm{~B}=\sin ^{2} \mathrm{C}$
$\Rightarrow \frac{\mathrm{a}^{2}}{\mathrm{k}^{2}}+\frac{\mathrm{b}^{2}}{\mathrm{k}^{2}}=\frac{\mathrm{c}^{2}}{\mathrm{k}^{2}}$
$\Rightarrow \quad a^{2}+b^{2}=c^{2}$
$\Rightarrow \quad \Delta$ is rt. angled at C
33.(a) Since, product of root $=\frac{c}{a}=\frac{1}{1}$
$\Rightarrow \quad \alpha \cdot \beta=1 \quad \Rightarrow \beta=\frac{1}{\alpha}$
Projection of \vec{a} on $\vec{b}=\operatorname{acos} \theta=|\vec{a}| \cos \theta$
Now, $\vec{a} \cdot \vec{b}=|\vec{a}||\vec{b}| \cos \theta$

PEA Association Pvt. Ltd. Thapathali, Kathmandu, Tel: 5345730, 5357187

or, $\quad|\vec{a}| \cos \theta=\frac{\vec{a} \cdot \vec{b}}{|\vec{b}|}$
35.(b) Area of Δ made by line $\mathrm{ax}+\mathrm{by}+\mathrm{c}=0$ with coordinate axis is $\frac{\mathrm{c}^{2}}{2|\mathrm{ab}|}$

$$
\begin{aligned}
& =\frac{1 \cdot p^{2}}{2(\sin \alpha \cos \alpha)} \\
& =\frac{\mathrm{p}^{2}}{\left|\sin ^{2} \alpha\right|}
\end{aligned}
$$

36.(b) $x^{2}+5 x+6=0$
$\Rightarrow \quad x=-2$
$x=-3$
Pair of planes parallel to yz plane.
37.(d) Length of L.R. $=4 \times$ distance between vertex and focus

$$
=4 \times 2 \mathrm{a}=8 \mathrm{a}
$$

$\lim _{x \rightarrow \infty} \frac{x^{20}}{e^{x}}$
Using L' Hospital rule upto $20^{\text {th }}$ time
$\lim _{x \rightarrow \infty} \frac{20!}{\mathrm{e}^{\mathrm{x}}}=\frac{20!}{\infty}=0$
39.(d) $\quad \int_{-1} x|x| d x=0 \quad(\because x|x|=$ odd function)
40.(c) $\sin ^{-1} x+c$
(Derivative and anti-derivative are inverse of each other so they cancel each other)
41.(c) $y=|x|$
or, $\quad \frac{d y}{d x}=\frac{x}{|x|}$, at $x=0$ is undefined.
42.(b) $y=\sqrt{4-x^{2}}$ represent upper half-part of circle $x^{2}+y^{2}=4$

So area $=\frac{\pi \cdot 2^{2}}{2}=2 \pi$
43.(c) $\cos ^{-1} x+\cos ^{-1} y\left(\frac{\pi}{2}-\sin ^{-1} x\right)+\left(\frac{\pi}{2}-\sin ^{-1} y\right)$
$=\pi-\left(\sin ^{-1} x+\sin ^{-1} y\right)$
$=\pi-\frac{\pi}{3}=\frac{2 \pi}{3}$
44.(a) $\sin ^{2} x+\operatorname{cosec}^{2} x=2$
or, $\quad \sin ^{2} x+\frac{1}{\sin ^{2} x}=2$
or, $\quad \sin ^{4} x-2 \sin ^{2} x+1=0 d$
or, $\quad\left(\sin ^{2} x\right)^{2}-2 \cdot \sin ^{2} x \cdot 1+1^{2}=0$
or, $\quad\left(\sin ^{2} x-1\right)=0$
or, $\quad \sin ^{2} x=1$
$\Rightarrow \quad \mathrm{x}=\mathrm{n} \pi \pm \frac{\pi}{2}$
45.(d) $3 x+4 y=12$
$\Rightarrow \quad \frac{x}{4}+\frac{4}{3}=1$
So, portion intercepted $=\sqrt{3^{2}+4^{2}}=5$
46.(b) Sum of all coefficient $=2^{10}$

Sum of coefficient of even power of $x=\frac{2^{10}}{2}=2^{9}$
47.(d) $\frac{\mathrm{x}}{\mathrm{a}}=\mathrm{t}+\frac{1}{\mathrm{t}}, \frac{\mathrm{y}}{\mathrm{b}}=\mathrm{t}-\frac{1}{\mathrm{t}}$
or, $\left(\frac{x}{a}\right)^{2}-\left(\frac{y}{b}\right)^{2}=\left(t+\frac{1}{t}\right)^{2}-\left(t-\frac{1}{t}\right)^{2}$
or, $\left(\frac{x}{a}\right)^{2}-\left(\frac{y}{b}\right)^{2}=4$, i.e. a hyperbola.
48.(b) $\quad \log _{\mathrm{e}} \mathrm{e}+\frac{\log _{\mathrm{e}} 3}{1!}+\frac{\left(\log _{\mathrm{e}} 3\right)^{2}}{2!}+\frac{\left(\log _{\mathrm{e}} 3\right)^{2}}{3!}+\ldots \infty$
$=e^{\log _{e} 3}=3$

49.(d)	$50 .(\mathrm{c})$	$51 .(\mathrm{a})$	$52 .(\mathrm{b})$	$53 .(\mathrm{a})$	$54 .(\mathrm{c})$
$55 .(\mathrm{a})$	$56 .(\mathrm{a})$	$57 .(\mathrm{d})$	$58 .(\mathrm{d})$	$59 .(\mathrm{c})$	$60 .(\mathrm{a})$

Section - II

61.(c) If a particle covers equal distance in $5^{\text {th }}$ and $6^{\text {th }}$ second, then during $5^{\text {th }}$ second it moves up $\&$ during $6^{\text {th }}$ second it moves down so, time to reach man height $=5 \mathrm{~s}$ $\mathrm{O}=\mathrm{u}-\mathrm{gt}$
$\mathrm{u}=10 \times 5=50 \mathrm{~m} / \mathrm{s}$
Loss in KE = Gain in PE
$\frac{1}{2} m v^{2}+\frac{1}{2} I \omega^{2}=m g h$
or, $\frac{1}{2} \mathrm{mv}^{2}+\frac{1}{2} \mathrm{mk}^{2} \cdot \frac{\mathrm{v}^{2}}{\mathrm{r}^{2}}=\mathrm{mgh}$
or, $\frac{1}{2} m v^{2}\left(1+\frac{\mathrm{k}^{2}}{\mathrm{r}^{2}}\right)=\mathrm{mgh}$
or, $h=\frac{v^{2}\left(\frac{k^{2}}{r^{2}}+1\right)}{2 g}$

$$
=\frac{10^{2}\left(\frac{2 \mathrm{r}^{2}}{5 \mathrm{r}^{2}}+1\right)}{2 \times 10}=7 \mathrm{~m}
$$

63.(b) $\omega=\omega_{\mathrm{s}}-\omega_{\mathrm{e}}$
$\Rightarrow \quad \frac{2 \pi}{\mathrm{~T}}=\frac{2 \pi}{\mathrm{~T}_{\mathrm{s}}}-\frac{2 \pi}{\mathrm{~T}_{\mathrm{e}}}$
$\Rightarrow \quad \frac{1}{\mathrm{~T}}=\frac{1}{3}-\frac{1}{24}$
or, $\quad \mathrm{T}=\frac{24}{7} \mathrm{hrs}$
$\mathrm{PV}=\mathrm{RT}$ for 1 mole
$W=\int P d V \int \frac{R T}{V} d V$
Given, $\mathrm{V}=\mathrm{CT}^{2 / 3}$
$\Rightarrow \quad \mathrm{dV}=\mathrm{C} \cdot \frac{2}{3} \mathrm{~T}^{-1 / 3} \mathrm{dT}$

$$
\frac{\mathrm{dV}}{\mathrm{~V}} \Rightarrow \frac{2}{3} \mathrm{~T}^{-1} \mathrm{dT}
$$

or, $\frac{\mathrm{dV}}{\mathrm{V}}=\frac{2}{3} \frac{\mathrm{dT}}{\mathrm{T}}$

$$
\mathrm{W}=\int_{\mathrm{T}_{1}}^{\mathrm{T}_{2}} \mathrm{RT} \cdot \frac{2}{3} \frac{\mathrm{dT}}{\mathrm{~T}}
$$

$$
=\frac{2}{3} \mathrm{R}\left(\mathrm{~T}_{2}-\mathrm{T}_{1}\right)
$$

$$
=\frac{2 \mathrm{R}}{3} \times 30=20 \mathrm{R}
$$

$$
=20 \times 8.31=166
$$

65.(b) Radiating power of black body, $\mathrm{E}=6\left(\mathrm{~T}^{4}-\mathrm{T}_{0}{ }^{4}\right) \mathrm{A}$
$\mathrm{T}_{0}=227^{\circ} \mathrm{C}=500 \mathrm{~K}$,
$\mathrm{T}_{1}=727^{\circ} \mathrm{C}=1000 \mathrm{~K}$
$\mathrm{T}_{2}=1227^{\circ} \mathrm{C}=1500 \mathrm{~K}$
$\mathrm{E}_{1}=\sigma\left(1000^{4}-500^{4}\right) \ldots$

PEA Association Pvt. Ltd. Thapathali, Kathmandu, Tel: 5345730, 5357187

$\mathrm{E}_{2}=\sigma\left(1500^{4}-500^{4}\right) \ldots$ (ii)
Dividing, $\frac{60}{\mathrm{E}_{2}}=\frac{1000^{4}-500^{4}}{1500^{4}-500^{4}}, \mathrm{E}_{2}=320 \mathrm{~W}$
66.(c) $\gamma=\alpha_{1}+\alpha_{2}+\alpha_{3}$

$$
=\alpha_{1}+2 \alpha_{2}
$$

67.(a) The delector receives direct as well as reflected waves. Distance moved between two consecutive position of maxima $\frac{\lambda}{2}$
For 14 successive maxima $=14 \times \frac{\lambda}{2}$
Given, $14 \times \frac{\lambda}{2}=0.14$
or, $\lambda=2 \times 10^{-2} \mathrm{~m}$
$\therefore \quad \mathrm{f}=\frac{\mathrm{c}}{\lambda}=\frac{3 \times 10^{8}}{2 \times 10^{-2}}=1.5 \times 10^{10} \mathrm{~Hz}$
68.(b) The slope of image is $\mathrm{m}=\tan 135^{\circ}=-1$

Equation of line through origin, $\mathrm{y}=\mathrm{mx}$

$$
\begin{aligned}
& y=-x \\
& y+x=0
\end{aligned}
$$

69.(a) Maxima is at P

$$
\frac{\mathrm{xd}}{\mathrm{D}}=\mathrm{n} \lambda
$$

or, $\frac{\mathrm{d}}{2} \cdot \frac{\mathrm{~d}}{\mathrm{D}}=\mathrm{n} \lambda$
or, $n=\frac{d^{2}}{2 \lambda D}$
70.(d) $\quad \vec{E}_{x}=-\frac{\partial V}{\partial_{x}} \hat{i}=-\left(2 x y-z^{3}\right) \hat{i}=\left(2 x y+z^{3}\right) \hat{i}$
$\vec{E}_{y}=-\frac{\partial V}{\partial y} \hat{j}=-\left(-x^{2}\right) \hat{j}=x^{2} \hat{j}$
$\overrightarrow{\mathrm{E}}_{\mathrm{z}}=-\frac{\partial \mathrm{V}}{\partial_{\mathrm{z}}} \hat{\mathrm{k}}=-\left(-3 x z^{2}\right) \hat{\mathrm{k}}=3 x z^{2} \hat{\mathrm{k}}$

$$
\overrightarrow{\mathrm{E}}=\overrightarrow{\mathrm{E}}_{x}+\overrightarrow{\mathrm{E}}_{y}+\overrightarrow{\mathrm{E}}_{z}=\left(2 x y+\mathrm{z}^{3}\right) \hat{\mathrm{i}}+\mathrm{x}^{2} \hat{\mathrm{j}}+3 x z^{2} \hat{\mathrm{k}}
$$

71.(c) $\quad \mathrm{B}_{\mathrm{R}}=\mathrm{B}_{2}-\mathrm{B}_{1}=\frac{\mu_{0} \mathrm{I}_{2}}{2 \pi \cdot \frac{\mathrm{r}}{2}}-\frac{\mu_{0} \mathrm{I}_{1}}{2 \pi \cdot \frac{\mathrm{r}}{2}}$

$$
=\frac{\mu_{0}}{\pi \times 5}(5-2.5)=\frac{\mu_{0}}{2 \pi}
$$

72.(d) $E=-\frac{d \phi}{d t}$
$\mathrm{E}=-\frac{\mathrm{d} \phi}{\mathrm{dt}}$
or, $\quad I R=-\frac{\mathrm{d}}{\mathrm{dt}}\left(6 \mathrm{t}^{2}-5 \mathrm{t}+1\right)$
or, $\quad I=-\frac{(12 t-5)}{R}$
When $\mathrm{t}=0.25 \mathrm{~s}$
Then $\mathrm{I}=\frac{2}{10}=0.2 \mathrm{~A}$
73.(d) $\mathrm{X}^{3}+\mathrm{Y}^{5} \rightarrow 2 \mathrm{Z}^{4}$
$\mathrm{AE}=[3 \times 5.3+5 \times 7.4)-2(4 \times 6.2)=3.3 \mathrm{MeV}$
Hence correct energy is option (d)
74.(b) $\frac{\mathrm{N}}{\mathrm{N}_{0}}=\left(\frac{1}{2}\right)^{\mathrm{n}}, \mathrm{n}=$ no of decays
$\frac{1}{256}=\left(\frac{1}{2}\right)^{n}$
$\Rightarrow \quad \mathrm{n}=8$ haf lifes
Times for 8 half lives $=8 \times 12.5=100 \mathrm{hrs}$
75.(a) $\quad \mathrm{M}=\frac{\mathrm{E}}{\mathrm{F}} \times \mathrm{It}$
or, $500=\frac{9}{96500} \times 25 \times \mathrm{t}$

$$
\mathrm{t}=214444.4 \mathrm{sec}=59.56 \mathrm{hrs}
$$

76.(c) $\quad \mathrm{N}_{\text {mixture }}=\frac{300 \times 10^{-2}-200 \times 10^{-3}}{300+200}$

$$
\begin{aligned}
& =5.6 \times 10^{-3} \mathrm{~N}(\text { w.r.t base }) \\
& \mathrm{pOH}=-\log \left(5.6 \times 10^{-3}\right)=2.25 \\
& \mathrm{pH}=14-2.25=11.75
\end{aligned}
$$

77.(c) $\quad \mathrm{C}_{2} \mathrm{H}_{5} \mathrm{Cl}+\mathrm{Mg} \xrightarrow{\text { Dry Ether }} \mathrm{C}_{2} \mathrm{H}_{5} \mathrm{MgCl} \xrightarrow{\mathrm{H} 2 \mathrm{O}} \mathrm{C}_{2} \mathrm{H}_{6}+\mathrm{MgCl} . \mathrm{OH}$
78.(a) $\mathrm{K}_{\mathrm{C}}=\frac{\left[\mathrm{P}_{\mathrm{CO}}\right]^{2}}{\left[\mathrm{P}_{\mathrm{CO}_{2}}\right]}=\frac{8^{2}}{4}=16 \mathrm{~atm}$
79.(c) $\%$ of Haemoglobin $=0.33$
wt of Iron $=67200 \times \frac{0.33}{100}=221.76$
So, No. of Fe atoms $=\frac{221.76}{56}=3.96 \sim 4$
80.(d) No. of mole of $\mathrm{CO}_{2}=\frac{58}{44}=2 \mathrm{~mole}$

2 mole CO_{2} contain 4 mole oxygen atom.
1 mole CO contain 1 mole oxygen atom.
So, 4 mole CO contain 4 mole oxygen atom.
4 mole $\mathrm{CO}=4 \times(12+16)=112 \mathrm{gm}$
81.(a) $\mathrm{NaHSO}_{3}+\mathrm{NaHS} \rightarrow \mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{3}+\mathrm{H}_{2} \mathrm{O}$
$\mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{3}+\mathrm{HCl} \rightarrow \mathrm{NaCl}+\mathrm{H}_{2} \mathrm{O}+\mathrm{SO}_{2}+\mathrm{S} \downarrow$ colloidal
$\left|\frac{(3+4 i)(\sin \theta+i \cos \theta)}{\sin \theta-i \cos \theta}\right|$
$=\frac{|3+4 i||\sin \theta+i \cos \theta|}{|\sin \theta-i \cos \theta|}$
$=\frac{\left(3^{2}+5^{2}\right) \cdot(1)}{(1)}=5$
For $\mathrm{f}(\mathrm{x})$ to be defined,
$|x|-x>0$
or, $\quad \mathrm{x}<|\mathrm{x}|$, which is true for all $\mathrm{x} \in(-\infty, 0)$
Given equation can be written as
$5^{3 x}+45^{x}=2.3^{3 x}$
or, $\left(\frac{5}{3}\right)^{3 x}+\left(\frac{5}{3}\right)^{x}=2$
Let, $\left(\frac{5}{3}\right)^{x}=\mathrm{t}$
$\Rightarrow \mathrm{t}^{3}+\mathrm{t}-2=0$
or, $\quad t^{3}-1+t-1=0$
or, $\quad(\mathrm{t}-1)\left(\mathrm{t}^{2}+\mathrm{t}+1\right)+(\mathrm{t}-1)=0$
or, $\quad(\mathrm{t}-1)\left(\mathrm{t}^{2}+\mathrm{t}+2\right)=0$
$\Rightarrow \quad \mathrm{t}=1$
or, $t^{2}+t+2=0$
But, $\mathrm{t}^{2}+\mathrm{t}+2=0$ does not have real solutions
$\therefore \quad \mathrm{t}=1$
$\Rightarrow\left(\frac{5}{3}\right)^{x}=1 \quad \Rightarrow x=0$, one solution only
$\frac{\cos \mathrm{A}}{\mathrm{a}}=\frac{\cos \mathrm{B}}{\mathrm{b}}=\frac{\cos \mathrm{C}}{\mathrm{c}}$
or, $\frac{\cos \mathrm{A}}{2 R \sin \mathrm{~A}}=\frac{\cos \mathrm{B}}{2 R \sin \mathrm{~B}}=\frac{\cos \mathrm{C}}{2 R \sin \mathrm{C}}$
or, $\quad \cot \mathrm{A}=\cot \mathrm{B}=\cot \mathrm{C}$
$\Rightarrow \mathrm{A}=\mathrm{B}=\mathrm{C}$
$\Rightarrow \quad \Delta$ is equilateral
$\therefore \quad$ Area $=\frac{\sqrt{3}}{4} l^{2}=\frac{\sqrt{3}}{4} \times \frac{1}{6}=\frac{1}{8 \sqrt{3}}$
86.(a) Given, $\tan ^{-1}(2 x)+\tan ^{-1}(3 x)=\frac{\pi}{4}$

PEA Association Pvt. Ltd. Thapathali, Kathmandu, Tel: 5345730, 5357187

or, $\tan ^{-1}\left(\frac{2 x+3 x}{1-2 x .3 x}\right)=\tan ^{-1}(1)$
or, $\frac{5 x}{1-6 x^{2}}=1$
or, $\quad 6 x^{2}+5 x-1=0 \quad x=\frac{1}{6},-1$
But $x=-1$ is in option
87.(c) Given, $\left(1+x-2 x^{2}\right)^{6}=1+a_{1} x+a_{2} x^{2}+\ldots .+a_{12} x^{12}$

Putting $x=1$, we get
$0=1+a_{1}+a_{2}+\ldots . .+a_{12} \ldots$ (1)
Putting $x=-1$, we get

$$
64=1-a_{1}+a_{2}-\ldots .+a_{12} \ldots .
$$

Adding (1) \& (2)
$64=2\left(1+a_{2}+a_{4}+\ldots.\right)$
or, $a_{2}+a_{4}+\ldots . . a_{12}=31$
88.(c) Let $\tan ^{-1} \mathrm{x}=\mathrm{y}$
$\Rightarrow \quad \frac{1}{1+x^{2}} d x=d y$ and $x=$ tan y
$=\int e^{y} .\left(1+\tan y+\tan ^{2} y\right) \cdot d y$
$=\int e^{y}\left(\tan y+\sec ^{2} y\right) d y$

$$
=\mathrm{e}^{\mathrm{y}} \tan \mathrm{y}+\mathrm{c}
$$

$$
=\mathrm{t}^{\tan ^{-1}} \mathrm{x} \cdot \tan \left(\tan ^{-1} \mathrm{x}\right)+\mathrm{c}=\mathrm{e}^{\tan ^{-1} \mathrm{x}} \mathrm{x}+\mathrm{c}
$$

89.(c)
$\Rightarrow \quad x=\frac{1}{1-a}, y=\frac{1}{1-b}, z=\frac{1}{1-c}$
Since, a, b, c are in A.P.
$\Rightarrow \quad 1-\mathrm{a}, 1-\mathrm{b}, 1-\mathrm{c}$ are in A.P.
$\Rightarrow \quad \frac{1}{1-a}, \frac{1}{1-b}, \frac{1}{1-c}$ are in H.P.
$\Rightarrow \quad x, y, z$ are in H.P.
90.(b)
91.(d)
$y=\tan ^{-1}\left(\frac{5 x-x}{1+5 x \cdot x}\right)+\tan ^{-1}\left(\frac{x+\frac{2}{3}}{1-\frac{2}{3} x}\right)$
or, $y=\tan ^{-1}(5 x)-\tan ^{-1}(x)+\tan ^{-1}(x)+\tan ^{-1}\left(\frac{2}{3}\right)$
or, $y=\tan ^{-1}(5 x)+\tan ^{-1}\left(\frac{2}{3}\right)$
or, $\quad \frac{d y}{d x}=\frac{5}{1+25 x^{2}}$

$$
\begin{aligned}
\text { Area } & =\int_{0}^{\pi / 4} \operatorname{tandx}+\int_{\pi / 4}^{\pi / 2} \cot x d x \\
& =\left.\log (\sec x)\right|_{0} ^{\pi / 4}+\left.\log (\sin x)\right|_{\pi / 4} ^{\pi / 2} \\
& =\log \left(\frac{\sec \frac{\pi}{4}}{\sec 0}\right)+\log \left(\frac{\sin \frac{\pi}{2}}{\sin \frac{\pi}{4}}\right)^{2}=\log (\sqrt{2})+\log \left(\frac{1}{\frac{1}{\sqrt{2}}}\right) \\
& =\log \sqrt{2}+\log \sqrt{2} \\
& =2 \log \sqrt{2} \\
& =\log 2 \\
& \text { So, answer are both a and } b
\end{aligned}
$$

92.(a) $\quad(\vec{a}+\vec{b}) \cdot \vec{b}=0$
or, $\quad \vec{a} \cdot \vec{b}+\vec{b} \cdot \vec{b}=0$
or, $\quad \vec{a} \cdot \vec{b}=-\vec{b} \cdot \vec{b} \ldots$ (1)
$(\vec{a}+2 \vec{b}) \cdot \vec{a}=0$
or, $\quad \vec{a} \cdot \vec{a}+2 \vec{b} \cdot \vec{a}=0$
or, $\vec{a} \cdot \vec{a}+2 \vec{a} \cdot \vec{b}=0$
or, $\quad \vec{a} \cdot \vec{a}-2 \vec{b} \cdot \vec{b}=0$
or, $\quad|\vec{a}|^{2}=2 .|\vec{b}|^{2}$
or, $\quad|\vec{a}|=\sqrt{2} \cdot|\vec{b}|$
$y=\left(x^{2}-1\right)\left(x^{2}-5\right)=x^{4}-6 x^{2}+5$
$\frac{d y}{d x}=4 x^{3}-12 x$
$\frac{d^{2} y}{d x^{2}}=12 x^{2}-12$
For curve to be concave upwards

$$
\mathrm{f}^{\prime \prime}(\mathrm{x})>0
$$

i.e. $12(x-1)(x+1)>0$
or, $(x-1)(x+1)>0$
i.e. $x<-1$ or $x>1$
$\Rightarrow|x|>1$
94.(a) Given circle, $(x-6)^{2}+y^{2}=2$

Equation of tangent is, $Y=m X+a \sqrt{1+\mathrm{m}^{2}}$
Where $Y=y, X=x-6$ for this question
or, $\quad y=m(x-6)+\sqrt{2} \sqrt{1+\mathrm{m}^{2}}$
or, $y=m(x-6)+\sqrt{2\left(1+\mathrm{m}^{2}\right)}$
Focal point of $y^{2}=16 x$ is $(a, 0)=(4,0)$
Now, focal chord is tangent to circle, so focal point must satisfy equation of tangent so

$$
0=\mathrm{m}(4-6)+\sqrt{2\left(1+\mathrm{m}^{2}\right)}
$$

or, $2 m=\sqrt{2\left(1+\mathrm{m}^{2}\right)}$
or, $4 \mathrm{~m}^{2}=2+2 \mathrm{~m}^{2}$
or, $\quad \mathrm{m}^{2}=1$
or, $\mathrm{m}= \pm 1$
95.(c) On, y-axis, $x=0$ equation of circle becomes

$$
y^{2}+y-20=0
$$

$\Rightarrow \quad y=-5 \& 4$
So, circle touch y axis at $(0,-5) \&(0,4)$
Hence, intercept length $\Rightarrow|-5-4|=9$
Centroid, $\mathrm{x}=\frac{\mathrm{a} \operatorname{cost}+\mathrm{bsint}+1}{3}$
$\Rightarrow \quad \operatorname{acost}+b \operatorname{sint}=3 x-1 \ldots$ (1)

$$
\mathrm{y}=\frac{\mathrm{a} \sin \mathrm{t}-\mathrm{bcost}}{3}
$$

$\Rightarrow \quad$ asint - bcost $=3 y \ldots$ (2)
Squaring \& adding (1) \& (2)
$a^{2} \cos ^{2} t+2 a b \cos t \sin t+b^{2} \sin ^{2} t+a^{2} \sin ^{2} t-2 a b \cos \sin t+$
$b^{2} \cos ^{2} t$

$$
=(3 x-1)^{2}+(3 y)^{2}
$$

or, $\quad a^{2}\left(\cos ^{2}+\sin ^{2} t\right)+b^{2}\left(\sin ^{2} t+\cos ^{2} t\right)=(3 x-1)^{2}+(3 y)^{2}$
or, $\quad(3 x-1)^{2}+(3 y)^{2}=a^{2}+b^{2}$

$$
\text { 98.(a) } \quad 99 .(d) \quad 100 .(a)
$$

PEA's

TRIBHUVAN UNIVERSITY INSTITUTE OF ENGINEERING

B.E. Model Entrance Exam 2079

Date: 2079-11-20

Hints and Solutions

PEA Association Pvt. Ltd. Thapathali, Kathmandu, Tel: 5345730, 5357187

Section -

1.(a) Eq^{n} when pendulum starts from entreme position, is

$$
y=A \cos \omega t
$$

or, $\frac{A}{2}=A \cos \left(\frac{2 \pi}{T} \times t\right)$
or, $\quad \cos \left(\frac{2 \pi}{T} \times t\right)=\frac{1}{2}=\cos 60^{\circ}=\cos \frac{\pi}{3}$
or, $\frac{2 \pi}{T} t=\frac{\pi}{3} \quad t=\frac{T}{6}$
3.(b) $\%$ increase $=\frac{\Delta l}{l} \times 100 \%$

$$
\begin{aligned}
& =\alpha \Delta \theta \times 100 \% \\
& =10^{-5} \times 100 \times 100 \%=0.1 \%
\end{aligned}
$$

4.(a) Sudden compression \Rightarrow adiabatic process

$$
\mathrm{P}_{2} \mathrm{~V}_{2}^{\gamma}=\mathrm{P}_{1} \mathrm{~V}_{1}^{\gamma}
$$

or, $\quad P_{2}\left(\frac{m}{d_{2}}\right)^{\gamma}=P_{1}\left(\frac{m}{d_{1}}\right)^{\gamma}$
or, $\quad P_{2}=P_{1}\left(\frac{\mathrm{nd}_{1}}{\mathrm{~d}_{1}}\right)^{\gamma} \quad\left(\because \mathrm{d}_{2}=\mathrm{nd}_{1}\right)$
or, $\mathrm{P}_{2}=\mathrm{n}^{\gamma} \mathrm{P}_{1}$
5.(c) $\mathrm{S}=\frac{\mathrm{dQ}}{\mathrm{m} . \mathrm{d} \theta}$

While boiling, temperature doesn't change, i.e. $\mathrm{d} \theta=0$, $\Rightarrow \mathrm{S}=\infty$
6.(d) Sound wave is longitudinal wave which cant be polarized.
7.(d) $\quad \lambda_{\mathrm{m}}=\frac{\lambda_{\mathrm{v}}}{\mu}$

Since, $\mu>1, \lambda_{\mathrm{m}}<\lambda_{\mathrm{v}}$, i.e. wave length decreases but frequency is not affected.
8.(c) Two particles will have same velocity after a complete wave.
9.(a) $\quad \phi=\frac{\mathrm{Q}}{\varepsilon_{0}}$

Flux is independent to size but depends on charge so, $\phi^{\prime}=\frac{\phi}{2 \varepsilon_{0}}=\frac{\phi}{2}$
10.(d) When resistance is placed parallel with voltmeter then resistance decreases current increases so ammeter reading increases $\&$ voltmeter reading decreases.
11.(c) Breaking stress $=\frac{F}{A}$
or, $\quad \mathrm{F}=$ Breaking stress $\times \mathrm{A}$
or, $F \propto A$
The load which can be supported by cable depends on area of cross-section remains constant.
12.(c)
13.(b) Semiconductor have -ve coefficient of resistance, so as temperature increases resistance decreases.
14.(b) $\mathrm{nf}=\mathrm{KE}+\phi$
or, $\quad \mathrm{eV}_{\mathrm{s}}=\mathrm{hf}-\phi$
or, $\quad V_{s}=\frac{h f}{e}-\frac{\phi}{e}$

Which is in form, $\mathrm{y}=\mathrm{mx}+\mathrm{c}$
Where, $m=\frac{h}{e}$
15.(b) Smaller the critical angle, more sparkling. Dipping diamond in water increases critical angle since refractive index decreases.
16.(b) $\mathrm{E}_{\mathrm{C}}-\mathrm{E}_{\mathrm{A}}=\mathrm{E}_{\mathrm{C}}-\mathrm{E}_{\mathrm{B}}+\mathrm{E}_{\mathrm{B}}-\mathrm{E}_{\mathrm{A}}$
or, $\frac{\mathrm{hc}}{\lambda_{3}}=\frac{\mathrm{hc}}{\lambda_{1}}+\frac{\mathrm{hc}}{\lambda_{2}}$
$\Rightarrow \frac{1}{\lambda_{3}}=\frac{1}{\lambda_{1}}+\frac{1}{\lambda_{2}}$
$F=\frac{G(M-m) m}{R^{2}}$
F will be maximum if $\frac{\mathrm{dF}}{\mathrm{dm}}=0$
$M-2 m=0$
$\mathrm{m}=\frac{\mathrm{M}}{2}$
18.(a) As halogens are most electronegative so configuration is $\mathrm{ns}^{2} \mathrm{np}^{5}$.
19.(d) $\mathrm{CO}=6+8=14, \mathrm{O}_{2}{ }^{++}=16-2=14, \mathrm{~N}_{2}=2 \times 7=14, \mathrm{Si}=14$
20.(b) For M shell, $n=3$. Hence, no. of orbitals $=n^{2}=3^{2}=9$
21.(c) \quad In $\left[\mathrm{Fe}\left(\mathrm{H}_{2} \mathrm{O}\right)_{5} \mathrm{NO}\right], \mathrm{NO}^{+}=1, \mathrm{H}_{2} \mathrm{O}=0$, so Fe has +1 .
22.(c) Mass of water $=1 \mathrm{gm}$

Mole of water $=\frac{1}{18}$
Molecules $=\frac{1}{18} \times \mathrm{N}_{\mathrm{A}}=\frac{1}{18} \times 6.023 \times 10^{23}=3.34 \times 10^{22}$
23.(a) $\mathrm{H}_{2} \mathrm{O}+\mathrm{SO}_{2} \rightarrow \mathrm{H}_{2} \mathrm{SO}_{3}$ (Sulphurous acid)
24.(b) ethyne
25.(c) 2-butyne $\left(\mathrm{CH}_{3}-\mathrm{C} \equiv \mathrm{C}-\mathrm{CH}_{3}\right)$ doesn't contain acidic H atom so it doesn't give ppt with Tollen's reagent.
In absence of peroxide electrophillic addition is observed. The first step is addition of H^{+}to alkene.
27.(a)
28.(b)
29.(b)

$$
\text { Since, } \begin{aligned}
f(-x) & =\frac{\sin ^{4}(-x)+\cos ^{4}(-x)}{-x+\tan (-x)} \\
& =\frac{\sin ^{4}(x)+\cos ^{4}(x)}{-(x+\tan x)}=-f(x)
\end{aligned}
$$

$\Rightarrow f(x)$ is odd function.
$n(A \cup B)=n(A)+n(B)-n(A \cap B)$
$n(A \cup B)$ is maximum when $n(A \cap B)=0$
So, $n(A \cup B)=n(A)+n(B)=145>n(U)$, which is not possible.
So, $[\mathrm{n}(\mathrm{A} \cup \mathrm{B})]_{\text {max }}=125$
32.(b) $\sin ^{2} \mathrm{~A}+\sin ^{2} \mathrm{~B}=\sin ^{2} \mathrm{C}$
$\Rightarrow \frac{\mathrm{a}^{2}}{\mathrm{k}^{2}}+\frac{\mathrm{b}^{2}}{\mathrm{k}^{2}}=\frac{\mathrm{c}^{2}}{\mathrm{k}^{2}}$
$\Rightarrow \quad a^{2}+b^{2}=c^{2}$
$\Rightarrow \quad \Delta$ is rt. angled at C
33.(a) Since, product of root $=\frac{c}{a}=\frac{1}{1}$
$\Rightarrow \quad \alpha \cdot \beta=1 \quad \Rightarrow \beta=\frac{1}{\alpha}$
Projection of \vec{a} on $\vec{b}=\operatorname{acos} \theta=|\vec{a}| \cos \theta$
Now, $\vec{a} \cdot \vec{b}=|\vec{a}||\vec{b}| \cos \theta$

PEA Association Pvt. Ltd. Thapathali, Kathmandu, Tel: 5345730, 5357187

or, $\quad|\vec{a}| \cos \theta=\frac{\vec{a} \cdot \vec{b}}{|\vec{b}|}$
35.(b) Area of Δ made by line $\mathrm{ax}+\mathrm{by}+\mathrm{c}=0$ with coordinate axis is $\frac{\mathrm{c}^{2}}{2|\mathrm{ab}|}$

$$
\begin{aligned}
& =\frac{1 \cdot p^{2}}{2(\sin \alpha \cos \alpha)} \\
& =\frac{\mathrm{p}^{2}}{\left|\sin ^{2} \alpha\right|}
\end{aligned}
$$

36.(b) $x^{2}+5 x+6=0$
$\Rightarrow \quad x=-2$
$x=-3$
Pair of planes parallel to yz plane.
37.(d) Length of L.R. $=4 \times$ distance between vertex and focus

$$
=4 \times 2 \mathrm{a}=8 \mathrm{a}
$$

$\lim _{x \rightarrow \infty} \frac{x^{20}}{e^{x}}$
Using L' Hospital rule upto $20^{\text {th }}$ time
$\lim _{x \rightarrow \infty} \frac{20!}{\mathrm{e}^{\mathrm{x}}}=\frac{20!}{\infty}=0$
39.(d) $\quad \int_{-1} x|x| d x=0 \quad(\because x|x|=$ odd function)
40.(c) $\sin ^{-1} x+c$
(Derivative and anti-derivative are inverse of each other so they cancel each other)
41.(c) $y=|x|$
or, $\quad \frac{d y}{d x}=\frac{x}{|x|}$, at $x=0$ is undefined.
42.(b) $y=\sqrt{4-x^{2}}$ represent upper half-part of circle $x^{2}+y^{2}=4$

So area $=\frac{\pi \cdot 2^{2}}{2}=2 \pi$
43.(c) $\cos ^{-1} x+\cos ^{-1} y\left(\frac{\pi}{2}-\sin ^{-1} x\right)+\left(\frac{\pi}{2}-\sin ^{-1} y\right)$
$=\pi-\left(\sin ^{-1} x+\sin ^{-1} y\right)$
$=\pi-\frac{\pi}{3}=\frac{2 \pi}{3}$
44.(a) $\sin ^{2} x+\operatorname{cosec}^{2} x=2$
or, $\quad \sin ^{2} x+\frac{1}{\sin ^{2} x}=2$
or, $\quad \sin ^{4} x-2 \sin ^{2} x+1=0 d$
or, $\quad\left(\sin ^{2} x\right)^{2}-2 \cdot \sin ^{2} x \cdot 1+1^{2}=0$
or, $\quad\left(\sin ^{2} x-1\right)=0$
or, $\quad \sin ^{2} x=1$
$\Rightarrow \quad \mathrm{x}=\mathrm{n} \pi \pm \frac{\pi}{2}$
45.(d) $3 x+4 y=12$
$\Rightarrow \quad \frac{x}{4}+\frac{4}{3}=1$
So, portion intercepted $=\sqrt{3^{2}+4^{2}}=5$
46.(b) Sum of all coefficient $=2^{10}$

Sum of coefficient of even power of $x=\frac{2^{10}}{2}=2^{9}$
47.(d) $\frac{\mathrm{x}}{\mathrm{a}}=\mathrm{t}+\frac{1}{\mathrm{t}}, \frac{\mathrm{y}}{\mathrm{b}}=\mathrm{t}-\frac{1}{\mathrm{t}}$
or, $\left(\frac{x}{a}\right)^{2}-\left(\frac{y}{b}\right)^{2}=\left(t+\frac{1}{t}\right)^{2}-\left(t-\frac{1}{t}\right)^{2}$
or, $\left(\frac{x}{a}\right)^{2}-\left(\frac{y}{b}\right)^{2}=4$, i.e. a hyperbola.
48.(b) $\quad \log _{\mathrm{e}} \mathrm{e}+\frac{\log _{\mathrm{e}} 3}{1!}+\frac{\left(\log _{\mathrm{e}} 3\right)^{2}}{2!}+\frac{\left(\log _{\mathrm{e}} 3\right)^{2}}{3!}+\ldots \infty$
$=e^{\log _{e} 3}=3$

49.(d)	$50 .(\mathrm{c})$	$51 .(\mathrm{a})$	$52 .(\mathrm{b})$	$53 .(\mathrm{a})$	$54 .(\mathrm{c})$
$55 .(\mathrm{a})$	$56 .(\mathrm{a})$	$57 .(\mathrm{d})$	$58 .(\mathrm{d})$	$59 .(\mathrm{c})$	$60 .(\mathrm{a})$

Section - II

61.(c) If a particle covers equal distance in $5^{\text {th }}$ and $6^{\text {th }}$ second, then during $5^{\text {th }}$ second it moves up $\&$ during $6^{\text {th }}$ second it moves down so, time to reach man height $=5 \mathrm{~s}$ $\mathrm{O}=\mathrm{u}-\mathrm{gt}$
$\mathrm{u}=10 \times 5=50 \mathrm{~m} / \mathrm{s}$
Loss in KE = Gain in PE
$\frac{1}{2} m v^{2}+\frac{1}{2} I \omega^{2}=m g h$
or, $\frac{1}{2} \mathrm{mv}^{2}+\frac{1}{2} \mathrm{mk}^{2} \cdot \frac{\mathrm{v}^{2}}{\mathrm{r}^{2}}=\mathrm{mgh}$
or, $\frac{1}{2} m v^{2}\left(1+\frac{\mathrm{k}^{2}}{\mathrm{r}^{2}}\right)=\mathrm{mgh}$
or, $h=\frac{v^{2}\left(\frac{k^{2}}{r^{2}}+1\right)}{2 g}$

$$
=\frac{10^{2}\left(\frac{2 \mathrm{r}^{2}}{5 \mathrm{r}^{2}}+1\right)}{2 \times 10}=7 \mathrm{~m}
$$

63.(b) $\omega=\omega_{\mathrm{s}}-\omega_{\mathrm{e}}$
$\Rightarrow \quad \frac{2 \pi}{\mathrm{~T}}=\frac{2 \pi}{\mathrm{~T}_{\mathrm{s}}}-\frac{2 \pi}{\mathrm{~T}_{\mathrm{e}}}$
$\Rightarrow \quad \frac{1}{\mathrm{~T}}=\frac{1}{3}-\frac{1}{24}$
or, $\quad \mathrm{T}=\frac{24}{7} \mathrm{hrs}$
$\mathrm{PV}=\mathrm{RT}$ for 1 mole
$W=\int P d V \int \frac{R T}{V} d V$
Given, $\mathrm{V}=\mathrm{CT}^{2 / 3}$
$\Rightarrow \quad \mathrm{dV}=\mathrm{C} \cdot \frac{2}{3} \mathrm{~T}^{-1 / 3} \mathrm{dT}$

$$
\frac{\mathrm{dV}}{\mathrm{~V}} \Rightarrow \frac{2}{3} \mathrm{~T}^{-1} \mathrm{dT}
$$

or, $\frac{\mathrm{dV}}{\mathrm{V}}=\frac{2}{3} \frac{\mathrm{dT}}{\mathrm{T}}$

$$
\mathrm{W}=\int_{\mathrm{T}_{1}}^{\mathrm{T}_{2}} \mathrm{RT} \cdot \frac{2}{3} \frac{\mathrm{dT}}{\mathrm{~T}}
$$

$$
=\frac{2}{3} \mathrm{R}\left(\mathrm{~T}_{2}-\mathrm{T}_{1}\right)
$$

$$
=\frac{2 \mathrm{R}}{3} \times 30=20 \mathrm{R}
$$

$$
=20 \times 8.31=166
$$

65.(b) Radiating power of black body, $\mathrm{E}=6\left(\mathrm{~T}^{4}-\mathrm{T}_{0}{ }^{4}\right) \mathrm{A}$
$\mathrm{T}_{0}=227^{\circ} \mathrm{C}=500 \mathrm{~K}$,
$\mathrm{T}_{1}=727^{\circ} \mathrm{C}=1000 \mathrm{~K}$
$\mathrm{T}_{2}=1227^{\circ} \mathrm{C}=1500 \mathrm{~K}$
$\mathrm{E}_{1}=\sigma\left(1000^{4}-500^{4}\right) \ldots$

PEA Association Pvt. Ltd. Thapathali, Kathmandu, Tel: 5345730, 5357187

$\mathrm{E}_{2}=\sigma\left(1500^{4}-500^{4}\right) \ldots$ (ii)
Dividing, $\frac{60}{\mathrm{E}_{2}}=\frac{1000^{4}-500^{4}}{1500^{4}-500^{4}}, \mathrm{E}_{2}=320 \mathrm{~W}$
66.(c) $\gamma=\alpha_{1}+\alpha_{2}+\alpha_{3}$

$$
=\alpha_{1}+2 \alpha_{2}
$$

67.(a) The delector receives direct as well as reflected waves. Distance moved between two consecutive position of maxima $\frac{\lambda}{2}$
For 14 successive maxima $=14 \times \frac{\lambda}{2}$
Given, $14 \times \frac{\lambda}{2}=0.14$
or, $\lambda=2 \times 10^{-2} \mathrm{~m}$
$\therefore \quad \mathrm{f}=\frac{\mathrm{c}}{\lambda}=\frac{3 \times 10^{8}}{2 \times 10^{-2}}=1.5 \times 10^{10} \mathrm{~Hz}$
68.(b) The slope of image is $\mathrm{m}=\tan 135^{\circ}=-1$

Equation of line through origin, $\mathrm{y}=\mathrm{mx}$

$$
\begin{aligned}
& y=-x \\
& y+x=0
\end{aligned}
$$

69.(a) Maxima is at P

$$
\frac{\mathrm{xd}}{\mathrm{D}}=\mathrm{n} \lambda
$$

or, $\frac{\mathrm{d}}{2} \cdot \frac{\mathrm{~d}}{\mathrm{D}}=\mathrm{n} \lambda$
or, $n=\frac{d^{2}}{2 \lambda D}$
70.(d) $\quad \vec{E}_{x}=-\frac{\partial V}{\partial_{x}} \hat{i}=-\left(2 x y-z^{3}\right) \hat{i}=\left(2 x y+z^{3}\right) \hat{i}$
$\vec{E}_{y}=-\frac{\partial V}{\partial y} \hat{j}=-\left(-x^{2}\right) \hat{j}=x^{2} \hat{j}$
$\overrightarrow{\mathrm{E}}_{\mathrm{z}}=-\frac{\partial \mathrm{V}}{\partial_{\mathrm{z}}} \hat{\mathrm{k}}=-\left(-3 x z^{2}\right) \hat{\mathrm{k}}=3 x z^{2} \hat{\mathrm{k}}$

$$
\overrightarrow{\mathrm{E}}=\overrightarrow{\mathrm{E}}_{x}+\overrightarrow{\mathrm{E}}_{y}+\overrightarrow{\mathrm{E}}_{z}=\left(2 x y+\mathrm{z}^{3}\right) \hat{\mathrm{i}}+\mathrm{x}^{2} \hat{\mathrm{j}}+3 x z^{2} \hat{\mathrm{k}}
$$

71.(c) $\quad \mathrm{B}_{\mathrm{R}}=\mathrm{B}_{2}-\mathrm{B}_{1}=\frac{\mu_{0} \mathrm{I}_{2}}{2 \pi \cdot \frac{\mathrm{r}}{2}}-\frac{\mu_{0} \mathrm{I}_{1}}{2 \pi \cdot \frac{\mathrm{r}}{2}}$

$$
=\frac{\mu_{0}}{\pi \times 5}(5-2.5)=\frac{\mu_{0}}{2 \pi}
$$

72.(d) $E=-\frac{d \phi}{d t}$
$\mathrm{E}=-\frac{\mathrm{d} \phi}{\mathrm{dt}}$
or, $\quad I R=-\frac{\mathrm{d}}{\mathrm{dt}}\left(6 \mathrm{t}^{2}-5 \mathrm{t}+1\right)$
or, $\quad I=-\frac{(12 t-5)}{R}$
When $\mathrm{t}=0.25 \mathrm{~s}$
Then $\mathrm{I}=\frac{2}{10}=0.2 \mathrm{~A}$
73.(d) $\mathrm{X}^{3}+\mathrm{Y}^{5} \rightarrow 2 \mathrm{Z}^{4}$
$\mathrm{AE}=[3 \times 5.3+5 \times 7.4)-2(4 \times 6.2)=3.3 \mathrm{MeV}$
Hence correct energy is option (d)
74.(b) $\frac{\mathrm{N}}{\mathrm{N}_{0}}=\left(\frac{1}{2}\right)^{\mathrm{n}}, \mathrm{n}=$ no of decays
$\frac{1}{256}=\left(\frac{1}{2}\right)^{n}$
$\Rightarrow \quad \mathrm{n}=8$ haf lifes
Times for 8 half lives $=8 \times 12.5=100 \mathrm{hrs}$
75.(a) $\quad \mathrm{M}=\frac{\mathrm{E}}{\mathrm{F}} \times \mathrm{It}$
or, $500=\frac{9}{96500} \times 25 \times \mathrm{t}$

$$
\mathrm{t}=214444.4 \mathrm{sec}=59.56 \mathrm{hrs}
$$

76.(c) $\quad \mathrm{N}_{\text {mixture }}=\frac{300 \times 10^{-2}-200 \times 10^{-3}}{300+200}$

$$
\begin{aligned}
& =5.6 \times 10^{-3} \mathrm{~N}(\text { w.r.t base }) \\
& \mathrm{pOH}=-\log \left(5.6 \times 10^{-3}\right)=2.25 \\
& \mathrm{pH}=14-2.25=11.75
\end{aligned}
$$

77.(c) $\quad \mathrm{C}_{2} \mathrm{H}_{5} \mathrm{Cl}+\mathrm{Mg} \xrightarrow{\text { Dry Ether }} \mathrm{C}_{2} \mathrm{H}_{5} \mathrm{MgCl} \xrightarrow{\mathrm{H} 2 \mathrm{O}} \mathrm{C}_{2} \mathrm{H}_{6}+\mathrm{MgCl} . \mathrm{OH}$
78.(a) $\mathrm{K}_{\mathrm{C}}=\frac{\left[\mathrm{P}_{\mathrm{CO}}\right]^{2}}{\left[\mathrm{P}_{\mathrm{CO}_{2}}\right]}=\frac{8^{2}}{4}=16 \mathrm{~atm}$
79.(c) $\%$ of Haemoglobin $=0.33$
wt of Iron $=67200 \times \frac{0.33}{100}=221.76$
So, No. of Fe atoms $=\frac{221.76}{56}=3.96 \sim 4$
80.(d) No. of mole of $\mathrm{CO}_{2}=\frac{58}{44}=2 \mathrm{~mole}$

2 mole CO_{2} contain 4 mole oxygen atom.
1 mole CO contain 1 mole oxygen atom.
So, 4 mole CO contain 4 mole oxygen atom.
4 mole $\mathrm{CO}=4 \times(12+16)=112 \mathrm{gm}$
81.(a) $\mathrm{NaHSO}_{3}+\mathrm{NaHS} \rightarrow \mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{3}+\mathrm{H}_{2} \mathrm{O}$
$\mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{3}+\mathrm{HCl} \rightarrow \mathrm{NaCl}+\mathrm{H}_{2} \mathrm{O}+\mathrm{SO}_{2}+\mathrm{S} \downarrow$ colloidal
$\left|\frac{(3+4 i)(\sin \theta+i \cos \theta)}{\sin \theta-i \cos \theta}\right|$
$=\frac{|3+4 i||\sin \theta+i \cos \theta|}{|\sin \theta-i \cos \theta|}$
$=\frac{\left(3^{2}+5^{2}\right) \cdot(1)}{(1)}=5$
For $\mathrm{f}(\mathrm{x})$ to be defined,
$|x|-x>0$
or, $\quad \mathrm{x}<|\mathrm{x}|$, which is true for all $\mathrm{x} \in(-\infty, 0)$
Given equation can be written as
$5^{3 x}+45^{x}=2.3^{3 x}$
or, $\left(\frac{5}{3}\right)^{3 x}+\left(\frac{5}{3}\right)^{x}=2$
Let, $\left(\frac{5}{3}\right)^{x}=\mathrm{t}$
$\Rightarrow \mathrm{t}^{3}+\mathrm{t}-2=0$
or, $\quad t^{3}-1+t-1=0$
or, $\quad(\mathrm{t}-1)\left(\mathrm{t}^{2}+\mathrm{t}+1\right)+(\mathrm{t}-1)=0$
or, $\quad(\mathrm{t}-1)\left(\mathrm{t}^{2}+\mathrm{t}+2\right)=0$
$\Rightarrow \quad \mathrm{t}=1$
or, $t^{2}+t+2=0$
But, $\mathrm{t}^{2}+\mathrm{t}+2=0$ does not have real solutions
$\therefore \quad \mathrm{t}=1$
$\Rightarrow\left(\frac{5}{3}\right)^{x}=1 \quad \Rightarrow x=0$, one solution only
$\frac{\cos \mathrm{A}}{\mathrm{a}}=\frac{\cos \mathrm{B}}{\mathrm{b}}=\frac{\cos \mathrm{C}}{\mathrm{c}}$
or, $\frac{\cos \mathrm{A}}{2 R \sin \mathrm{~A}}=\frac{\cos \mathrm{B}}{2 R \sin \mathrm{~B}}=\frac{\cos \mathrm{C}}{2 R \sin \mathrm{C}}$
or, $\quad \cot \mathrm{A}=\cot \mathrm{B}=\cot \mathrm{C}$
$\Rightarrow \mathrm{A}=\mathrm{B}=\mathrm{C}$
$\Rightarrow \quad \Delta$ is equilateral
$\therefore \quad$ Area $=\frac{\sqrt{3}}{4} l^{2}=\frac{\sqrt{3}}{4} \times \frac{1}{6}=\frac{1}{8 \sqrt{3}}$
86.(a) Given, $\tan ^{-1}(2 x)+\tan ^{-1}(3 x)=\frac{\pi}{4}$

PEA Association Pvt. Ltd. Thapathali, Kathmandu, Tel: 5345730, 5357187

or, $\tan ^{-1}\left(\frac{2 x+3 x}{1-2 x .3 x}\right)=\tan ^{-1}(1)$
or, $\frac{5 x}{1-6 x^{2}}=1$
or, $\quad 6 x^{2}+5 x-1=0 \quad x=\frac{1}{6},-1$
But $x=-1$ is in option
87.(c) Given, $\left(1+x-2 x^{2}\right)^{6}=1+a_{1} x+a_{2} x^{2}+\ldots .+a_{12} x^{12}$

Putting $x=1$, we get
$0=1+a_{1}+a_{2}+\ldots . .+a_{12} \ldots$ (1)
Putting $x=-1$, we get

$$
64=1-a_{1}+a_{2}-\ldots .+a_{12} \ldots .
$$

Adding (1) \& (2)
$64=2\left(1+a_{2}+a_{4}+\ldots.\right)$
or, $a_{2}+a_{4}+\ldots . . a_{12}=31$
88.(c) Let $\tan ^{-1} \mathrm{x}=\mathrm{y}$
$\Rightarrow \quad \frac{1}{1+x^{2}} d x=d y$ and $x=$ tan y
$=\int e^{y} .\left(1+\tan y+\tan ^{2} y\right) \cdot d y$
$=\int e^{y}\left(\tan y+\sec ^{2} y\right) d y$

$$
=\mathrm{e}^{\mathrm{y}} \tan \mathrm{y}+\mathrm{c}
$$

$$
=\mathrm{t}^{\tan ^{-1}} \mathrm{x} \cdot \tan \left(\tan ^{-1} \mathrm{x}\right)+\mathrm{c}=\mathrm{e}^{\tan ^{-1} \mathrm{x}} \mathrm{x}+\mathrm{c}
$$

89.(c)
$\Rightarrow \quad x=\frac{1}{1-a}, y=\frac{1}{1-b}, z=\frac{1}{1-c}$
Since, a, b, c are in A.P.
$\Rightarrow \quad 1-\mathrm{a}, 1-\mathrm{b}, 1-\mathrm{c}$ are in A.P.
$\Rightarrow \quad \frac{1}{1-a}, \frac{1}{1-b}, \frac{1}{1-c}$ are in H.P.
$\Rightarrow \quad x, y, z$ are in H.P.
90.(b)
91.(d)
$y=\tan ^{-1}\left(\frac{5 x-x}{1+5 x \cdot x}\right)+\tan ^{-1}\left(\frac{x+\frac{2}{3}}{1-\frac{2}{3} x}\right)$
or, $y=\tan ^{-1}(5 x)-\tan ^{-1}(x)+\tan ^{-1}(x)+\tan ^{-1}\left(\frac{2}{3}\right)$
or, $y=\tan ^{-1}(5 x)+\tan ^{-1}\left(\frac{2}{3}\right)$
or, $\quad \frac{d y}{d x}=\frac{5}{1+25 x^{2}}$

$$
\begin{aligned}
\text { Area } & =\int_{0}^{\pi / 4} \operatorname{tandx}+\int_{\pi / 4}^{\pi / 2} \cot x d x \\
& =\left.\log (\sec x)\right|_{0} ^{\pi / 4}+\left.\log (\sin x)\right|_{\pi / 4} ^{\pi / 2} \\
& =\log \left(\frac{\sec \frac{\pi}{4}}{\sec 0}\right)+\log \left(\frac{\sin \frac{\pi}{2}}{\sin \frac{\pi}{4}}\right)^{2}=\log (\sqrt{2})+\log \left(\frac{1}{\frac{1}{\sqrt{2}}}\right) \\
& =\log \sqrt{2}+\log \sqrt{2} \\
& =2 \log \sqrt{2} \\
& =\log 2 \\
& \text { So, answer are both a and } b
\end{aligned}
$$

92.(a) $\quad(\vec{a}+\vec{b}) \cdot \vec{b}=0$
or, $\quad \vec{a} \cdot \vec{b}+\vec{b} \cdot \vec{b}=0$
or, $\quad \vec{a} \cdot \vec{b}=-\vec{b} \cdot \vec{b} \ldots$ (1)
$(\vec{a}+2 \vec{b}) \cdot \vec{a}=0$
or, $\quad \vec{a} \cdot \vec{a}+2 \vec{b} \cdot \vec{a}=0$
or, $\vec{a} \cdot \vec{a}+2 \vec{a} \cdot \vec{b}=0$
or, $\quad \vec{a} \cdot \vec{a}-2 \vec{b} \cdot \vec{b}=0$
or, $\quad|\vec{a}|^{2}=2 .|\vec{b}|^{2}$
or, $\quad|\vec{a}|=\sqrt{2} \cdot|\vec{b}|$
$y=\left(x^{2}-1\right)\left(x^{2}-5\right)=x^{4}-6 x^{2}+5$
$\frac{d y}{d x}=4 x^{3}-12 x$
$\frac{d^{2} y}{d x^{2}}=12 x^{2}-12$
For curve to be concave upwards

$$
\mathrm{f}^{\prime \prime}(\mathrm{x})>0
$$

i.e. $12(x-1)(x+1)>0$
or, $(x-1)(x+1)>0$
i.e. $x<-1$ or $x>1$
$\Rightarrow|x|>1$
94.(a) Given circle, $(x-6)^{2}+y^{2}=2$

Equation of tangent is, $Y=m X+a \sqrt{1+\mathrm{m}^{2}}$
Where $Y=y, X=x-6$ for this question
or, $\quad y=m(x-6)+\sqrt{2} \sqrt{1+\mathrm{m}^{2}}$
or, $y=m(x-6)+\sqrt{2\left(1+\mathrm{m}^{2}\right)}$
Focal point of $y^{2}=16 x$ is $(a, 0)=(4,0)$
Now, focal chord is tangent to circle, so focal point must satisfy equation of tangent so

$$
0=\mathrm{m}(4-6)+\sqrt{2\left(1+\mathrm{m}^{2}\right)}
$$

or, $2 m=\sqrt{2\left(1+\mathrm{m}^{2}\right)}$
or, $4 \mathrm{~m}^{2}=2+2 \mathrm{~m}^{2}$
or, $\quad \mathrm{m}^{2}=1$
or, $\mathrm{m}= \pm 1$
95.(c) On, y-axis, $x=0$ equation of circle becomes

$$
y^{2}+y-20=0
$$

$\Rightarrow \quad y=-5 \& 4$
So, circle touch y axis at $(0,-5) \&(0,4)$
Hence, intercept length $\Rightarrow|-5-4|=9$
Centroid, $\mathrm{x}=\frac{\mathrm{a} \operatorname{cost}+\mathrm{bsint}+1}{3}$
$\Rightarrow \quad \operatorname{acost}+b \operatorname{sint}=3 x-1 \ldots$ (1)

$$
\mathrm{y}=\frac{\mathrm{a} \sin \mathrm{t}-\mathrm{bcost}}{3}
$$

$\Rightarrow \quad$ asint - bcost $=3 y \ldots$ (2)
Squaring \& adding (1) \& (2)
$a^{2} \cos ^{2} t+2 a b \cos t \sin t+b^{2} \sin ^{2} t+a^{2} \sin ^{2} t-2 a b \cos \sin t+$
$b^{2} \cos ^{2} t$

$$
=(3 x-1)^{2}+(3 y)^{2}
$$

or, $\quad a^{2}\left(\cos ^{2}+\sin ^{2} t\right)+b^{2}\left(\sin ^{2} t+\cos ^{2} t\right)=(3 x-1)^{2}+(3 y)^{2}$
or, $\quad(3 x-1)^{2}+(3 y)^{2}=a^{2}+b^{2}$

$$
\text { 98.(a) } \quad 99 .(d) \quad 100 .(a)
$$

