PEA Association Pvt. Ltd. Thapathali, Kathmandu, Tel: 5345730, 5357187 2081-5-13 Hints & Solution				
	2081-5-1	& Solution		
	Section – I	13.(b)	$\beta = 40$	
1.(b)	$a = -kx$ $v^{2} = u^{2} - 2kx.x$		or, $\beta = \frac{l_c}{l_b}$	
	v - u - 2kx.x or, $v^2 = u^2 - 2kx^2$		0	
	$\therefore \text{Loss in K.E.}(\Delta \text{KE}) = \frac{1}{2} \text{ mu}^2 - \frac{1}{2} \text{ mv}^2$		or, 40 $I_b = I_e - I_b$ or, 41 $I_b = 8.2$	
			or, $I_b = \frac{8.2}{41} = 0.2A$	
	$=\frac{1}{2}$ mu ² - $\frac{1}{2}$ m(u ² - 2kx ²)	14.(a)	S wave can travel through solid.	
	$=\frac{1}{2}$ m × 2kx ²	15.(a)	$R - C \equiv N$ has tendency to donate as well as accept lone pair electrons. AlCl ₃ has a vacant p-	
	$\therefore \Delta KE \propto x^2$		orbital so it can accept a pair of electrons.ROH	
2.(b)	At highest point		and R ₂ NH are nucleophiles because of having	
-(-)	$v_t = \sqrt{gl}$	1	lone pair electrons.	
3.(c)	Orbital velocity is independent of mass of satellite	16.(a)	sp hybridized carbon is acidic in nature due to having 50% s- character.	
4.(d)	$F = 6\pi\eta rv \& v \propto r^2$	17.(c)	Na_2SO_4 is salt of strong acid (i.e. H_2SO_4) & strong base (i.e. $NaOH$) when a neutral salt & a	
	$\frac{F'}{F} = \left(\frac{2r}{r}\right)^3$		base is mixed to make a solution then solution	
			become basic i.e.pH > 7	
5 (h)	or, $F' = 8F$ $\Delta F = (212 - 140) \circ F = 72 \circ F$	18.(a)		
5.(b)		19.(a) 20.(a)	For n=1, l=0 which is inconsistent in option (a) Weight of nitrogen = $0.2 \times 14 = 2.8g_{0.2}$	
	Now, $\frac{\Delta F}{9} = \frac{\Delta C}{5}$	20.(d)	Weight of arbon = $12 \times 3 \times 10^{23}/6 \times 10^{23} = 6 \text{ g}$	
	or, $\Delta C = \frac{5}{9} \times \Delta F = \frac{5}{9} \times 72 = 40 \ ^{\circ}C$		Weight of Sulphur = $1 \times 32 = 32$ g	
		21 (1)	\therefore Weight of silver = 7 g	
6.(a)	In adiabatic compression dw is $-ve$ so du $= -dw$ = $+dw$ i.e. temperature increases.	21.(d)	Size of anion $>$ size of cation & size of cation or anion \uparrow s down the group	
7.(a)	$\lambda = 1.21 \text{ Å}$	22.(d)	Generally, for a compound acidity \uparrow s as its	
8.(b)	In open pipe, pressure is maximum at middle.		central ion's oxidation state increases	
9.(c)	First Case, $F = k \frac{Q^2}{r^2}$		Here, oxidation no of nitrogen increases as follows:	
	With A,		$NH_3 < N_2H_4 < N_2H_2 < N_3H$	
	$Q' = \frac{Q}{2}$, change on A, $Q_A' = \frac{Q}{2}$		So, property of compound vary from basic	
	2	23.(c)	(NH ₃) to acidic(N ₃ H) Mohr's salt is double salt	
	With B,	23.(c) 24.(d)	Pt., Rh is used as catalyst in Ostwald's process	
	$\frac{Q}{2} + Q = 2Q''$	25.(a)	, , , , , , , , , , , , , , , , , , ,	
	or, $Q'' = \frac{3Q}{4}$, change on B, $Q_B' = \frac{3Q}{4}$	26.(c)		
	or, $Q^{+} = \frac{1}{4}$, change on B, $Q_{B} = \frac{1}{4}$	27.(d)		
	or, F' = $k \frac{Q_A'Q_B''}{r^2} = \frac{3}{8} F$	28.(c) 29.(a)	By L-Hospital's rule	
10 (b)	$I = \frac{2E}{R+2r} = \frac{E}{R+\frac{r}{2}}$			
10.(0)	$R+2r$ $R+\frac{r}{2}$		$=\frac{\lim_{x\to 1} \frac{x}{1-0}}{1-0} = 1$	
	2 1	30.(c)	To have a solution	
	or, $\frac{2}{2+2r} = \frac{1}{2+\frac{r}{2}}$		$ C \le \sqrt{a^2 + b^2}$	
	2		$ \mathbf{K} \le \sqrt{3^2 + 4^2} = 5$	
	or, $4 + r = 2 + 2r$	31.(a)	${}^{n}\mathrm{P}_{\mathrm{r}} = {}^{n}\mathrm{C}_{\mathrm{r}}.\mathrm{r}!$	
11 (-)	or, $r = 2\Omega$ M = $\sqrt{M^2 + 2M^2 \cos(60^2 + M^2)} = \sqrt{2}$ M		336 = 56.r! 6 = r!	
11.(c)	$M_{\rm R} = \sqrt{M^2 + 2M^2 \cos 60^\circ + M^2} = \sqrt{3} M$			
12.(c)	$\frac{\mathbf{I}_1}{\mathbf{I}_2} = \frac{\mathbf{a}_1^2}{\mathbf{a}_2^2} = \frac{9}{4} \Longrightarrow \frac{\mathbf{a}_1}{\mathbf{a}_2} = \frac{3}{2}$	22 (1)	r=3	
		32.(b) 33.(d)	Obvious S = a + a + + a	
	$\frac{I_{\max}}{I_{\max}} = \left(\frac{a_1 + a_2}{a_1 - a_2}\right)^2 = \left(\frac{3+2}{3-2}\right)^2 = 25:1$	55.(u)	= na	
		-		

1

PEA Association Pvt. Ltd. Thapathali, Kathmandu, Tel: 5345730, 5357187 2081-5-13 Hints & Solution				
34.(c)	Obvious	1	1000×100	
35.(b)	Number of relations on A		$=\frac{1000\times100}{1000}-10=90 \text{ m/s}^2$	
	= number of subsets of $(A \times A)$ = $2^{n(A).n(A)} = 2^{n.n}$	62.(c)	wt = upthrust	
36.(a)	$= 2^{h(A),h(A)} = 2^{h,h}$ Obvious: e^{a+bx}		or, mg = $(40 \times 10^{-2})^2 \times 5 \times 10^{-2} \times \rho g$	
30.(a) 37.(c)	To be continuous		or, $m = 1600 \times 5 \times 10^{-6} \times 10^{3}$	
	$\lim_{x \to 0} \left(\frac{\sin kx}{kx} \times k \right)^2 = 1$		= 8 kg	
		63.(c)	KE = work done	
	$a^2 = 1 \therefore a = \pm 1$		1	
38.(d)	$\frac{d(e^x)}{d\sqrt{x}} = \frac{e^x}{\frac{1}{2\sqrt{x}}} = 2\sqrt{x} e^x$		$\frac{1}{2}$ mv ² = μ mgS	
	$\frac{1}{2\sqrt{x}}$		or, $S = \frac{4^2}{2 \times 0.2 \times 10} = 4m$	
	$\int 3x + 6 - 7$	Victoria Constantino	2~0.2~10	
39.(b)	$\int \frac{3x+6-7}{(x+2)} \mathrm{d}x$	64.(a)	$T_2 V_2^{\gamma - 1} = T_1 V_1^{\gamma - 1}$	
	$=\int 3dx - \int \frac{7}{(x+2)}dx$		or, $T_2 = 300 \left(\frac{v}{2v}\right)^{5/3-1}$	
	$\mathbf{v} = \mathbf{v} \left(\mathbf{n} + \mathbf{z} \right)$			
40.(a)	= 3x - 7ln(x + 2) + c f(x) = tanx - x		$= 300 (0.5)^{2/3} = 188.98 \mathrm{K}$	
	$f'(x) = \sec^2 x - 1$		$W = \frac{nR[T_1 - T_2]}{\gamma - 4}$	
	$= \tan^2 x \ge 0$ for all $x \in \mathbb{R}$			
41.(a)	$(\vec{a} \times \vec{b})$ is perpendicular to \vec{a} and \vec{b} and also		$=\frac{2\times8.31[300-188.98]}{\frac{5}{2}-1}=2768 \text{ J}$	
	perpendicular to the plane containing \vec{a} and \vec{b}	b .	$\frac{1}{3}$ - 1	
	and hence perpendicular to \vec{c} .	65.(c)	$75 \% \text{ of } \frac{1}{2} \text{ mv}^2 = \text{msd}\theta + \text{mL}_{\text{f}}$	
42.(a)	Option (a) is satisfied by (1, 2)			
43.(b)	Passes through $(-3, 2)$ 4 = 4a. (-3)		or, $\frac{3}{4} \times \frac{1}{2} \text{ mv}^2 = \text{m}(\text{sd}\theta + L_f)$	
			or, $\mathbf{v} = \sqrt{\frac{8}{3}(0.03 \times 4200 \times 300 + 6 \times 4200)}$	
	$4a = \left(-\frac{4}{3}\right)$			
	Length of latus rectum (4a) = $\frac{4}{3}$	66.(c)	= 409.8 m/s $f_b = 17$ beats/s, $T_1 = 16$ °C = 289 K	
44.(d)	dr's of the normal to the plane are $a, b, 0$		$f_b = ?$, $T_2 = 51^{\circ}C = 324 \text{ K}$	
(u)	dr's of the normal to the plane XOY are 0, 0, 1		Now, $\frac{f_b'}{f_b} = \sqrt{\frac{T_2}{T_1}}$	
	= a.0 + b.0 + 0.1	C. Law		
	$= 0 (XOY - plane)$ $x^{2} y^{2}$		or, $f_b' = 17 \sqrt{\frac{324}{289}} = 18 \text{ beats/s}$	
45.(d)	$\frac{x^2}{36} + \frac{y^2}{9} = 1$	67.(b)	m = 5, u = 20 cm	
46 (1)	$PS + PS' = 2a = 2 \times 6 = 12$		v = mu = 100 cm	
46.(d) 47.(d)	$\cos(30^\circ + 150^\circ) = -1$ It is sure to occur 4 Saturdays in 28 days and		$F = \frac{uv}{u+v} = \frac{20 \times 100}{120} = \frac{50}{3}$	
17.(u)	two days are remained.			
	Probability $=\frac{2}{7}$		Here, $\frac{1}{F} = \frac{1}{f_1} + \frac{1}{f_2}$	
	,		or, $\frac{3}{50} = \frac{1}{f_1} - \frac{1}{25}$	
48.(a)	$\left(\frac{\mathrm{d}^2 \mathrm{y}}{\mathrm{d} \mathrm{x}^2} - \mathrm{x}^{1/4}\right)^3 = \frac{\mathrm{d} \mathrm{y}}{\mathrm{d} \mathrm{x}}$		or, $\frac{1}{f_1} = \frac{3}{50} + \frac{1}{25} = \frac{3+2}{50} = \frac{5}{50} = \frac{1}{10}$	
49.(a)	50.(d)51.(b)52.(c)53.(c)54.(a)56.(d)57.(a)58.(d)59.(c)60.(a)		-	
55.(b)	56.(d) 57.(a) 58.(d) 59.(c) 60.(a)		: $f_1 = 10 \text{ cm}$ D2 1×5000×10 ⁻¹⁰	
	Section – II	68.(d)	$\beta = \frac{D\lambda}{d} = \frac{1 \times 5000 \times 10^{-10}}{10^{-3}} = 5 \times 10^{-4} \text{m}$	
61.(b)	F - mg = ma		$n = \frac{x}{\beta} = \frac{10^{-2}}{5 \times 10^{-4}} = 20$	
	or, $a = \frac{v}{m} \frac{dm}{dt} - g$		$\beta 5 \times 10^{-4}$ 20	
	m dt 5			

PEA Association Pvt. Ltd. Thapathali, Kathmandu, Tel: 5345730, 5357187 2081-5-13 Hints & Solution				
69.(c)	$Q = \frac{CV_1}{d} = \frac{\varepsilon_t CV_2}{d}$		$\frac{C}{C} = \left(\frac{d'}{d}\right)^2$	
	or, $\varepsilon_r = \frac{3000}{1000} = 3$		$\operatorname{or}, \frac{45}{5} = \left(\frac{d'}{4}\right)^2$	
70.(c)	V - $L\frac{dI}{dt} = IR$		or, d' = 12 m	
	or, 200 - 0.54 $\frac{dI}{dt} = 5 \times 20$		$\Delta d = d' - d$	
	ui		= 12 - 4 = 8m	
	or, $\frac{dI}{dt} = \frac{100}{0.54} = 185.2 \text{ A/s}$	74.(b)	In the organic species having unipositive charge, 1 - 2 - 2 - 4 and 5 as the process of $1 - 1 - 2 - 4$ and	
71.(c)	First Case,		1, 2, 3, 4, and 5 carbons represent 1, 1, 2, 4 and 8 isomers respectively.	
	$\frac{hc}{\lambda_1} = \phi + 3eV_0 \dots \dots$	75.(a)	It is also known as (4+2) cycloaddition reaction.	
	κ_1 Second Case,	76.(c)	$Al^{3+}+3e^{-} \rightarrow Al, E_{Al}=At.Wt/3$	
	$\frac{hc}{\lambda_2} = \phi + eV_0 \dots \dots$	t t	$Cu^{2+}+2e^{-}$ → Cu , E_{cu} = At.Wt/2 Na ⁺ +e ⁻ → Na; E_{Na} = At.Wt/1	
	λ_2 Subtracting (2) from (1)	7	When 3 "Faraday is passed;	
	or, $\frac{hc}{\lambda_1} - \frac{hc}{\lambda_2} = 2eV_0$		Mole atom of Al deposited =1 Mole atom of Na deposited = $1 \times 3/2 = 1.5$	
	$\kappa_1 \kappa_2$		Mole atom of Na deposited $= 1 \times 3 = 3$	
	or, $eV_0 = \frac{hc}{2} \left(\frac{1}{\lambda_1} - \frac{1}{\lambda_2} \right) \dots (3)$	77.(c)	The balanced equation is $IO_3^- + 5I^- + 6H^+ \rightarrow 3I_2 + 3H_2O$	
	From (2)	78.(d)		
	$\frac{hc}{\lambda_2} = \frac{hc}{\lambda_0} + \frac{hc}{2} \left(\frac{1}{\lambda_2} - \frac{1}{\lambda_2} \right)$	79.(d)	$A + 2B \longrightarrow AB_2$ 1 mole 2 mole 1 mole	
			2 mole 4 mole	
	or, $\frac{1}{\lambda_0} = \frac{1}{\lambda_2} - \frac{1}{2} \left(\frac{1}{\lambda_2} - \frac{1}{\lambda_2} \right)$	80.(b)	So, B is limiting reactant thus 1 mole $pH = 5$ ft diluted to 100 times then pay cone ⁿ is	
		80.(0)	$pH = 5 \& diluted to 100 times then new conc^n is 10^{-5} N$	
	$=\frac{1}{\lambda_2}-\frac{1}{2\lambda_1}+\frac{1}{2\lambda_2}$		So, $10^{-7}N$ H ⁺ ion is also consider from H ₂ O Thus final conc ⁿ is $2 \times 10^{-7}N$	
	$=\frac{3}{2\lambda_2}-\frac{1}{2\lambda_1}=\frac{3\lambda_1-\lambda_2}{2\lambda_1\lambda_2}$		Hence $pH = 6.7$	
		81.(d)		
	$\therefore \ \lambda_0 = \frac{2\lambda_1\lambda_2}{3\lambda_1 - \lambda_2} = \frac{2 \times 900 \times 1800}{3 \times 900 - 1800} = 3600 \text{ Å}$	82.(a)	$Put 5^{5^{5^{x}}} = y$	
72.(b)	$I^2Rt = msd\theta$		$5^{5^{5^{*}}}$. $5^{5^{x}}.5^{x}(\log 5)^{3}dx = dy$	
	or, $d\theta = \left(\frac{E}{R+r}\right)^2 \frac{Rt}{ms}$		Now, I = $\int \frac{dy}{(\log 5)^3} = \frac{y}{(\log 5)^3} + c$	
	$= \left(\frac{6}{4+2}\right)^2 \times \frac{2 \times 3 \times 60}{1 \times 4200}$		$=\frac{5^{5^{5^{x}}}}{(\log 5)^{3}}+c$	
73.(b)	= 0.085 °C C ₀ = 360 counts/s	83 (d)	$y = \tan^{-1} \left(\frac{2\sin\frac{x}{2}\cos\frac{x}{2}}{2\cos^{2}\frac{x}{2}} \right)$	
, 5.(0)	•	83.(u)	$y = \tan \left(2\cos^2 \frac{x}{2} \right)$	
	$\frac{C}{C_0} = \left(\frac{1}{2}\right)^{t/T_{1/2}}$			
	or, C = 360 $\left(\frac{1}{2}\right)^{1.5/0.5}$		$=\tan^{-1}\left(\tan\frac{x}{2}\right)$	
	= 45 counts/s		$y = \frac{x}{2}$	
	C = 45 counts/s $d = 4m$		_	
	C' = 5 counts/s $d = ?$		$\frac{dy}{dx} = \frac{1}{2}$	

PEA Association Pvt. Ltd. Thapathali, Kathmandu, Tel: 5345730, 5357187

PEA Association Pvt. Ltd. Thapathali, Kathmandu, Tel: 5345730, 5357187				
2081-5-13 Hints & Solution				
84 (a)	$\frac{a+b+c}{2}=\frac{3b}{2}$		$1 \ge -\sin 3x \ge -1$	
• • • • • • • • • • • • • • • • • • • •			$3 \ge 2 - \sin 3x \ge 1$	
	a + c = 2b A.P.		$\frac{1}{3} \le f(x) \le 1$	
85.(c)	Mid point of AC = mid point of BD	92.(d)	$lnx^2 - ln(x^2 - 1)$	
	$\left(\frac{1-3}{2}, \frac{3+1}{2}, \frac{4+0}{2}\right) = \left(\frac{x-4}{2}, \frac{y+3}{2}, \frac{z+6}{2}\right)$		$= \ln \frac{x^2}{x^2 - 1} = -\ln \frac{x^2 - 1}{x^2}$	
	(x, y, z) = (2, 1, 2)		$-\ln\left(1-\frac{1}{2}\right)$	
86.(a)	$\cos\theta = \frac{\vec{a}.(\vec{a}+\vec{b}+\vec{c})}{ \vec{a} \vec{a}+\vec{b}+\vec{c} }$		$=-\ln\left(1-\frac{1}{x^2}\right)$	
	$ \vec{a} \vec{a} + \vec{b} + \vec{c} $		$=\frac{1}{x^2} + \frac{1}{2x^4} + \frac{1}{3x^6} + \dots$	
	$=\frac{1+0+0}{1\sqrt{3}}$	93.(b)	$-4x^2 + 3xy + y^2 = 0$	
	1_		$4x^2 - 3xy + y^2 = 0$	
	$=\frac{1}{\sqrt{3}}$	94.(a)	When two N's are together	
87.(d)	$ \omega = \left \frac{x + iy}{x + iy - \frac{1}{2}i} \right $		$=\frac{5!}{3!}=20$	
			Total arrangements $=\frac{6!}{2! 3!}=60$	
	$1 = \frac{\sqrt{x^2 + y^2}}{\sqrt{x^2 + (y - \frac{1}{3})^2}}$		Required ways = $(60 - 20) = 40$ ways	
	$\sqrt{x^2+(y-\overline{3})}$	95.(c)	On solving:	
	$y = \frac{1}{6}$ (st. line)		$(2x + \lambda)^2 = 2x$ $4x^2 + 2x(2\lambda - 1) + \lambda^2 = 0$	
88.(c)	f'(x) = 0		4x + 2x(2x - 1) + x = 0 Now, $b^2 - 4ac < 0$	
	$6x^2 - 6x - 12 = 0$		$1-4\lambda < 0$	
	x = 2, -1		$\lambda > \frac{1}{4}$	
	At $x = 2$, $f''(2) = 18 > 0$ (minimum)		$\lambda > \frac{1}{4}$	
	At $x = -1$, $f'(-1) = -18 < 0$ (maximum)	96.(c)	$A = \int_{0}^{1} (e^{x} - e^{-x}) dx = (e^{x} + e^{-x})_{0}^{1}$	
89.(c)	$S_n = 1^3 + 2^3 + 3^3 + + n^3 = \left[\frac{n(n+1)}{2}\right]^2$		1	
00 (1)			$= (e + e^{-1} - (e^{0} + e^{0})) = e + \frac{1}{e} - 2$	
90.(d)	$D = \begin{vmatrix} 1 & 1 & -1 \\ 3 & -1 & -1 \\ 1 & -3 & 1 \end{vmatrix} = 0 $ (Infinite solution)	97.(b)	98.(c) 99.(c) 100.(d)	
91.(b)	$-1 \leq \sin 3x \leq 1$			

...The End...