

Section – 1

1.(a) $Q = \sqrt{P^2 + R^2}$
 $= \sqrt{P^2 + P^2} = \sqrt{2} P$

2.(c) $KE_1 = KE_2$
or, $\frac{P_1^2}{2m} = \frac{P_2^2}{2 \times 4m}$
or, $\left(\frac{P_1}{P_2}\right)^2 = \frac{1}{4} = \left(\frac{1}{2}\right)^2$
or, $\frac{P_1}{P_2} = 1:2$

3.(c) When man drinks water from pond then change in wt = change in upthrust ie level remain same.

4.(b) Expansivity of brass is more than steel so system is cooled.

5.(b) Heat lost = Heat gained
or, $mS_1(30 - 26) = mS_2(26 - 20)$
or, $\frac{S_1}{S_2} = \frac{6}{4} = \frac{3}{2}$

6.(d) $\phi = \frac{2\pi x}{\lambda}$
or, $\phi = \frac{2\pi x}{v} f$
or, $f = \frac{1.6\pi \times 330}{2\pi \times 0.4} = 660 \text{ Hz}$

7.(c) $\frac{\sin 90^\circ}{\sin \theta} = \frac{v_2}{v_1}$
or, $v_2 = \frac{v}{\sin \theta} = v \cosec \theta$

8.(d) $I = \frac{I_0}{2} \cos^2 \theta$
 $= \frac{I_0}{2} \times \cos^2 60^\circ$
 $= \frac{I_0}{2} \times \left(\frac{1}{2}\right)^2$
 $= \frac{I_0}{8}$

9.(a) $E = \frac{V}{r}$
 $r = \frac{V}{E} = \frac{3000}{500} = 6 \text{ m}$

10.(c) $V = E + Ir$
 $= 6 + 2 \times 0.5 = 7V$

11.(c) $M = m \times l$
or, $m = \frac{M}{l}$
 $l = \pi R$
or, $R = \frac{l}{\pi}$
 $\therefore M' = m \times 2R$

$$= \frac{M}{l} \times 2 \times \frac{l}{\pi}$$

$$= \frac{2M}{\pi}$$

12.(a) $X_C = \omega L = 2\pi f L$

For dc $f = 0$

So, $X_L = 0$

13.(b) $KE_{\max} = hf - \phi$
i.e. independent of intensity.

14.(a) D_2 is reverse based and D_1 is forward based.

$$I = \frac{2}{R} = \frac{2}{20} = 0.1A$$

15.(b)

16.(b)

17.(c)

18.(c)

19.(d)

20.(a)

21.(b)

22.(c)

23.(c)

24.(d)

25.(c)

26.(b)

27.(b)

28.(a)

29.(b) $\tan^2 \theta + \cot^2 \theta = 2$

On solving:

$$\tan^2 \theta = 1^2 = \tan^2 \frac{\pi}{4}$$

$$\theta = n\pi \pm \frac{\pi}{4}$$

30.(d)

31.(a) $\frac{x-3}{4} = \cos \theta$ and $\frac{y-2}{4} = \sin \theta$

Squaring & adding:

$$\frac{(x-3)^2}{16} + \frac{(y-2)^2}{16} = 1 \text{ (Circle)}$$

32.(c) Let $f(x) = e^x$

$$\int [f(x)]^2 dx = \int e^{2x} dx = \frac{e^{2x}}{2} + C$$

$$= \frac{[f(x)]^2}{2} + C$$

33.(a) $\lim_{x \rightarrow 3^+} [x] = 3$

34.(c) $y = \frac{2 \sin^2 \frac{x}{2}}{2 \sin \frac{x}{2} \cos \frac{x}{2}}$

35.(b) $y = \tan \frac{x}{2}$
 $\frac{dy}{dx} = \sec^2 \frac{x}{2} \cdot \frac{1}{2}$
 $= \frac{1}{abc} \begin{vmatrix} 1/a.a & a & abc \\ 1/b.b & b & abc \\ 1/c.c & c & abc \end{vmatrix}$
 $= \frac{1}{abc} \cdot abc \begin{vmatrix} 1 & 1 & 1 \\ 1 & b & 1 \\ 1 & c & 1 \end{vmatrix} = 0 [C_1 = C_3]$

36.(a) $n = 4$
We have: $nb^2 = (n+1)^2 ac$
 $4b^2 = 25ac$

37.(c)

38.(d) $3x = -1$ and $3x = 1$
 $-\frac{1}{3} \leq x \leq \frac{1}{3}$

39.(a) $\sqrt{2} e^{i\theta} = \sqrt{2} (\cos\theta + i\sin\theta)$
 $\sqrt{2}^{i\frac{\pi}{4}} = \sqrt{2} \left(\cos\frac{\pi}{4} + i\sin\frac{\pi}{4} \right)$
 $= \sqrt{2} \left(\frac{1}{\sqrt{2}} + i \cdot \frac{1}{\sqrt{2}} \right) = (1+i) = (1, 1)$

40.(b) It satisfies pythagoras theorem.

41.(b) $S_{10} = t_{10} - t_9$
 $= (10^3 - 100) - (9^3 - 100)$
 $= 271$

42.(d)

43.(c) Total number of ways $= 2 \times 2 \times 2 \times \dots \times 10$ times
 $= 2^{10}$

44.(a) We have:
 $(1+x)^n = {}^nC_0 + {}^nC_1 x + {}^nC_2 x^2 + \dots + {}^nC_n x^n$
Putting $x = 3$:
 $4^n = {}^nC_0 + {}^nC_1 \cdot 3 + {}^nC_2 \cdot 3^2 + \dots + {}^nC_n \cdot 3^n$

45.(b) Putting $\cos x = 1 \Rightarrow \cos x = 1$
Min. value $= 4 - 3 = 1$

46.(b) $A = \int_0^{\pi/4} \sec^2 x dx = [\tan x]_0^{\pi/4}$
 $= \tan \frac{\pi}{4} - \tan 0 = 1 - 0 = 1$

47.(c) $P(E) = \frac{m}{n} = \frac{1}{216}$

48.(d) $A = \{1, 3, 5, 7, \dots\}$
 $B = \{2, 4, 6, 8, \dots\}$
No common elements. Disjoint sets.

49.(a) 50.(a) 51.(c) 52.(c) 53.(b) 54.(b)
55.(a) 56.(b) 57.(a) 58.(b) 59.(a) 60.(a)

Section - II

61.(b) $t = \frac{100 - 50}{v_1 - v_2} = \frac{50}{10 - 5} = 10 \text{ sec}$

62.(d) $\frac{T_p}{T_c} = \sqrt{\frac{g_c}{g_p}} = \sqrt{\frac{M_c}{R_c^2} \times \frac{R_p^2}{M_p}}$
 $= \sqrt{\frac{M \times (2R)^2}{R^2 \times 2M}} = \sqrt{2}$
 $\therefore T_p = 2\sqrt{2} \text{ sec}$

63.(d) Heat lost by water = Heat gained by ice
or, $mS_i(0+14) + mL_f + m \times 10 = 200(25-10)$
 $m = \frac{200 \times 15}{0.5 \times 14 + 80 + 10} = 30.9g$

64.(c) $T_2 V_2^{r-1} = T_1 V_1^{r-1}$
or, $T_2 = 288 \left(\frac{V}{8V} \right)^{5/3-1}$
 $= 288 \left(\frac{1}{2} \right)^{3 \times 2/3}$
 $= \frac{288}{4} = 72K$
 $\Delta T = T_1 - T_2 = 288 - 72$
 $= 216^\circ C$

65.(d) $\frac{mv^2}{r} = \mu mg$
or, $\mu = \frac{v^2}{rg} = \frac{12.5^2}{20 \times 10}$
 $= 0.78 = 0.8$

66.(c) For jeep
 $f' = \frac{V - V_m}{V - V_p} \times f$
 $= \frac{330 - V_m}{330 - 22} \times 176$
For motor cycle
 $f' = \frac{V - V_m}{V} \times f$
 $= \frac{330 - V_m}{330} \times 165$
For no beats $f' = f'$
or, $\frac{330 - V_m}{30} \times 176 = \frac{330 - V_m}{330} \times 165$
or, $(330 - V_m) 1.14 = 330 + V_m$
or, $V_m = 22 \text{ m/s}$

67.(d) $E_1 = \frac{1}{2} CV^2$
 $= \frac{1}{2} \times 300 \times 10^{-6} \times 200^2$
 $= 6 \text{ J}$
If distance is halved
 $C' = 2C = 600 \times 10^{-6} \text{ F}$
 $Q = C'V'$

PEA Association Pvt. Ltd. Thapathali, Kathmandu, Tel: 5345730, 5357187
2082-10-24 Hints & Solution

$$V' = \frac{CV}{C'} = \frac{3 \times 10^{-6} \times 200}{6 \times 10^{-6}} = 100V$$

Final energy

$$E_2 = \frac{1}{2} C' V'^2 \\ = \frac{1}{2} \times 600 \times 10^{-6} \times 100^2 \\ = 3 J$$

$$\Delta E = E_1 - E_2 \\ = 6 - 3 = 3J$$

68.(b) $R_{CAD} = 1 + 3 = 4\Omega$

 $I_1 = \frac{E}{R_{CAD}} = \frac{10}{4} = 2.5A$

$$R_{CBD} = 3 + 1 = 4\Omega$$
 $I_2 = \frac{E}{R_{CBD}} = \frac{10}{4} = 2.5A$

$$V_{CA} = I_1 R_{CA} = 2.5 \times 1 = 2.5V$$
 $V_{CB} = I_2 R_{CB} = 2.5 \times 3 = 7.5V$

$$V = V_{CB} - V_{CA} \\ = 7.5 - 2.5 = 5V$$

69.(b) $E = \frac{d\phi}{dt} = \frac{BAN \cos 0^\circ - BAN \cos 180^\circ}{t}$

 $= \frac{2BAN}{t} = \frac{2 \times 4 \times 10^{-5} \times 500 \times 10^{-4} \times 1000}{0.1} \\ = 0.04 V = 40 mV$

70.(a) 2nd excited to ground

$$\frac{hc}{\lambda_3} = E_3 - E_1 = -\frac{Rhc}{9} + \frac{Rhc}{1}$$

$$\text{or, } \frac{hc}{\lambda_3} = Rhc \left(1 - \frac{1}{9}\right)$$

$$\text{or, } \lambda_3 = \frac{9}{8R}$$

And first excited to ground

$$\frac{hc}{\lambda_2} = E_2 - E_1 = -\frac{Rhc}{4} + Rhc$$

$$\text{or, } \frac{1}{\lambda_2} = \left(1 - \frac{1}{4}\right) R$$

$$\text{or, } \lambda_2 = \frac{4}{3R}$$

$$\therefore \frac{\lambda_3}{\lambda_2} = \frac{9}{8R} \times \frac{3R}{4} = 27:32$$

71.(c) $\frac{90\% \text{ of } N_0}{N_0} = \left(\frac{1}{2}\right)^{t/T_{1/2}}$

$$\text{or, } \ln 0.9 = \frac{t}{T_{1/2}} \ln 0.5$$

$$\text{or, } T_{1/2} = \frac{5 \ln 0.5}{\ln 0.9} = 32.9 \text{ days}$$

$$\% \text{ left} = \frac{N}{N_0} = \left(\frac{1}{2}\right)^{t/T_{1/2}} \times 100\%$$

$$= \left(\frac{1}{2}\right)^{20/32.9} \times 100\% \\ = 65\%$$

72.(a) $\tan c = \frac{r}{h}$

$$\text{or, } r = h \frac{\sin c}{\cos c} = h \frac{\sin c}{\sqrt{1 - \sin^2 c}}$$

$$= \frac{h}{\sqrt{\mu^2 - 1}} \\ = \frac{4}{\sqrt{\frac{25-9}{9}}} = \frac{4 \times 3}{4} = 3m$$

73.(c) Distance = 2.5β

$$= 2.5 \frac{D\lambda}{d} \\ = \frac{2.5 \times 2 \times 5000 \times 10^{-10}}{0.2 \times 10^{-3}} = 12.5 \times 10^{-3} \\ = 12.5 \text{ mm}$$

74.(a) For neutralization: $M_1 V_1 = M_2 V_2$ $0.1 \times 50 = 0.2 \times V_2$
 $V_2 = 5/0.2 = 25 \text{ mL}$

75.(b) When [A] doubles, rate increases 4 times \rightarrow order w.r.t A = 2 When [B] doubles, rate increases 2 times \rightarrow order w.r.t B = 1 Therefore, Rate = $k[A]^2[B]$

76.(c) Fe^{3+} has electronic configuration [Ar] 3d⁵ In 3d⁵, all 5 electrons are unpaired (Hund's rule)

77.(a) Formal charge = Valence electrons - Non-bonding electrons $\frac{1}{2}$ (Bonding electrons) For S in SO_4^{2-} : FC = $6 - 0 - \frac{1}{2}(8) = 6 - 4 = +2$

78.(a) $E^\circ \text{cell} = E^\circ \text{cathode} - E^\circ \text{anode}$ $1.10 = E^\circ Cu^{2+}/Cu - (-0.76)$ $E^\circ Cu^{2+}/Cu = 1.10 - 0.76 = +0.34 \text{ V}$

79.(b) NH_3 has sp³ hybridization with one lone pair. The lone pair-bond pair repulsion reduces the bond angle from tetrahedral angle (109.5°) to about 107°.

80.(b) Iodoform test is positive for compounds containing CH_3CO^- group or $CH_3CH(OH)^-$ group. CH_3COCH_3 (acetone) contains CH_3CO^- group.

81.(b) C_2H_4 structure: $H_2C=CH_2$ Sigma bonds: 4 C-H bonds + 1 C-C bond = 5σ bonds Pi bonds: 1 C=C double bond contains 1π bond

82.(d) Roots are 1 & 1

Equation is: $x^2 - 2x + 1 = 0$

$$a = 1, b = -2, c = 1$$

On substituting, we get

$$= 0$$

83.(d) Putting n = 1, 2, 3 in option (d), we get the result.

84.(b) Putting x = ω

$$\omega^{99} + \frac{1}{\omega^{99}} = 1 + 1 = 2$$

85.(a) $a^2 \cdot 2 \sin c \cos c + c^2 \cdot 2 \sin A \cos A$

PEA Association Pvt. Ltd. Thapathali, Kathmandu, Tel: 5345730, 5357187
2082-10-24 Hints & Solution

$= a^2 \cdot 2 \cdot \frac{c}{2R} \cdot \cos C + c^2 \cdot 2 \cdot \frac{a}{2R} \cos A$ $= \frac{ac}{R} (a \cos C + \cos A) = \frac{abc}{R} \times \frac{4}{4} = 4\Delta$ <p>86.(c) A.M. \geq G.M.</p> $\frac{\log_a b + \log_b a}{2} \geq \sqrt{(\log_a b) \cdot (\log_b a)} = 1$ $(\log_a b + \log_b a) \geq 2$ <p>Min. value = 2</p> <p>87.(a) Parabola: $y^2 = 12x$ Putting $y = 6$, we get $x = 3$ Focal distance = $x_1 + a = 3 + 3 = 6$</p> <p>88.(a) Parallel plane: $4x - 3y + 6z + d = 0$ Passes through (1, 2, 3) i.e. $d = -16$ Required eqⁿ is: $4x - 3y + 6z - 16 = 0$</p> <p>89.(a) $\frac{dr}{dt} = \frac{1}{4}$ and $r = 5\text{cm}$ Surface area (A) = $4\pi r^2$ $\frac{dA}{dt} = 4\pi \cdot 2r \frac{dr}{dt} = 10\pi \text{ cm}^2/\text{sec}$</p> <p>90.(c) $I = \int_0^{\pi/2} \frac{\sin x \, dx}{\sin x + \cos x} \dots \text{(i)}$</p> $= \int_0^{\pi/2} \frac{\sin\left(\frac{\pi}{2} - x\right) \, dx}{\sin\left(\frac{\pi}{2} - x\right) + \cos\left(\frac{\pi}{2} - x\right)}$ $= \int_0^{\pi/2} \frac{\cos x \, dx}{\sin x + \cos x} \dots \text{(ii)}$ <p>Adding (i) & (ii):</p> $2I = \int_0^{\pi/2} \frac{\sin x \, dx}{\sin x + \cos x} + \int_0^{\pi/2} \frac{\cos x \, dx}{\sin x + \cos x} \, dx$ $2I = \int_0^{\pi/2} dx \quad \therefore \quad I = \frac{\pi}{4}$ <p>91.(c) $\frac{2b^2}{a} = \frac{1}{2} (2b)$</p>	$b = \frac{a}{2}$ $b^2 = a^2(1 - e^2)$ $\frac{a^2}{4} = a^2(1 - e^2) \quad e = \frac{\sqrt{3}}{2}$ <p>92.(b) $\frac{dy}{dx} = y_1 = \frac{1}{2\sqrt{x^2 + m^2}} \cdot 2x = \frac{x}{\sqrt{x^2 + m^2}}$ $yy_1 = \sqrt{x^2 + m^2} \cdot \frac{x}{\sqrt{x^2 + m^2}}$ $yy_1 = x$</p> <p>93.(b) $\frac{dy}{dx} = 2Ae^{2x} - 2Be^{-2x}$ $\frac{d^2y}{dx^2} = 4Ae^{2x} + 4Be^{-2x}$ $\frac{d^2y}{dx^2} = 4y$ $\frac{d^2y}{dx^2} - 4y = 0$</p> <p>94.(c) $A = \int_0^{\pi/4} \tan x \, dx + \int_0^{\pi/2} \cot x \, dx$ $= \log 2$</p> <p>95.(d) $t_n = \frac{2 + 4 + 6 + \dots + n \text{ terms}}{n!}$ $= \frac{n(n+1)}{n!} = \frac{(n-1)+2}{(n-1)!}$ $= \frac{1}{(n-1)!} + \frac{2}{(n-1)!}$ $\text{Sum} = e + 2e = 3e$</p> <p>96.(c) $\vec{FC} + \vec{AD} + \vec{EB}$ $= 2\vec{AB} + 2\vec{AO} + 2\vec{OB}$ $= 2\vec{AB} + 2(\vec{AO} + \vec{OB})$ $= 2\vec{AB} + 2\vec{AB} = 4\vec{AB}$</p> <p>97.(c) 98.(b) 99.(d) 100.(c)</p>
---	--

...Best of Luck...