

2082-10-10 Hints & Solution

Section - 1

1.(d) $R = \frac{2u_x u_y}{g} = \frac{2 \times 5 \times 4}{10} = 4m$

2.(a) Energy density = $\frac{1}{2} \times \text{Stress} \times \text{Strain}$
 $= \frac{1}{2} \times (Y \times \text{Strain}) \times \text{Strain}$
 $= \frac{1}{2} Y \alpha^2$

3.(d) $\frac{1}{R_{eq}} = \frac{1}{R_1} + \frac{1}{R_2}$
or, $\frac{1}{\rho_{eq}l} = \frac{1}{\rho_1 \frac{l}{A}} + \frac{1}{\rho_2 \frac{l}{A}}$
or, $\frac{2}{\rho_{eq}l} = \frac{1}{\rho_1} + \frac{1}{\rho_2}$
or, $\rho_{eq} = \frac{2\rho_1 \rho_2}{\rho_1 + \rho_2}$

4.(c) $\beta = \frac{\alpha}{1 - \alpha} = \frac{0.9}{1 - 0.9} = 9$

5.(d) $\frac{R}{R_{Fe}} = \left(\frac{A}{56}\right)^{1/3} \quad \{\because R \propto A^{1/3}\}$
or, $\frac{\frac{1}{2} R_{Fe}}{R_{Fe}} = \left\{\frac{A}{56}\right\}^{1/3} \quad \left\{\because R = \frac{1}{2} R_{Fe}\right\}$
or, $\frac{1}{8} = \frac{A}{56}$
or, $A = 7$

6.(b) $F_{\text{medium}} = \frac{\mu_r \mu_0 I_1 I_2}{2\pi r}$
 $= \mu_r \times F_{\text{vacuum}}$
 $= 10 \times 2 \times 10^{-7}$
 $= 2 \times 10^{-6} \text{ N/m}$

7.(c) K.E. per molecule = $\frac{3}{2} KT$; $T = \text{constant}$.

8.(d) For 1st overtone
 $\frac{\lambda}{2} + \frac{\lambda}{2} = l \quad \text{or, } \lambda = l$

9.(c) Induced charge = $\frac{\Delta\phi}{R}$; $\Delta\phi$ = change of flux

R = resistance

10.(c) $y = \frac{1}{2} \frac{qE}{m} \frac{x^2}{v^2}$
or, $y = \frac{qEx^2}{4KE} \quad (\because KE = \frac{1}{2} mv^2)$

i.e. $y \propto q$ (change)

Charge of α > change of proton = change of electron.

11.(b) The potential inside conductor is same as that on surface as inside conductor is equipotential surface.

12.(b) At height h,

$$\text{P.E.} = \frac{1}{3} \text{K.E}$$

$$\Rightarrow \text{K.E.} = 3\text{P.E}$$

$$\therefore \text{Total energy (E)} = \text{K.E.} + \text{P.E.} \\ = 4\text{P.E}$$

Now, $4\text{P.E.} = \frac{1}{2} mu^2 \quad (\because \frac{1}{2} mu^2 \text{ is initial total energy})$

$$\text{or, } 4 \times mgh = \frac{1}{2} mu^2 \text{ or, } h = \frac{u^2}{8g}$$

13.(a) $P = IV$

$$= \frac{ne}{t} \times v$$

14.(c) $I = I_0 \cos^2 \theta$

or, 25% of $I_0 = I_0 \cos^2 \theta$

or, $\cos \theta = \frac{1}{2}$

$\therefore \theta = 60^\circ$

15.(c) 16.(b) 17.(b) 18.(a) 19.(b)

20.(a) 21.(b) 22.(c) 23.(b) 24.(b)

25.(c) 26.(d) 27.(d) 28.(b)

29.(c) We have $p \Rightarrow q \equiv (\neg q) \Rightarrow (\neg p)$
So the equivalent statement must be if mobile works well then battery is not low.

30.(b) $A - (A - B) = A \cap (A - B)' = A \cap (A \cap B)' = A \cap (A' \cup (B')) = A \cap (A' \cup B) = (A \cap A') \cup (A \cap B) = A \cap B$

31.(c) One root = $-2 + \sqrt{3}$
As the irrational roots always occur in conjugate pair.
So other root must be $-2 - \sqrt{3}$.

32.(d) For equal roots, we must have, discriminant = 0

$$\Rightarrow (k+2)^2 - 4 \times 1.2k = 0$$

$$\Rightarrow k^2 + 4k + 4 - 8k = 0$$

$$\Rightarrow k^2 - 4k + 4 = 0$$

$$\Rightarrow (k-2)^2 = 0$$

$$\Rightarrow k = 2$$

33.(a) Here lines are parallel and have no point of intersection.

34.(c) Here the lines $x = 0$ and $y = 0$ are perpendicular to each other. Hence the orthocentre = (0, 0)

35.(b) Given $x^2 + y^2 = 0$ which is true only when

$$x^2 = 0, y^2 = 0 \quad \text{i.e., } x = 0, y = 0. \text{ So a point}$$

36.(c) Using fact that, product of parameters = -1 at the end of focal chord.

37.(d) Given parabola is $y^2 = 2x$

$$\text{Here } a = \frac{1}{2}$$

and the line is $y = 2x + \lambda$.

$$\text{So } m = 2, c = \lambda$$

The line touches the parabola if

$$\lambda = am = \frac{1}{2} \times 2 = 1$$

38.(a) Distance from y-axis = $\sqrt{x^2 + z^2} = \sqrt{16 + 25} = \sqrt{41}$ units.

39.(c) $\sqrt{6^2 + (-2)^2 + 3^2} = \sqrt{36 + 4 + 9} = \sqrt{49} = 7$
So the direction cosines of a normal are

$$\frac{6}{7}, \frac{2}{7}, \frac{3}{7}$$

40.(d) Given $|\vec{a}| = 1, |\vec{b}| = 1, |\vec{a} + \vec{b}| = 1$, angle between \vec{a} & $\vec{b} = \alpha$

$$\text{Now, } |\vec{a} + \vec{b}|^2 = 1$$

$$\text{or, } |\vec{a}|^2 + |\vec{b}|^2 + 2\vec{a} \cdot \vec{b} = 1$$

$$\text{or, } 1 + 1 + 2|\vec{a}| |\vec{b}| \cos \alpha = 1$$

$$\text{or, } 2 \cdot 1 \cdot \cos \alpha = -1$$

$$\text{or, } \cos \alpha = -\frac{1}{2} \quad \therefore \alpha = 120^\circ$$

2082-10-10 Hints & Solution

<p>41.(c) $\sec^{-1}x = \operatorname{cosec}^{-1}y$ or, $\cos^{-1}\frac{1}{x} = \sin^{-1}\frac{1}{y}$ or, $\cos^{-1}\frac{1}{x} = \frac{\pi}{2} - \cos^{-1}\frac{1}{y}$ $\therefore \cos^{-1}\frac{1}{x} + \cos^{-1}\frac{1}{y} = \frac{\pi}{2}$</p> <p>42.(d) $P(A \cup B) = P(A) + P(B) - P(A \cap B)$ $= 0.4 + 0.5 - 0.12 = 0.78$ $P(\overline{A \cup B}) = 1 - P(A \cup B) = 1 - 0.78 = 0.22$ $P(\overline{B}) = 1 - P(B) = 1 - 0.5 = 0.5$ $\therefore P(\overline{A}/B) = \frac{P(\overline{A} \cap B)}{P(\overline{B})} = \frac{P(\overline{A} \cup B)}{P(\overline{B})} = \frac{0.22}{0.5} = 0.44$</p> <p>43.(b) Given $\sigma_x = 20$ $\sigma_y = 15$ $r = 0.48$ \therefore Regression coefficient of x on y $b_{xy} = r \frac{\sigma_x}{\sigma_y}$ $= 0.48 \times \frac{20}{15} = 0.64$</p> <p>44.(c) Given $\lim_{x \rightarrow 0} \frac{\tan 2x - x}{3x - \sin x} = \lim_{x \rightarrow 0} \frac{\frac{\tan 2x}{2x} \times 2 - 1}{3 - \frac{\sin x}{x}}$ $= \frac{2 - 1}{3 - 1} = \frac{1}{2}$</p> <p>45.(c) Since the function is continuous at $x = 0$. So we have $\lim_{x \rightarrow 0} f(x) = f(0)$ or, $\lim_{x \rightarrow 0} x \sin \frac{1}{x} = k$ $\therefore k = 0$</p> <p>46.(d) Given $y = x + \frac{x^2}{2} + \frac{x^3}{3} + \dots$ to ∞ or, $y = -\left(-x - \frac{x^2}{2} - \frac{x^3}{3} - \dots\right)$ or, $y = -\ln(1-x)$ $\therefore \frac{dy}{dx} = -\frac{1}{1-x} - 1 = \frac{1}{x-1}$</p> <p>47.(b) Given $f(x) = \tan^{-1}x$ So $f'(x) = \frac{1}{1+x^2} > 0$ for all real x \therefore The function is strictly increasing.</p> <p>48.(a) Given $y \sin x = x + c$ On differentiation, $y \frac{d \sin x}{dx} + \sin x \frac{dy}{dx} = \frac{dx}{dx} + \frac{dc}{dx}$ or, $\sin x \frac{dy}{dx} + y \cos x = 1$ or, $\frac{dy}{dx} + y \cot x = \operatorname{cosec} x$ On comparing with $\frac{dy}{dx} + Py = Q$ we get $Q = \operatorname{cosec} x$</p> <p>49.(b) 50.(b) 51.(d) 52.(d) 53.(c) 54.(c) 55.(d) 56.(d) 57.(b) 58.(b) 59.(c) 60.(a)</p>	<p>62.(c) $3mv = \sqrt{(m \times 39)^2 + (m \times 39)^2}$ or, $v = \frac{\sqrt{2 \times 39^2}}{3}$ or, $v = 13\sqrt{2}$ m/s</p> <p>63.(b) $E = K \frac{l}{3} = \frac{V}{l} \times \frac{l}{3} \dots (1) \quad \left(\because K = \frac{V}{l} \right)$ $E = K'l = \frac{V}{l + \frac{l}{2}} \times l \dots (2)$ From (1) and (2) $\frac{V}{l} \times \frac{l}{3} = \frac{V}{\frac{3l}{2}} \times l$ $\text{or, } l' = \frac{l}{2}$</p> <p>64.(b) $I \propto l^2 a^2$ $\therefore \frac{l_1}{l_2} = \left(\frac{f_1}{f_2}\right)^2 \times \left(\frac{a_1}{a_2}\right)^2$ or, $\frac{1}{36} = \left(\frac{1}{2}\right)^2 \times \left(\frac{a_1}{a_2}\right)^2$ or, $\frac{a_1}{a_2} = \frac{1}{3}$</p> <p>65.(b) $\frac{m}{m_0} = \left(\frac{1}{2}\right)^{t/T_{1/2}}$ or, $80\% = \left(\frac{1}{2}\right)^{t/T_{1/2}}$ or, $0.8 = (0.5)^{t/T_{1/2}}$ or, $T_{1/2} = 31$ days Again $\frac{m'}{m_0} = \left(\frac{1}{2}\right)^{t/T_{1/2}} \times 100\%$ $= \left(\frac{1}{2}\right)^{20/31} \times 100\%$ $= 63.9\%$</p> <p>66.(a) $\frac{hc}{\lambda} = E_{\text{ion}} + \text{K.E.}$ or, $\lambda = \frac{hc}{E_{\text{ion}} + \text{K.E.}}$ or, $\lambda = \frac{6.62 \times 10^{-34} \times 3 \times 10^8}{(13.6 + 2.4) \times 1.6 \times 10^{-19}}$ or, $\lambda = 7.75 \times 10^{-8}$ m</p> <p>67.(d) $Q = 6 - 2 = 4\mu\text{C}$ $\therefore Q_1 = Q_2 = \frac{Q}{2} = 2 \mu\text{C} = 2 \times 10^{-6}$ C Then, $F = \frac{1}{4\pi\epsilon_0} \frac{Q_1 Q_2}{r^2}$ $= \frac{9 \times 10^9 \times 2 \times 10^{-6} \times 2 \times 10^{-6}}{(0.2)^2}$ $= 0.9$ N</p> <p>68.(b) $S = \frac{G}{n-1}; n = \frac{I}{I_g} = 6$ $= \frac{10}{6-1}$ $= 2\Omega$ in parallel</p> <p>69.(c) $h = \frac{2T \cos \theta}{r \rho g}$ or, $\frac{h}{\cos \theta} = \frac{2T}{r \rho g} = \text{constant}$ $\therefore \frac{h_1}{\cos \theta_1} = \frac{h_2}{\cos \theta_2}$</p>
--	--

Section – II

61.(c) $I_{CD} = I_{AB} + Md^2$ (Parallel axis theorem)

$$\text{or, } mk_{CM}^2 + Md^2$$

$$\text{or, } K_{CM} = \sqrt{K^2 - d^2}$$

$$\text{or, } K_{CM} = \sqrt{10^2 - 6^2} = 8 \text{ cm}$$

2082-10-10 Hints & Solution

<p>70.(a) or, $\cos\theta_2 = \frac{h_2}{h_1} \times \cos\theta_1$ or, $\cos\theta_2 = \frac{1}{2} \times \cos 0^\circ$ or, $\theta_2 = 60^\circ$ For maxima, path diff = $n\lambda$ or, $\frac{yd}{D} = n\lambda$ or, $\frac{d}{2} \times \frac{d}{D} = n\lambda \left(\because y = \frac{d}{2} \right)$ $n = \frac{d^2}{2\lambda D}$</p> <p>71.(d) $T_1 V_1^{\gamma-1} = T_2 V_2^{\gamma-1}$ ($\because TV^{\gamma-1}$ = constant) or, $T_2 = T_1 \times \left(\frac{V_1}{V_2} \right)^{\gamma-1}$ or, $T_2 = 300 \times \left(\frac{V_1}{\frac{1}{4}V_1} \right)^{1.4-1}$ or, $T_2 = 300 \times 4^{0.4} = 522.3 \text{ K}$</p> <p>72.(b) $\cos\theta = \frac{R}{Z} = \frac{R}{\sqrt{R^2 + X^2}}$ or, $\cos\theta = \frac{3}{\sqrt{3^2 + 4^2}}$ or, $\cos\theta = 0.6$</p> <p>73.(a) $dQ = msdT = m \times \frac{1}{2} T^2 dT \left(\because S = \frac{1}{2} T^2 \right)$ $\therefore Q = \int_0^{50} dQ$ or, $Q = \frac{m}{2} \int_0^{50} T^2 dT$ or, $Q = \frac{m}{2} \times \left[\frac{T^3}{3} \right]_0^{50}$ or, $Q = \frac{2}{2} \times \frac{1}{3} \times 50^3$ $= 41666 \text{ J}$</p> <p>74.(b) Molar mass of $\text{MgSO}_4 = 24 + 32 + (16 \times 4) = 120 \text{ g/mol}$ Moles = $9.6/120 = 0.08 \text{ mol}$</p> <p>75.(c) Rate $\propto [\text{N}_2][\text{H}_2]^3$. New rate = $(2)[\text{N}_2] \times (3[\text{H}_2])^3 = 2 \times 27 = 54$ times</p> <p>76.(b) $2(+1) + 2x + 7(-2) = 0$, where x is oxidation state of Cr $2 + 2x - 14 = 0$, therefore $x = +6$</p> <p>77.(d) As positive charge increases, ionic radius decreases (a is correct). Down the group, ionic radius increases (c is correct).</p> <p>78.(a) Mn changes from +7 to +2, so electrons transferred = 5 Equivalent weight = Molecular weight/5 = $158/5$</p> <p>79.(c) In ethyne, each carbon forms 2 sigma bonds and has 2 pi bonds, indicating sp hybridization.</p> <p>80.(b) Lucas reagent gives immediate turbidity with tertiary alcohols, turbidity after heating with secondary alcohols, and no reaction with primary alcohols.</p> <p>81.(b) C_4H_{10} can exist as n-butane ($\text{CH}_3 - \text{CH}_2 - \text{CH}_2 - \text{CH}_3$) and isobutane ($\text{CH}_3 - \text{CH}(\text{CH}_3) - \text{CH}_3$)</p> <p>82.(a) Here $g(x) = \log_e(x + \sqrt{x^2 + 1})$ $g(-x) = \log_e(-x + \sqrt{x^2 + 1}) = -\log_e(x + \sqrt{x^2 + 1}) = -g(x)$ So $g(x)$ is odd. Also sine is odd. So their composition is odd.</p> <p>83.(d) Given $\frac{1}{1^4} + \frac{1}{2^4} + \frac{1}{3^4} + \frac{1}{4^4} + \frac{1}{5^4} + \frac{1}{6^4} + \dots \text{ to } \infty = \frac{\pi^4}{90}$</p>	<p>or, $\frac{1}{1^4} + \frac{1}{3^4} + \frac{1}{5^4} + \dots + \left(\frac{1}{2^4} + \frac{1}{4^4} + \frac{1}{6^4} + \dots \right) = \frac{\pi^4}{90}$ or, $\frac{1}{1^4} + \frac{1}{3^4} + \frac{1}{5^4} + \dots + \left(\frac{1}{2^4} \frac{1}{1^4} + \frac{1}{2^4} \frac{1}{2^4} + \frac{1}{2^4} \frac{1}{3^4} + \dots \right) = \frac{\pi^4}{90}$ $= \frac{\pi^4}{90}$</p> <p>or, $\frac{1}{1^4} + \frac{1}{3^4} + \frac{1}{5^4} + \dots + \frac{1}{16} \frac{\pi^4}{90} = \frac{\pi^4}{90}$ or, $\frac{1}{1^4} + \frac{1}{3^4} + \frac{1}{5^4} + \dots = \frac{\pi^4}{90} - \frac{1}{16} \frac{\pi^4}{90} = \frac{15}{16} \frac{\pi^4}{90}$ $= \frac{\pi^4}{96}$</p> <p>84.(b) Given $\left(\frac{1-i}{1+i} \right)^{100} = a + ib$ or, $\left(\frac{1-i}{1+i} \times \frac{1-i}{1-i} \right)^{100} = a + ib$ or, $\left(\frac{1-2i+i^2}{1^2-i^2} \right)^{100} = a + ib$ or, $\left(\frac{1-2i-1}{1+1} \right)^{100} = a + ib$ or, $\left(\frac{-2i}{2} \right)^{100} = a + ib$ or, $(-i)^{100} = a + ib$ $(i)^{100} = a + ib$ or, $(i^4)^{25} = a + ib$ or, $1 = a + ib$ or, $1 + 0i = a + ib$ $\Rightarrow a = 1, b = 0$</p> <p>85.(c) Given $\begin{vmatrix} a & 1 & a+c \\ b & 1 & c+a \\ c & 1 & a+b \end{vmatrix}$ Applying $C_3 \rightarrow C_3 + C_1$, $\begin{vmatrix} a & 1 & a+b+c \\ b & 1 & a+b+c \\ c & 1 & a+b+c \end{vmatrix}$ $= (a+b+c) \begin{vmatrix} a & 1 & 1 \\ b & 1 & 1 \\ c & 1 & 1 \end{vmatrix} = 0 \quad (\because C_2 = C_3)$</p> <p>86.(b) $C(n, 2) = 28$ or, $\frac{n!}{(n-2)! 2!} = 28$ or, $\frac{n(n-1)(n-2)!}{(x-2)! 2!} = 28$ or, $x^2 - n - 56 = 0$ or, $(n-8)(n+7) = 0$ $\therefore n = 8$</p> <p>87.(b) Given $(1+x^2)^{40} \left(x^2 + 2 + \frac{1}{x^2} \right)^{-5}$ $= (1+x^2)^{40} \left\{ \left(x + \frac{1}{x} \right)^2 \right\}^{-5}$ $= (1+x^2)^{40} \left(\frac{1+x^2}{x} \right)^{-10}$ $= (1+x^2)^{40} \frac{(1+x^2)^{-10}}{x^{-10}} = (1+x^2)^{30} x^{10}$</p> <p>So, coefficient of x^{20} in $(1+x^2)^{30} x^{10}$ $= \text{Coefficient of } x^{10} \text{ in } (1+x^2)^{30}$ $= C(30, 5) \text{ or } C(30, 25)$</p>
---	--

2082-10-10 Hints & Solution

<p>88.(b) Let $y = m_1x$ and $y = m_2x$ be the lines represented by $x^2 + \lambda xy - 3y^2 = 0$. Then $m_1 + m_2 = \frac{\lambda}{-3}$, $m_1m_2 = \frac{1}{-3}$ Here, $m_1 + m_2 = 2m_1m_2$ or, $\frac{\lambda}{-3} = 2 \times \frac{1}{-3}$ $\Rightarrow \lambda = 2$</p> <p>89.(c) Eccentricity of hyperbola $= \sqrt{1 + \frac{81}{144}} = \sqrt{\frac{225}{144}} = \frac{15}{12} = \frac{5}{4}$ and foci $= (\pm ae, 0) = \left(\pm \frac{12}{5} \times \frac{5}{4}, 0\right) = (\pm 3, 0)$ Again foci of ellipse $= (\pm ae, 0) = (\pm \sqrt{16 - b^2}, 0)$ So, $\sqrt{16 - b^2} = 3 \Rightarrow 16 - b^2 = 9 \Rightarrow b^2 = 7$</p> <p>90.(b) $\vec{a} \times \vec{i} ^2 + \vec{a} \vec{i} \sin\alpha = \vec{a} \sin\alpha$ $\vec{a} \times \vec{i} ^2 = \vec{a} ^2 \sin^2\alpha$ $\vec{a} \times \vec{j} ^2 = \vec{a} ^2 \sin\beta$ $\vec{a} \times \vec{k} ^2 = \vec{a} ^2 \sin^2\gamma$ So, $\vec{a} \times \vec{i} ^2 + \vec{a} \times \vec{j} ^2 + \vec{a} \times \vec{k} ^2 = \vec{a} ^2 (\sin^2\alpha + \sin^2\beta + \sin^2\gamma) = 2 \vec{a} ^2$ [Note that line makes angles α, β, γ with the coordinate axes].</p> <p>91.(d) Given $\cos^{-1}\sqrt{p} + \cos^{-1}\sqrt{1-p} + \cos^{-1}\sqrt{1-q} = \frac{3\pi}{4}$ or, $\cos^{-1}\sqrt{p} + \sin^{-1}\sqrt{p} + \cos^{-1}\sqrt{1-q} = \frac{3\pi}{4}$ or, $\cos^{-1}\sqrt{1-q} = \frac{\pi}{4}$ or, $\sqrt{1-q} = \cos\frac{\pi}{4}$ $\Rightarrow \sqrt{1-q} = \frac{1}{\sqrt{2}}$ $\Rightarrow 1-q = \frac{1}{2} \Rightarrow q = \frac{1}{2}$</p> <p>92.(c) Given $f(x) = x^n$, $f'(x) = nx^{n-1}$, $f''(x) = n(n-1)x^{n-2}$, ..., $f^n(x) = n(n-1)(n-2) \dots 1 = n!$ Now, $f(1) - \frac{f'(1)}{1!} + \frac{f''(1)}{2!} - \dots + \frac{(-1)^n f^n(1)}{n!}$ $= 1 - \frac{n}{1!} + \frac{n(n-1)}{2!} - \dots + (-1)^n \frac{n!}{n!}$ $= C(n, 0) - C(n, 1) + C(n, 2) - \dots + (-1)^n C(n, n)$ $= (1-1)^n = 0$</p> <p>93.(a) Given, $y^2 = 5x - 1$ or, $\frac{dy^2}{dx} = 5 \frac{dx}{dx} - \frac{d}{dx}$ or, $2y \frac{dy}{dx} = 5$ or, $\frac{dy}{dx} = \frac{5}{2y}$ At point $(1, -2)$, slope of tangent $= \frac{5}{2 \times 1 - 2} = -\frac{5}{4}$ So, slope of normal $= \frac{4}{5}$</p>	<p>Normal is $ax - 5y + b = 0$ So, slope $= -\frac{a}{5}$ or, $\frac{4}{5} = \frac{a}{5}$ i.e. $a = 4$ Also, $4 \times 1 - 5x - 2 + b = 0$ $4 + 10 + b = 0$ i.e. $b = -14$ $I = \int \frac{x \sin^{-1}x}{\sqrt{1-x^2}} dx$ Put $y = \sin^{-1}x$ $\therefore dy = \frac{1}{\sqrt{1-x^2}} dx$ Then $I = \int y \sin y dy$ $= y \int \sin y dy - \int \left(\frac{dy}{dx} \int \sin y dy \right) dy$ $= -y \cos y - \int -\cos y dy$ $= -y \cos y + \sin y + c = -\sin^{-1}x \sqrt{1-x^2} + x + c$</p> <p>94.(b)</p> $\begin{aligned} 95.(b) \quad & \int_{-1}^3 \left[\tan^{-1} \frac{x}{x^2+1} + \tan^{-1} \frac{x^2+1}{x} \right] dx \\ &= \int_{-1}^3 \left[\tan^{-1} \frac{x}{x^2+1} + \tan^{-1} \frac{x}{x^2+1} \right] dx \\ &= \int_{-1}^3 \frac{\pi}{2} dx = \frac{\pi}{2} \int_{-1}^3 dx = \frac{\pi}{2} [x]_{-1}^3 = \frac{\pi}{2} [3 - (-1)] \\ &= \frac{\pi}{2} \times 4 = 2\pi \end{aligned}$ <p>96.(a)</p> <p>Given curves are $y = x^2$... (i) $y = 2 - x^2$... (ii) Solving (i) and (ii), $x^2 = 2 - x^2$ or, $2x^2 = 2$ or, $x^2 = 1$ i.e., $x = \pm 1$ Thus the required area</p> $\begin{aligned} &= 2 \int_a^b (y_1 - y_2) dx \\ &= 2 \int_0^1 (2 - x^2 - x^2) dx \\ &= 2 \int_0^1 (2 - 2x^2) dx \\ &= 4 \int_0^1 (1 - x^2) dx \\ &= 4 \left[x - \frac{x^3}{3} \right]_0^1 = 4 \left(1 - \frac{1}{3} \right) - 0 \\ &= 4 \times \frac{2}{3} = \frac{8}{3} \text{ sq. units} \end{aligned}$ <p>97.(c) 98.(b) 99.(b) 100.(c)</p>
---	---

...Best of Luck...