

Section – 1

1.(d) $Bx = Dt$

or, $\frac{D}{B} = LT^{-1}$

2.(b) $R = \frac{u^2 \sin 2\theta}{g}$, R will be max if
 $\sin 2\theta = 1 = \sin 90^\circ$
 $\theta = 45^\circ$

3.(c) $\frac{1}{2} m (2v_c)^2 - \frac{1}{2} mv_e^2 = \frac{1}{2} mv^2$
or, $\sqrt{3} v_c = v'$

4.(c) $r = \sqrt{r_1^2 + r_2^2} = \sqrt{3^2 + 4^2} = 5 \text{ cm}$

5.(c) i.e. 0 to $4^\circ\text{C} \rightarrow$ volume decreases, 4°C to $15^\circ\text{C} \rightarrow$ volume increases

6.(c) $a_2 = 6 \text{ unit}, a_1 = 8 \text{ unit}$

$$\frac{I_{\max}}{I_{\min}} = \left(\frac{a_1 + a_2}{a_1 - a_2} \right)^2 = \left(\frac{8+6}{8-6} \right)^2 = \left(\frac{14}{2} \right)^2 = 49 : 1$$

7.(c) $\sin 60^\circ = \frac{v_p}{v}$
 $v_p = \frac{\sqrt{3}v}{2}$

8.(c)

$$\begin{array}{c} Q \quad Q \\ \hline \overbrace{a/2} \quad \overbrace{a/2} \\ \frac{Qq}{4\pi\epsilon_0 4} = \frac{Q \cdot Q}{4\pi\epsilon_0 a^2} \Rightarrow q = \frac{Q}{4} \end{array}$$

9.(b) $\frac{R'}{R} = \left(\frac{2l}{l} \right)^2 = 4$

$R' = 4R$

10.(c) $E = \frac{\Delta\phi}{\Delta t} = \frac{8 \times 10^{-4}}{0.5} = 1.6 \text{ mV}$

11.(a) $V_L = 60 \text{ V}, V_C = 30 \text{ V}, V_R = 40 \text{ V}$

$$V = \sqrt{V_R^2 + (V_L - V_C)^2} = 50 \text{ V}$$

12.(d) $v = \sqrt{\frac{2eV}{m}} = \sqrt{2 \times 1.8 \times 10^{11} \times 100} = 6 \times 10^6 \text{ m/s}$

13.(a) $\phi = hf_0 \Rightarrow f_0 = \frac{\phi_0}{h} = 8 \times 10^{14} \text{ Hz}$

14.(b) P-type semiconductor holes are the majority charge carriers.

15.(a) No. of protons = No. of mole $\times N_A \times$ No. of protons in one molecule of CaCO_3

16.(b)

17.(b) MHPO_4 shows that valency of M = 2 (since HPO_4 has valency 2). Hence chloride will be MCl_2

18.(b)

19.(d)

20.(a)

21.(d) F^- is the most electronegative element.

22.(c) The impurity in extraction of copper is FeO which is removed by adding SiO_2 .

23.(d) It obeys Huckel's rule i.e. it contains $(4n+2)$ delocalized π electrons e.g. 10π electrons.

24.(a) It is known as enyne compound. Its IUPAC format is: Alk-en-yne. Numbering is done by the lowest sum rule.

25.(d) Carbonium ion e.g. CH_3^+ (6 electrons)

Free radical e.g. $\cdot\text{CH}_3$ (7 electrons)

Nitrene e.g. CH_3N (6 electrons)

Carbanion e.g. CH_3^- (8 electrons)

$(\text{CH}_3)_3\text{CNO}_2, \text{CCl}_3\text{CHO}$ and $(\text{CH}_3)_3\text{CHO}$ do not have α hydrogen atoms so they do not show tautomerism.

27.(a) $+R$ or $+M$ groups viz. $-\text{OH}, \text{OR}, -\text{NH}_2, -\text{X}$ etc give ortho and para substituted product due to mesomeric effect or resonating effect.

28.(c)

29.(a) $B \subset A$, then $A \cup B = A$

30.(a) $z = \frac{1}{2+i} \times \frac{2-i}{2-i} = \frac{2-i}{2^2 - i^2} = \frac{2-i}{5}$

$$\bar{z} = \frac{2+i}{5}$$

31.(c) $AM \times H.M = GM^2$

or, $H.M = \frac{G^2}{A}$

32.(c) θ lies on 3rd quadrant.

$$\therefore \theta = \pi + \frac{\pi}{6} = \frac{7\pi}{6}$$

Most general value = $2n\pi + \frac{7\pi}{6}$

33.(b) Focus = $\left(\frac{-5+3}{2}, \frac{6+6}{2} \right) = (-1, 6)$

34.(b) Let $\vec{a} = a_1 \vec{i} + a_2 \vec{j} + a_3 \vec{k}$

Then, $\vec{a} \cdot \vec{i} = a_1, \vec{a} \cdot \vec{j} = a_2, \vec{a} \cdot \vec{k} = a_3$

So, $(\vec{a} \cdot \vec{i}) \vec{i} + (\vec{a} \cdot \vec{j}) \vec{j} + (\vec{a} \cdot \vec{k}) \vec{k}$

$$= a_1 \vec{i} + a_2 \vec{j} + a_3 \vec{k} = \vec{a}$$

PEA Association Pvt. Ltd. Thapathali, Kathmandu, Tel: 5345730, 5357187
2082-9-19 Hints & Solution

35.(a)

36.(b) Let $y = \sec^2 x$, $z = \tan x$

$$\frac{dy}{dx} = 2 \sec x \cdot \sec x \tan x$$

$$\text{&} \quad \frac{dz}{dx} = \sec^2 x$$

$$\therefore \frac{dy}{dz} = 2 \tan x$$

37.(b) $\sin^{-1}(\cos x) = \frac{\pi}{2} - \cos^{-1}(\cos x)$

$$= \frac{\pi}{2} - x$$

Now, $\int \sin^{-1}(\cos x) dx = \frac{\pi}{2} x - \frac{x^2}{2} + c$

38.(c) $xy = 1$ which is rectangular hyperbola. So, $e = \sqrt{2}$.

39.(a)

40.(b) $(0, 1, 0)$

41.(d) Greatest coefficient is the coeff. of mid term.

42.(d) $f(x) = \frac{1}{3\sin x - 4\cos x + 7}$ will be minimum when $3\sin x - 4\cos x + 7$ is maximum.

Maximum of denominator

$$= \sqrt{3^2 + 4^2} + 7 = 5 + 7 = 12$$

43.(c) The given equation are intersecting lines.

44.(c) $ax + by = 2ab$

$$\text{or, } \frac{x}{2b} + \frac{y}{2a} = 1$$

$$A = \frac{1}{2} \times b \times h = \frac{1}{2} \cdot 2b \cdot 2a = 2ab$$

45.(a) $\int_{-1}^2 |x| dx = \int_{-1}^0 (-x) dx + \int_0^2 x dx$

$$= \left[-\frac{x^2}{2} \right]_{-1}^0 + \left[\frac{x^2}{2} \right]_0^2$$

$$= -\left(0 - \frac{1}{2} \right) + \left(\frac{4}{2} - \frac{0}{2} \right)$$

$$= \frac{1}{2} + 2 = \frac{5}{2}$$

46.(b)

47.(a) Here, $a = \cos^2 \theta - 1 = -\sin^2 \theta$

$$b = \sin^2 \theta$$

$$\text{and } a + b = 0$$

So, the lines are perpendiculars

48.(a) Obvious

49.c **50.c** **51.a** **52.a** **53.c** **54.c**

55.d **56.b** **57.a** **58.b** **59.b** **60.b**

Section – II

61.(c) $\frac{h}{2} = \frac{g}{2} (2n - 1)$

$$\text{or, } \frac{1}{2} \times \frac{1}{2} gn^2 = \frac{g}{2} (2n - 1)$$

$$\text{or, } n^2 - 4n + 2 = 0$$

$$\text{or, } n = 3.42 \text{ sec}$$

$$\therefore h = \frac{1}{2} g (3.42)^2$$

$$= \frac{1}{2} \times 10 (3.42)^2$$

$$= 58 \text{ m}$$

62.(c) $\frac{Gm_1}{x^2} = \frac{Gm_2}{(1-x)^2} \Rightarrow x = \frac{1}{11} \text{ m}$

63.(b) Energy stored = K.E. of mass

$$\frac{1}{2} \frac{YAe^2}{ml} = \frac{1}{2} mv^2$$

$$v = \sqrt{\frac{YAe^2}{ml}} = \sqrt{\frac{5 \times 10^8 \times 10^{-6} \times 0.02^2}{5 \times 10^{-3} \times 0.1}} = 20 \text{ m/s}$$

64.(b) $E = \sigma AT^4 \times t = 4.45 \text{ kJ}$

65.(a) $(\mu - 1)t = n\lambda, \lambda = \frac{(\mu - 1)t}{n} = \frac{(1.5 - 1) \times 6 \times 10^{-6}}{5}$
 $= 6 \times 10^{-7} \text{ m} = 6000 \text{ \AA}$

66.(b) $f_0 = \frac{1}{2L} \sqrt{\frac{\text{stress}}{\rho}} = \frac{1}{2l} \sqrt{\frac{Y \times \text{strain}}{\rho}} = 170 \text{ Hz}$

67.(c) $F = 9 \times 10^9 \cdot \frac{Q_1 Q_2}{r^2} \Rightarrow r^2 = 9 \times 10^9 \frac{Q_1 Q_2}{F} = 9 \text{ cm}$

68.(b) Amount of heat energy required for the water to boil
 $Q = 1 (100 - 20) \times 4200 + 420 \times 80 = 369600 \text{ J}$

$Q = 90\% \text{ of Pt, } t = 467 \text{ sec}$

69.(d) $E = \frac{1}{2} mv^2$

$$v = \sqrt{\frac{2E}{m}} = \sqrt{\frac{2 \times 2 \times 10^6 \times 1.6 \times 10^{-19}}{1.67 \times 10^{-27}}} = 1.96 \times 10^7 \text{ m/s}$$

$$F = Bev = 2.5 \times 1.6 \times 10^{-19} \times 1.96 \times 10^7 = 7.84 \times 10^{-12} \text{ N}$$

70.(c) $L = \frac{N\phi}{I} = 2.5 \times 10^{-3} \text{ H}$

The magnetic energy stored, $U = \frac{1}{2} LI^2 = 5 \times 10^{-3} \text{ J}$

71.(d) $\phi_0 = \frac{hc}{\lambda} - \text{K.E.} = 3 \times 10^{-19}$

$$f_0 = \frac{3 \times 10^{-19}}{h} = 4.5 \times 10^{14} \text{ Hz}$$

PEA Association Pvt. Ltd. Thapathali, Kathmandu, Tel: 5345730, 5357187
2082-9-19 Hints & Solution

72.(d) For 1st member of Balmer series $\frac{1}{\lambda_B} = R \left(\frac{1}{4} - \frac{1}{9} \right)$
 $\Rightarrow \lambda_B = \frac{36}{5R}$

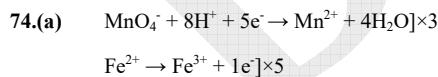
For second member of same series,

$$\frac{1}{\lambda_B'} = R \left(\frac{1}{4} - \frac{1}{16} \right) \Rightarrow \lambda_B' = \frac{16}{3R} \dots \dots \text{(i)}$$

$$\text{i.e. } \frac{\lambda_B'}{\lambda_B} = \frac{16 \times 5R}{3R \times 36}$$

$$\therefore \lambda_B' = \frac{20}{27} \times 6563 = 4861\text{\AA}$$

73.(b) $\frac{N'}{N_0}$


$$\text{So, } \frac{N}{N_0} = 1 - \frac{N'}{N_0} = 1 - \frac{1}{4} = \frac{3}{4}$$

$$\frac{N}{N_0} = \left(\frac{1}{2} \right)^{\frac{t}{T_{1/2}}}$$

$$\text{or, } \frac{3}{4} = \left(\frac{1}{2} \right)^{\frac{t}{T_{1/2}}}$$

$$\text{or, } \frac{\ln \left(\frac{3}{4} \right)}{\ln \left(\frac{1}{2} \right)} = \frac{t}{T_{1/2}}$$

$$\text{or, } t = 224 \text{ yrs}$$

As 5 moles of $\text{Fe}(\text{C}_2\text{O}_4)$ = 3 moles of KmnO_4

So, 1 mol of $\text{Fe}(\text{C}_2\text{O}_4)$ = $3/5$ moles of KmnO_4 = 0.6 mol

75.(a) $N_{\text{mix}} = (N_1 V_1 + N_2 V_2 + N_3 V_3) / V_{\text{total}}$

76.(b) 71 parts of chlorine combine with 32 parts sulphur
35.5 parts of chlorine combine with 16 parts of sulphur

Hence, eq.wt of S in SCl_2 = 16

77.(d) 1mol of Au = 197g = $0.197\text{kg} = 6.02 \times 10^{23}$ atoms so,
19.7 kg Au = 6.02×10^{25} atoms

78.(a) No. of mol $\times N_A$

79.(c) Bond length order: Single bond > bond created by resonance > double bond > triple bond

80.(c)

81.(c) B shows + I effect and hyperconjugation

C shows - I effect D shows -R and -I effect

82.(a) $\frac{dy}{dx} = \frac{fx}{fy} = \frac{2ax + 2hy}{-2hx + 2by}$
 $= \frac{ax + hy}{-hx + by}$

83.(a) $f(x) = y = x^2 - 6x + 9 - 3$

$$y + 3 = (x - 3)^2 \geq 0$$

$$y + 3 \geq 0$$

$$y \geq -3$$

84.(b) z is a locus of a point whose distance from a point (3, 4) is always 5 unit. So, locus of z is a circle.

OR, put $z = x + iy$ and solve.

$$\text{We get; } (x - 3)^2 + (y - 4)^2 = 25$$

85.(a) Since, one of the lines bisects the angle b/w the axes so the line is either $y = x$ or

$$y = -x$$

Then the eqⁿ is

$$ax^2 \pm 2hx^2 + bx^2 = 0$$

$$\text{or, } a + b = \pm 2h$$

$$\therefore (a + b)^2 = 4h^2$$

86.(d) The line passes through the centre of the circle. So, it is a diameter.

∴ Angle between diameter and tangent of circle is 90°

87.(a) If $a = 0$, $by + cz + d = 0$ is a plane parallel to x-axis.

88.(b) $\vec{a} \times \vec{b} = \begin{vmatrix} \vec{i} & \vec{j} & \vec{k} \\ 1 & 1 & 1 \\ -2 & 3 & 1 \end{vmatrix}$

$$= -2\vec{i} - 3\vec{j} + 5\vec{k}$$

$$\text{Area} = \frac{1}{2} |\vec{a} \times \vec{b}| = \frac{\sqrt{38}}{2}$$

89.(b) $a^{1/x} = b^{1/y} = c^{1/z} = k$

Then, $a = k^x$, $b = k^y$, $c = k^z$

Since, a, b, c are in G.P.

$$b^2 = ac$$

$$k^{2y} = k^x \cdot k^y = k^{x+y}$$

$$\text{or, } 2y = x + y$$

PEA Association Pvt. Ltd. Thapathali, Kathmandu, Tel: 5345730, 5357187
2082-9-19 Hints & Solution

∴ x, y, z are in A.P.

90.(a)
$$\sum \frac{n^2}{n!} = \sum \frac{n}{(n-1)!}$$

$$= \sum \frac{n-1+1}{(n-1)!}$$

$$= \sum \frac{1}{(n-2)!} + \sum \frac{1}{(n-1)!}$$

$$= 2e$$

91.(c) $f'(x) = 4x^3 + 12x^2$
 $f''(x) = 12x^2 + 24x$
 $= 12x(x+2)$
 Point of inflection, $x = 0, x = -2$
 i.e. $x \in (-\infty, -2) \cup (0, \infty)$

92.(b) No of diagonals, $nC_2 - n = 144$
 It is true when $n = 11$

93.(d) $V = \frac{4}{3}\pi r^3$
 $\frac{dv}{dt} = \frac{4}{3}\pi 3r^2 \frac{dr}{dt}$
 $18 = 4\pi r^2 \frac{dv}{dt}$

94.(a) $\frac{dr}{dt} = \frac{9}{128\pi} \text{ cm/sec}$
 Let $y = \sin x$
 Then $dy = \cos x \, dx$
 When $x = 0; y = 0$ and when $x = \frac{\pi}{2}; y = 1$
 Then $\int_0^{\pi/2} \frac{\cos x}{1 + \sin^2 x} \, dx = \int_0^1 \frac{dy}{1 + y^2} = [\tan^{-1} y]_0^1 = \frac{\pi}{4}$

95.(c) Area $= 2 \int_0^a y \, dx$
 $= 2\sqrt{4a} \int_x^a \frac{1}{2} \, dx$
 $= 4\sqrt{a} \cdot \frac{a^{3/2}}{3/2} = \frac{8}{3} a^2$

96.(c) Apply, $R_2 \rightarrow R_2 - R_1$
 and $R_3 \rightarrow R_3 - R_1$
 $\Delta = \begin{vmatrix} 1 & 1 & 1 \\ 0 & x & 0 \\ 0 & 0 & y \end{vmatrix} = xy$

i.e. Δ is divisible by both x & y

97.(c) 98.(b) 99.(c) 100.(d)

...The End...