

PEA Association Pvt. Ltd. Thapathali, Kathmandu, Tel: 5345730, 5357187
2082-9-12 Hints & Solution

Section - 1					
1.(a)	2.(b)	3.(c)	4.(d)	5.(d)	6.(d)
7.(a)	8.(a)	9.(b)	10.(b)	11.(d)	12.(a)
13.(a)	Given equation is $x^2 + (k+2)x + 2k = 0$ For equal roots, $(k+2)^2 - 4 \cdot 1 \cdot 2k = 0$ or, $k^2 + 4k + 4 - 8k = 0$ or, $k^2 - 4k + 4 = 0$ or, $(k-2)^2 = 0$ i.e. $k = 2$				
14.(b)	$t_n = 2n - 1$, $\sum t_n = (2n - 1) = n^2$				
15.(d)	$A^2 - A + I = 0$ $I = A - A^2$ $A^{-1} = A^{-1}A - A^{-1}AA = I - A$				
16.(c)	$A \cap B = C \Rightarrow C \subseteq A$ $B \cap C = A \Rightarrow A \subseteq C$ So, $A = C$				
17.(d)	$\vec{i} \cdot (\vec{j} \times \vec{k}) + \vec{j} \cdot (\vec{k} \times \vec{i}) + \vec{k} \cdot (\vec{i} \times \vec{j})$ $= \vec{i} \cdot \vec{i} + \vec{j} \cdot \vec{j} + \vec{k} \cdot \vec{k}$ $= 1 + 1 + 1 = 3$				
18.(c)	Product of slopes $= -\frac{1}{\sqrt{3}} \times -\frac{\sqrt{3}}{1} = -1$ \therefore Angle between the lines $= 90^\circ$				
19.(d)	Line $y = mx + c$ touches the circle $x^2 + y^2 = a^2$ if $a = \pm \frac{m0 - 0 + c}{\sqrt{m^2 + (-1)^2}}$ i.e. $c = \pm a \sqrt{1 + m^2}$				
20.(b)	By definition, eccentricity of circle $= 0$				
21.(a)	Eq ^o of plane cutting equal intercepts is $x + y + z = a$ But it passes through $(2, 3, 4)$ So $a = 9$				
22.(d)	$\tan^{-1} \tan \frac{2\pi}{3} = \tan^{-1}(-\sqrt{3}) = -\frac{\pi}{3}$				
23.(c)	A complex number $r(\cos\theta + i\sin\theta)$ is purely imaginary if $\cos\theta = 0$ i.e. $\theta = \frac{\pi}{2}$				
24.(c)	Since $0 \leq b_{xy} \times b_{yz} \leq 1$ So range is $[0, 1]$				
25.(c)	$P(F \text{ or } S) = P(F) + P(S) - P(F \cap S) = \frac{2}{7} + \frac{2}{7} - \frac{1}{7} = \frac{3}{7}$				
26.(d)	By definition logarithm is defined for positive values only so the region is $-1 < x \leq 1$				
27.(a)	$\lim_{x \rightarrow 0^+} \frac{ x }{x} = \lim_{x \rightarrow 0^+} \frac{x}{x} = 1$				
28.(d)	$\log \sqrt{x} = 2 \log x = 2$ and its derivative is 0				
29.(c)	Put $y = x + \log \sec x$ i.e. $dy = (1 + \tan x) dx$ So $\int \frac{(1 + \tan x)}{x + \log \sec x} dx = \log_e(x + \log \sec x) + c$				
30.(b)	For given sum, product is maximum when the numbers are equal. So $x = y = 5$. $xy = 5 \times 5 = 25$				
31.(a)					
32.(c)	Required area $= \int_1^4 y dx = \int_1^4 \sqrt{x} dx$ $= \frac{x^{3/2}}{3/2} \Big _1^4$ $= \frac{2}{3} [4^{3/2} - 1^{3/2}]$ $= \frac{2}{3} \cdot 7 = \frac{14}{3}$ sq. units				

33.(c)	$R = \sqrt{A^2 + 2AB\cos\theta + B^2}$ or, $A^2 + B^2 = A^2 + 2AB\cos\theta + B^2$ or, $\cos\theta = 0 = \cos 90^\circ$ or, $\theta = 90^\circ = \frac{\pi}{2}$
34.(d)	KE = workdone against friction or, $\frac{1}{2}mv^2 = f_f \times S$ or, $\frac{1}{2}mv^2 = \mu mgS$ or, $S = \frac{v^2}{2\mu g}$
35.(d)	$2T\cos\theta = \rho g h r$ or, $h_1 r_1 = h_2 r_2$ or, $h_1 \sqrt{\frac{A_1}{\pi}} = h_2 \sqrt{\frac{A_2}{\pi}}$ or, $4 \times \sqrt{A} = h_2 \sqrt{\frac{A}{4}}$ or, $h_2 = 8 \text{ cm}$
36.(a)	$I_0 = I_1 + I_2 + 2\sqrt{I_1 I_2} \cos\phi$ $= I + 4I + 2\sqrt{I \times 4I} \times \cos 90^\circ$ $= 5I$
37.(b)	
38.(a)	$du = nC_v dT = n \frac{R}{\gamma - 1} (75 - 25)$ $= \frac{2 \times 50 \times R}{\gamma - 1}$ $= \frac{100R}{\gamma - 1}$
39.(b)	$\sigma_1 = \sigma_2$ or, $\frac{Q_1}{4\pi r_1^2} = \frac{Q_2}{4\pi r_2^2}$ or, $\frac{Q_1}{4\pi \epsilon_0 r_1 r_1} = \frac{Q_2}{4\pi \epsilon_0 r_2 r_2}$ or, $\frac{V_1}{r_1} = \frac{V_2}{r_2}$ or, $\frac{V_1}{V_2} = \frac{r_1}{r_2}$ $\frac{R'}{R} = \left(\frac{1 + \frac{r_1}{10}}{l} \right)^2 = (1.1)^2 = 1.21$ $\therefore R' = 1.21 \times 10 = 12.1 \Omega$
40.(b)	
41.(d)	$E = \frac{1}{2}mv^2$ $v = \sqrt{\frac{2E}{m}} = \sqrt{\frac{2 \times 2 \times 1.6 \times 10^{-13}}{1.67 \times 10^{-27}}}$ $= 1.96 \times 10^7 \text{ m/s}$ $\therefore F = Bev = 2.5 \times 1.6 \times 10 \times 1.96 \times 10^7$ $= 7.8 \times 10^{-12} \text{ N}$
42.(b)	$\frac{H_1}{H_2} = \frac{\frac{R_1}{V^2}}{\frac{R_2}{R_2}} = \frac{R_2}{R_1}$
43.(b)	$i = 2r$ $\mu = \frac{\sin i}{\sin r} = \frac{\sin 2r}{\sin r} = \frac{2 \sin r \cos r}{\sin r}$ or, $\cos r = \frac{\mu}{2}$

<p>or, $r = \cos^{-1}\left(\frac{\mu}{2}\right)$ $\therefore i = 2r = 2\cos^{-1}\left(\frac{\mu}{2}\right)$</p> <p>44.(b) $C = \sin^{-1}\left(\frac{3}{5}\right)$ or, $\frac{3}{5} = \sin C$ or, $\mu = \frac{1}{\sin C} = \frac{5}{3}$ $\therefore \tan i_p = \mu$ or, $i_p = \tan^{-1}\left(\frac{5}{3}\right)$</p> <p>45.(d) $\alpha = 0.9$ 46.(b) $\beta = \frac{\alpha}{1-\alpha} = \frac{\alpha}{1-0.9} = 9$ $\beta = \frac{\Delta I_c}{\Delta I_b}$ or, $\Delta I_c = 9 \times 2 = 18 \mu A$</p> <p>47.(a) Let x be the required weight $0.05 = x/500 x 1000/(174)$ $= x \approx 4.355 \text{ gm}$</p> <p>48.(d) Since, H_2O_2 and H_2O are two compounds of 2 elements</p> <p>49.(b) $N/No = (1/2)^2 = \left(\frac{1}{2}\right)^{32} T_{1/2}$ $= T_{1/2} = 32/2 = 16 \text{ minutes}$</p> <p>50.(c) N_3H is hydrazoic acid that removes H^+ to give conjugate base N_3^-</p> <p>51.(a) Heliox, a mixture of helium and oxygen used for the treatment of asthma patient due to its density three times less than that of air.</p> <p>52.(b) In N_2O_5, oxygen atom is bonded to two N- atoms.</p> <p>53.(d) ZnO is Chinese white</p> <p>54.(a)</p> <p>55.(d)</p> <p>56.(b) Phorone is obtained by condensation polymerization of three molecules of acetone in presence of $HCl(g)$. PAN is polyacrylonitrile which is obtained by addition polymerization of acrylonitrile (vinyl cyanide). Mesitylene is obtained by addition polymerization of propyne and condensation polymerization of acetone in presence of conc. H_2SO_4.</p> <p>57.(b) Inductive effect : due to permanent displacement of σ-electrons Electromeric effect : complete transfer of electrons of multiple bond to one of the bonded atoms (usually more electronegative)</p> <p>58.(b) Cl^- is stronger leaving group than others.</p> <p>59.(d) $CH_2Cl - C(CH_3)_2 - CH_3$</p> <p>60.(c)</p>	<p>On differentiation, $n(1+x)^{n-1} = C_1 + 2C_2x + \dots + nC_n x^{n-1}$ Putting $x = 1$, $n2^{n-1} = C_1 + 2C_2 + \dots + nC_n$</p> <p>63.(c)</p> <p>64.(c)</p> $ \begin{aligned} & (1+\omega)(1+\omega^2)(1+\omega^4)(1+\omega^8) \\ & = (1+\omega)(1+\omega^2)(1+\omega^3 \cdot \omega)(1+(\omega^3)^2 \cdot \omega^2) \\ & = (1+\omega)(1+\omega^2)(1+\omega)(1+\omega^2) \\ & = (1+\omega)^2(1+\omega^2)^2 \\ & = (-\omega^2)^2(-\omega)^2 \quad (\because 1+\omega+\omega^2=0) \\ & = \omega^4 \cdot \omega^2 = (\omega^3)^2 = 1 \end{aligned} $ <p>65.(c) $\vec{a} = \vec{b} = \vec{c} = 1$, $\vec{a} \cdot \vec{b} = \vec{b} \cdot \vec{c} = \vec{c} \cdot \vec{a} = 0$ Now $\vec{a} + \vec{b} + \vec{c}$ $= \sqrt{(\vec{a} + \vec{b} + \vec{c})^2}$ $= \sqrt{a^2 + b^2 + c^2 + 2(a \cdot \vec{b} + \vec{b} \cdot \vec{c} + \vec{c} \cdot \vec{a})}$ $= \sqrt{1+1+1+0}$ $= \sqrt{3}$</p> <p>66.(b) Eqⁿ: $ax^2 + 2hxy + by^2 = 0 \dots (i)$ Let $y = mx$ be one of the lines represented by (i) which bisects the angle between the coordinate axes. Then $m = \pm 1$. So putting (i) $ax^2 + 2hx.(\pm x) + b(\pm x)^2 = 0$ $a \pm 2h + b = 0$ or, $a + b = \pm 2h$ $\therefore (a+b)^2 = 4h^2$ Centre $(h, k) = (1, -3)$ $r = \sqrt{(-2-1)^2 + (1+3)^2} = 5$ Equation of circle is $(x-h)^2 + (y-k)^2 = r^2$ $\therefore (x-1)^2 + (y+3)^2 = 25$</p> <p>67.(a)</p> <p>68.(c)</p> <p>69.(c) Given, $\frac{2b^2}{a} = 3$ or, $b^2 = \frac{3a}{2}$ And $e = \sqrt{1 - \frac{b^2}{a^2}}$ or, $\frac{1}{\sqrt{2}} = \sqrt{1 - \frac{3a}{2a^2}}$ or, $\frac{1}{2} = 1 - \frac{3}{2a}$ $\therefore a = 3$ $b^2 = 3 \cdot \frac{3}{2} = \frac{9}{2}$ The equation of ellipse is $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$ or, $\frac{x^2}{9} + \frac{y^2}{\frac{9}{2}} = 1$ $\therefore x^2 + 2y^2 = 9$</p> <p>70.(c) At yz-plane $x = 0$ Let ratio be $k : 1$ Then $x = \frac{kx_2 + x_1}{k+1}$</p>
<p>61.(c) y is undefined when $x = 0$ $\frac{x}{ x } = \pm 1$ So Range = $\{-1, 1\}$</p> <p>62.(b) We have $(1+x)^n = C_0 + C_1x + C_2x^2 + \dots + C_n x^n$</p>	<p>Section – II</p>

- or, $0 = \frac{k(-1) + 4}{k + 1}$
- or, $k - 4 = 0$
- $k = 4$
- \therefore Ratio = 4 : 1
- Shortcut: By yz - plane ratio
- $$= \frac{-x_1}{x_2} = \frac{-4}{-1} = 4:1$$
- 71.(b)** We have $C = 45^\circ$, So $A + B = 135^\circ$
 Then $\cot(A + B) = \cot 135^\circ$
- or, $\frac{\cot A \cdot \cot B - 1}{\cot B + \cot A} = -1$
- or, $\cot A \cdot \cot B - 1 = -\cot A - \cot B$
- or, $\cot A \cdot \cot B - 1 + \cot A + \cot B = 0$
- i.e. $\cot A \cdot \cot B + \cot A + \cot B = 1$
- So $(1 + \cot A)(1 + \cot B) = 1 + \cot A + \cot B + \cot A \cdot \cot B = 1 + 1 = 2$
- 72.(b)** $f(x) = x^3 + \alpha x^2 + \beta x + 1$
 So $f'(x) = 3x^2 + 2\alpha x + \beta$
 Now $f'(0) = 0 \Rightarrow 3.0 + 2.\alpha.0 + \beta = 0 \Rightarrow \beta = 0$
 $f'(1) = 0 \Rightarrow 3.1^2 + 2.\alpha.1 = 0 \Rightarrow \alpha = -\frac{3}{2}$
- 73.(a)** $y = \sec^{-1} \frac{\sqrt{x} + 1}{\sqrt{x} - 1} + \sin^{-1} \frac{\sqrt{x} - 1}{\sqrt{x} + 1}$
 $= \cos^{-1} \frac{\sqrt{x} - 1}{\sqrt{x} + 1} + \sin^{-1} \frac{\sqrt{x} - 1}{\sqrt{x} + 1} = \frac{\pi}{2}$
 So $\frac{dy}{dx} = 0$
- 74.(c)** Given $\int_a^b x^2 dx = 0$
 $\frac{x^4}{4} \Big|_a^b = 0 \Rightarrow b^4 - a^4 = 0$
 $\Rightarrow b^4 = a^4$
 $\Rightarrow b = \pm a$
 and $\int_a^b x^2 dx = \frac{2}{3}$
 or, $\frac{x^3}{3} \Big|_a^b = \frac{2}{3}$
 or, $\frac{b^3 - a^3}{3} = \frac{2}{3}$
 or, $b^3 - a^3 = 2$... (ii)
 When $b = a$, $b^3 - b^3 = 2 \Rightarrow 0 = 2$ (not possible)
 So, $b = -a$, $-a^3 - a^3 = 2 \Rightarrow a^3 = -1$
 $\Rightarrow a = -1$
 and $b = 1$
- 75.(d)** Solving $y = x$ with $y = x^2$, we get
 $x = 0, 1$
 Also the curves are symmetrical about y-axis
 So, required area
- $$= 2 \int_0^1 (x - x^2) dx$$
- $$= 2 \left[\frac{x^2}{2} - \frac{x^3}{3} \right]_0^1$$
- $$= 2 \left(\frac{1}{2} - \frac{1}{3} \right)$$
- $$= 2 \times \frac{1}{6} = \frac{1}{3} \text{ sq. units}$$
- 76.(c)** $h_3 = u - \frac{a}{2}(2 \times 3 - 1)$
 $= 10 - \frac{2}{2}(6 - 1)$
 $= 5 \text{ m}$
- 77.(c)** Workdone (W) = change in PE of hanging part
 $= \left(\frac{m}{l} \times x \right) g \times \frac{x}{2}$ (x = length of hanging part)
 $= \frac{4}{2} \times 0.6 \times 10 \times \frac{0.6}{2}$
 $= 3.6 \text{ J}$
- 78.(b)** $PA = 2\pi r T$
 or, $\rho gh \times \pi r^2 = 2\pi r T$
 or, $r = \frac{2T}{\rho gh}$
 $\therefore d = 2r = \frac{4T}{\rho gh} = \frac{4 \times 0.07}{10^3 \times 10 \times 0.4}$
 $= 7 \times 10^{-5} \text{ m}$
 $= 0.07 \text{ mm}$
- 79.(d)** For 1st
 $n_1 = \frac{1}{2l} \sqrt{\frac{T}{\pi(2r)^2 \rho}} = \frac{1}{4lr} \sqrt{\frac{T}{\pi \rho}}$
 2nd $n_2 = \frac{1}{2 \times 2l} \sqrt{\frac{T}{\pi r^2 \rho}} = \frac{1}{4lr} \sqrt{\frac{T}{\pi \rho}}$
 $\therefore n_1 : n_2 = 1 : 1$
- 80.(b)** Heat lost by block = Heat gained by ice
 or, $2 \times S \times 500 = mL_f$
 or, $m = \frac{2 \times 400 \times 500}{80 \times 4200} = 1.2 \text{ kg}$
- 81.(c)** 1st case
 $\eta_1 = \left(1 - \frac{T_2}{T_1} \right) \times 100\%$
 $\frac{40}{100} = \left(1 - \frac{300}{T_1} \right)$
 or, $\frac{300}{T_1} = 1 - \frac{2}{5} = \frac{3}{5}$
 or, $T_1 = 500 \text{ K}$
 2nd case
 $\eta_2 = \left(1 - \frac{T_2}{T_1} \right) \times 100\%$
 or, $\frac{60}{100} = 1 - \frac{300}{T_1}$
 or, $\frac{300}{T_1} = 1 - \frac{2}{5} = \frac{3}{5}$
 or, $T_1' = 750 \text{ K}$
 $\Delta T = T_1' - T_1 = 750 - 500$
 $= 250 \text{ K}$
- 82.(a)** Given,
 $F_1 = 9 \text{ N}$ $F_2 = ?$
 $r_1 = d$ $r_2 = 3d$
 $\therefore F \propto \frac{1}{r^2}$
 $\therefore \frac{F_2}{F_1} = \left(\frac{r_1}{r_2} \right)^2$
 or, $F_2 = \left(\frac{d}{3d} \right)^2 \times F_1$
 $F_2 = \frac{1}{9} \times 9 \text{ N}$
 $\therefore F_2 = 1 \text{ N}$

PEA Association Pvt. Ltd. Thapathali, Kathmandu, Tel: 5345730, 5357187
2082-9-12 Hints & Solution

83.(b) Across AC

$$R' = \frac{18 \times 6}{18 + 6} = \frac{18 \times 6}{24} = 4.5 \Omega$$

$$R_T = R' + r = (4.5 + 1.5) = 6\Omega$$

$$I = \frac{E}{R_T} = \frac{18}{6} = 3A$$

$$\text{Now } I' \times 18 = (3 - I') \times 6$$

$$\text{or, } 3I' = 3 - I'$$

$$\text{or, } I' = \frac{3}{4} = 0.75A$$

84.(c) KE of electron = 10 eV

$$\therefore \frac{1}{2}mv^2 = 10 \times 1.6 \times 10^{-19}$$

$$V = 1.875 \times 10^6 \text{ m/sec}$$

$$\text{and } \frac{mV^2}{r} = eVB$$

$$r = \frac{mV}{eB} = 11 \times 10^{-2} \text{ m} = 11 \text{ cm}$$

85.(a) $u + v = x$

$$v = x - u$$

$$\text{And } m = \frac{v}{u}$$

$$\text{or, } v = mu$$

$$\text{So } mu = x - u$$

$$\text{or, } u = \frac{x}{m+1}$$

$$\& v = x - \frac{x}{m+1} = \frac{(m+1)x - x}{m+1} = \frac{mx + x - x}{m+1} = \frac{mx}{m+1}$$

$$\therefore f = \frac{uv}{u+v} = \frac{\left(\frac{x}{m+1}\right)\left(\frac{mx}{m+1}\right)}{\frac{x}{m+1} + \frac{mx}{m+1}} = \frac{\frac{mx^2}{(m+1)^2}}{\frac{(m+1)^2}{(m+1)x}} = \frac{(m+1)x}{(m+1)^2} = \frac{mx^2}{(m+1)^2 \times x} = \frac{mx}{(m+1)^2}$$

86.(c) $\frac{x}{f} = \frac{\lambda}{d}$

$$\text{or, } x = \frac{f\lambda}{d}$$

$$\therefore 2x = \frac{2f\lambda}{d} = \frac{2 \times 0.5 \times 6000 \times 10^{-10}}{0.2 \times 10^{-3}} = 3 \times 10^{-3} \text{ m} = 3 \text{ mm}$$

87.(b) $\phi = 1.24 \text{ eV}$

$$KE = \frac{hc}{\lambda} - \phi$$

$$= \frac{6.62 \times 10^{-34} \times 3 \times 10^8}{4.36 \times 10^{-7}} - 1.24 \times 1.6 \times 10^{-19} = 2.57 \times 10^{-19} \text{ J}$$

$$\therefore KE = eV_s$$

$$\text{or, } V_s = \frac{KE}{e} = \frac{2.57 \times 10^{-19}}{1.6 \times 10^{-19}} = 1.6 \text{ V}$$

88.(a) **For S₁**

$$A_1 = -\lambda 2N_0$$

$$5 \times 10^{-6} = \frac{0.693}{T_{1/2}} 2N_0 \dots \text{(i)}$$

For S₂

$$A_2 = -\lambda N_0$$

$$\text{or, } 10 \times 10^{-6} = \frac{0.693}{T_{1/2}} \times N_0 \dots \text{(ii)}$$

Dividing (i) by (ii)

$$\frac{5 \times 10^{-6}}{10 \times 10^{-6}} = \frac{2}{T_{1/2}} \times T_{1/2}'$$

$$\text{or, } \frac{T_{1/2}}{T_{1/2}'} = 20 : 5$$

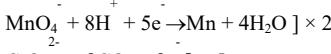
89.(d)

90.(b) O.N. of S in $\text{SO}_3^{2-} = +4$

O.N. of S in $\text{S}_2\text{O}_6^{2-} = +5$

O.N. of S in $\text{S}_2\text{O}_4^{2-} = +3$

91.(c) In CaCl_2 , $[\text{Cl}^-] = 2 \times 0.04 = 0.08 \text{ mol/L}$


$[\text{Cl}^-]$ from AgCl is very low so it is neglected

$$K_{\text{sp}} = [\text{Ag}^+][\text{Cl}^-]$$

$$4 \times 10^{-10} = [\text{Ag}^+] \times 0.08$$

$$\therefore [\text{Ag}^+] = 4 \times 10^{-10}/0.08 = 5 \times 10^{-9} \text{ M}$$

$$92.(b) \text{Relative atomic mass} = \frac{5 \times 54 + 90 \times 56 + 5 \times 57}{100}$$

94.(b) $2\text{MnO}_4^- + 5\text{C}_2\text{O}_4^{2-} + 16\text{H}^+ \rightarrow 2\text{Mn}^{2+} + 10\text{CO}_2 + 8\text{H}_2\text{O}$
In $[\text{Ni}(\text{CN})_4]^{2-}$, Ni has +2 oxidation number. CO and CN⁻ are strong ligands that result inward pairing of electrons and hence $[\text{Ni}(\text{CN})_4]^{2-}$ has dsp^2 hybridization.

95.(d) Secondary prefixes are arranged in alphabetical order

96.(c) 4-primary amines, 3-secondary amines and 1-tertiary amine (draw structures or use NS trick)

97.(c) 98.(c) 99.(a) 100.(b)

...The End...